
Week 5: Support Vector Machines
and Tensor Backpropagation

https://mlvu.github.io

March 7, 2021

1 Support Vector Machines

1.1 Tensor loss

The basic optimization objective for Support Vector Machines is

minimize
1

2
||w||+ C

∑
i

pi

such that yi(wTxi + b) > 1− pi

and pi > 0

question 1: What does the variable i index? How many terms does the sum
have, and how many constraints are there?

What is the value of yi in this expression? What is its function?

question 2: There are two common ways to rewrite this expression before
implementing it. What are they (in general terms) and what are their bene-
fits?

1.2 Lagrange multipliers

Lagrange multipliers are a useful trick to know. In the lectures we only had
time to describe the trick itself, and the rules for applying it. That should
be enough to do the exam questions and the questions below, but if you

1

https://mlvu.github.io

want some more intuition for why Lagrange multipliers work the way they
do please read this article from the required reading.

We have the following optimization problem:

minize f(a,b) = a2 + 2b2

such that a2 = −b2 + 1

question 3: The first step is to rewrite the constraint so that the right side
is equal to zero. Do so. What does the constraint say about the allowed
inputs (what shape do the allowed inputs make in the (a,b)-plane)?

We now define a function L(a,b,α) = f(a,b) + αG, where G is the left
hand side of the constraint equal to zero (how much any given a and b
violate the constraint).1

question 4: Write out L(a,b,α) for our problem.
We take the derivative of L with respect to each of its three parameters,

and set these equal to zero.

question 5: Fill in the blanks

a(. . .) = 0 (1)

b(. . .) = 0 (2)

a2 + b2 = 1 (3)

Note that the last line recovers the original constraint. We now have three
equations with three unknowns, so we can solve for a and b. From the
shape of the function (it’s symmetric in both the a and b axes), we should
expect at least two solutions.

We can get these from the above equations by noting that if a and b are
both nonzero, we can derive a contradiction. Thus either a or b must be
zero.

question 6: Give the solutions for both cases (remember that x2 = 1 has
two solutions).

Happily, Wolfram Alpha agrees with us (and provides some informative
plots).

1For plain Lagrange multipliers, where the constraints are all equalities, we can either
add or subtract the term containing the constraint. For inequality constrains, it depends on
whether we are maximizing or minimizing.

2

https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/constrained-optimization/a/lagrange-multipliers-single-constraint
https://goo.gl/Uaz5mg

1.3 The kernel trick

The feature space of k is a projection of point a to point a ′ such that

k(a,b) = a ′Tb ′ .

We have a dataset with two features Let a =

(
a1
a2

)
and b =

(
b1
b2

)
. We

define the kernel
k1(a,b) = (aTb)2 .

question 7: Show that the feature space defined by k1 for a vector
(
x1
x2

)
is

 x1
2

√
2x1x2
x2

2

 .

Hint: start by writing out the definition as a scalar function. See if you can
re-arrange this back into a dot procut of two other vectors.

question 8: What is the feature space for the kernel

k2(a,b) =
(
aTb+ 1

)2
?

2 Backpropagation Revisited

2.1 The multivariate chain rule

If we want to do backpropagation for a computation graph where an output
variable depend in an input variable through multiple intermediate values
(the graph contains a diamond), we require the multivariate chain rule. If
you don’t quite remember how it goes, re-read slides 24–29 fo the deep
learning lecture before trying these questions.

We will use the backpropagation algorithm to find the derivative of the
function

f(x) = sin(x2) cos(x3)

with respect to x.

question 9: First, we break the function up into modules. Fill in the blanks.

3

f = ab

a = . . .

b = . . .

c = x2

d = x3

question 10: Draw the computation graph with nodes x, c,d,a,b, f

question 11: Work out the local derivatives. Which is the correct expression
for the gradient ∂f/∂x?

This is a common exam question so make sure to practice if you’re not sure.
You can easily create new questions for yourself by coming up with any
function f(x) with a diamond shape in the computation (just make sure that
x is used twice).

2.2 Tensor Backpropagation

In scalar backpropagtion, we need to work out only the local derivatives.
Once we have these, we can multiply them in any order to get the global
derivative. If we want to apply backpropagation to tensors, things are not
so easy.

question 12: Why not? What is it about the local derivatives in tensor
backpropagation that makes it difficult to apply in this way?

The solution is not to compute the local derivatives explicitly, but only
to compute the gradients on the inputs over the loss, given the gradients of
the outputs over the loss.

We will practice this for a simple feedforward layer (without activation).
Consider a module f that computes:2

y = f(x,W,b) = Wx+ b

2Normally, we would consider x the input, and W and b the parameters, but for our AD
engine, the distinction does not matter: everything going in to the computation is an input,
and we may need the gradient over all three.

4

Assume that this module is part of a much larger network. Its output y is
fed as input to another module, which produces a new output that is fed to
another module and so on. At the end, a single scalar loss L is produced.

x lossy
……

W
b

Ultimately, we want to work out the derivative of this loss, with respect to
our inputs:

x∇, W∇, b∇

Where the notation W∇ represents a matrix for the scalar derivatives
of the loss with respect to elements of W. For instance, element (2, 3) of
matrix W∇ is the scalar derivative ∂l/∂W23.

We’ll start with the bias term b. Since matrix/vector calculus can get
complicated, and doesn’t translate to tensors of higher rank, we’ll develop
everything in terms of scalar calculus. Once we’ve taken the derivatives
we’ll transform everything to matrix operations to make the implementation
efficient.

We’re interested in ∂L
y

∂y
∂bj

, but we need matrix/vector calculus to do
that. Instead we will consider (f(b)) as a scalar computation, which has
multiple intermediate values y1,y2 . . . ,yk. By the multivariate chain rule,
we can just take the derivative over each path (through each value yi), and
sum them:

∂l

∂bj
=

∑
i

∂l

∂yi

∂yi
∂bj

=
∑
i

y∇i
∂yi
∂bj

We will assume that y∇ is given to us by the automatic differentiation (AD)
engine as a vector. All we need to work out is a simple matrix operation that
computes ∂l/∂bj for all j and lays the results out in the same shape as b.
We’ll start by working out the scalar derivative.

5

question 13: Fill in the gaps

∂l

∂bj
=

∑
i

∂l

∂yi

∂yi
∂bj

=
∑
i

y∇i . . .

=
∑
i

y∇i
∂[. . .]i
∂bj

=
∑
i

y∇i
∂[Wx]i + bi

∂bj

=
∑
i

y∇i
∂bi
∂bj

= . . .

question 14: The backward() function for f if given y∇. What should it
return as the gradient for b?

We’ll do the same for the gradient over x.

question 15: Work out the scalar derivative ∂l/∂xj using the multivariate
chain rule (again taking y∇i = ∂l/∂yi as given).

question 16: What should the backward() function for f return as the gra-
dient for x?

3 Bonus: Expectation Maximization

This is not an exam question, but it’s helpful to do if you want to understand
the EM algorithm.

Assume we have a Gaussian Mixture Model in one dimension with two
components: N(0, 1) andN(1, 1). The weightsw1 andw2 of the components
are equal.

6

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Component density functions

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gaussian mixture probability density function

question 17: Compute the probability density of the point 0, under the
Gaussian Mixture.

question 18: Under the EM algorithm, what responsibility is assigned to
each component for the point 0?

7

	Support Vector Machines
	Tensor loss
	Lagrange multipliers
	The kernel trick

	Backpropagation Revisited
	The multivariate chain rule
	Tensor Backpropagation

	Bonus: Expectation Maximization

