
Week 6: Decision Trees and Variational
Autoencoders

http://mlvu.github.io

March 15, 2021

1 Decision trees

Imagine you do a newspaper round to help you get through these lean times.
On your round, you encounter a number of dogs that either bark or (try to)
bite. The dogs are described by the following binary features: Heavy, Smelly,
Big and Growling. Consider the following set of instances:

Heavy Smelly Big Growling Bites
No No Yes No No
No No No No No
Yes Yes Yes Yes No
Yes No Yes Yes Yes
No Yes No No Yes
No No No Yes Yes
No No Yes Yes Yes
Yes Yes Yes No Yes

question 1: What is the entropy of the target value Bites in the data?
We will model the target value as a random variable B with values Yes

and No. In decision trees, we estimate the probabiliies of these from the
data by relative frequency. This gives us

p(B = Yes) = 3/8 and p(B = No) = 5/8

The entropy of a random variable is defined asH(X) = −
∑

x p(x) log2 p(x),
where the sum iterates over the possible values of the random variable.
Here, that gives us H(B) = −p(Yes) log2 p(Yes) − p(No) log2 p(No).

1

http://mlvu.github.io


Filling in our estimates, we get

H(B) = −5/8 log2 5/8 − 3/8 log2 3/8 ≈ 0.9544 .

Tip: You can punch this into a calculator, but you can also rewrite the
expression a little first:

H(B) = −5/8 log2 5/8 − 3/8 log2 3/8 ≈ 0.9544

= −5/8(log 5− log 8) − 3/8(log 3− log 8)

= −
1

8
(5(log 5− 3) + 3(log 3− 3))

This has several benefits. First, you get nice round numbers for any
numerator or denominator that is a power of 2, so you may end up with a
more accurate answer. More importantly, this allows you to double-check
your answers. It’s easy to make mistakes in the computation of the entropy,
so it pays to compute it in different ways, to guard against mistakes.

Another way to double-check your answer is to test it against your intu-
itive understanding of the wntropy. Remember, the entropy is the expected
codelength under p, if we use the code that corresponds to p. First of all
that means the answer can’t be negative. It also means that if you have two
outcomes, you can always assign them the codewords 0 and 1, and get an
expected codelength of 1, whatever the probabilities. This means that the
optimal codelength, in this case must be between 0 and 1. Since there is a
little imbalance in the classes, but not much, we expect the entropy to be a
little below 1 (the maximum entropy, which we get for a 50/50 probability).

question 2: Which attribute would the ID3 algorithm choose to use for the
root of the tree (without pruning)?

The information gain is the average drop in entropy we get by splitting
on a feature. We’re considering the four features Heavy, Smelly, Big and
Growling as the first split in the tree. Since the entropy before the split is
the same for all four, we can ignore that and only look at which value gives
us the lowest average entropy post-split.

We start by tallying up the class frequencies after the split

Heavy:
value/class Yes No

Yes 2 1
No 3 2

Smelly:
value/class Yes No

Yes 2 1
No 3 2

2



Big:
value/class Yes No

Yes 3 2
No 2 1

Growling:
value/class Yes No

Yes 3 1
No 2 2

Tip: It’s easy to make a mistake in these tallies. You can double-check
your work by computing the marginal sums of the tables: the vertical mar-
gin should correspond to the totals per value (which isn’t the same for all
features) and the horizontal margin should correspond to the the call totals.
If you start by filling in the margins (which are usually easier to tally up),
then you only need to count one value/class combination, and you can work
out the rest from the margins.

ID3 chooses the split that gives us the maximal information gain. We
can look up the formula and plug in the probability estimates from the data,
but it’s a good idea to think about the process a little before we start calcu-
lating. This will guard against mistakes, and it will save us a lot of compu-
tation.

Here is the formula for the information gain:

I(F) = H(S) −
∑
v∈F

|Sv|

|S|
H(Sv) .

Where F is the feature we are splitting on S is the set if instances before
the split, v iterates over the values of F, with subsets Sv representing those
instances of S that have value v for feature F, and H(S) is the entropy of the
class distribution among the instances in the set S.

Since we are computing the first split in the tree H(S) is the entropy of
the class distribution over the whole data. We computed this in the last ques-
tion, but we actually don’t need it. It’s the same for all features, so it doesn’t
affect which feature minimizes the information gain: we can compute only
the second term.

We can see that the tallies for Heavy and Smelly are the same, so we’ll
only need to compute one of them. With a little more thinking, we can see
that that the information gain for Big muast also be the same. First, not that
the entropy of a 3/2 split is the same as that of a 2/3 split: it’s just reversing
the two terms in the formula. Second, Heavy has 3/8 Yes and 5/8 and
No, and Big simply reverses these proportions, but with the same entropies.
Thus, for the first three features, the information gain is the same.

Here, it’s difficult to say whether we expect Growling to do better or
worse than the other three. The split after Growling=No is uniform, so
that’s the highest in all 8 possible splits, but the split Growling=Yes is the
most uneven in all possible splits. Here, we have to calculate to be sure, but

3



in the questions in the practice exam, you can usually tell immediately from
the tallies which split gives you the best gain.

Filling in the formula for Big:

I(Big) = H(S) −
5

8
H(SYes) −

3

8
H(SNo)

= H(S) −
5

8

(
−
2

5
log

2

5
−

3

5
log

3

5

)
−

3

8

(
−
1

3
log

1

3
−

2

3
log

2

3

)
= H(S) − 0.9512 .

Be careful to keep track of the minus in the entropy. It’s common mistake to
forget about it. Note that the logarithms of values between 0 and 1 produce
negative values.

And for Growling:

I(Growling) = H(S) −
4

8
H(SYes) −

4

8
H(SNo)

= H(S) −
1

2

(
−
3

4
log

3

4
+

1

4
log

1

4

)
−

1

2

(
−
2

4
log

2

4
−

2

4
log

2

4

)
= H(S) −

1

2

(
−
3

4
log

3

4
−

1

4
log

1

4

)
−

1

2
· 1

= H(S) − 0.9056 .

There’s not much in it, but the information gain for Growling is slightly
higher, which is what we’ve looking for, so we pick Growling as the first
split.

question 3: What is the information gain of the attribute you chose in the
previous question? Using our answer to the first question to fill in H(S), we
get 0.9544− 0.9056 = 0.0487 as an approximate answer.

question 4: Draw the full decision tree that would be learned for this data
using ID3 without pruning. The split on Growling partitions the data into
the following subsets.

For Growling=Yes:
Heavy Smelly Big Growling Bites

Yes Yes Yes Yes No
Yes No Yes Yes Yes
No No No Yes Yes
No No Yes Yes Yes

4



And for Growling=No:
Heavy Smelly Big Growling Bites

No No Yes No No
No No No No No
No Yes No No Yes
Yes Yes Yes No Yes

At this point, we can take a shortcut. This will help to verify our calculated
answer, or to gues the answer quickly if we’re running out of time. In both
tables, the values of Smelly correspond exactly to one of the classes. After
splitting on Smelly, in all cases the resulting subset of the data contains only
one class. This means that the distribution on the classes is 0/1 and the
entropy is 0. This isn’t true for any of the other features, so Smelly must be
the best feature for both branches.

To double-check this intuition, we’ll do the full calculation anyway. For
each branch in the tree so far, we need to decide the next split separately.
We’ll start with Growling=Yes. The features left are Heavy, Smelly and Big.
These are the tallies:

Heavy:
Yes No

Yes 1 1
No 2 0

Smelly:
Yes No

Yes 0 1
No 3 0

Big:
Yes No

Yes 2 1
No 1 0

As before, they all have the same entropy H(SGrowling=Yes) on the incom-
ing instances, so we won’t compute that. Here are the information gains.
Note that if the class distribution is 0/1 the entropy is 0 and if it’s uniform,
the entropy is 1.

I(Heavy) = H(S) −
(
2

4
1+

2

4
0

)
= H(S) −

1

2

I(Smelly) = H(S) −
(
1

4
0+

3

4

)
= H(S)

I(Big) = H(S) −
(
3

4

(
−
1

3
log

1

3
−

2

3
log

2

3

)
+

1

4
0

)
= H(S) − 0.6887

Our guess is validated. Smelly has the highest information gain on this
branch.

5



Next up, the branch with Growling=No. Here are the tallies:

Heavy:
Yes No

Yes 1 0
No 1 2

Smelly:
Yes No

Yes 2 0
No 0 2

Big:
Yes No

Yes 1 1
No 1 1

And here are the information gains.

I(Heavy) = H(S) −
(
1

4
0−

3

4

(
−
1

3
log

1

3
−

2

3
log

2

3

))
= H(S) − 0.6887

I(Smelly) = H(S) −
1

4
0−

3

4
0

= H(S)

I(Big) = H(S) −
2

4
1−

2

4
1

= H(S) − 1

Here too, we see that Smelly has the highest information gain.
This gives us a tree with four leaf nodes. In each of the four resulting

subsets of the data, all instances have the same class, so four all leaf nodes,
we have reached a stop condition and we can stop expanding. We label the
leaf nodes with the majority class in the subset:

Figure 1: Decision tree

question 5: Suppose three new dogs appear in your round as listed in the
table below. Classify them using the tree from the previous question.

6



Dog Heavy Smelly Big Growling Bites
Buster Yes Yes Yes Yes No
Pluto No Yes No Yes No
Zeus Yes Yes No No Yes

question 6: Someone proposes a new scheme to prevent overfitting: she
suggests to set a pre-defined maximum depth for the decision trees. When
the standard algorithm reaches this depth, it terminates. Could this help to
prevent overfitting? Why (not)?

It could: it ensures smaller, simpler trees (a smaller model space) and
therefore can reduce the risk of overfitting. Overfitting is essentially memo-
rizing too much of your data. Smaller trees can memorize less.

Another way to think of this is that a smaller tree is likely to have a
large subset of nodes at its leaves, because it can only split the data so many
times. All theese nodes need to be assigned the same label, so if they don’t
all have the same label in the data, we can’t overfit on these nodes.

question 7: In the maximum depth scheme introduced above, how would
you determine a good value for the maximum depth for a given data set?

The maximum depth is a hyperparameter. We can choose good values
for our hyperparameters by splitting our training data into a validation set
and trying different values (either by cross validation or just single runs).

question 8: Why can’t we apply L1-regularization to this decision tree learn-
ing problem?

L1 regularization assumes that your model is described by a real valued
vector of parameters (i.e. your model space is continuous.) Decision trees
have a discrete model space.

2 Variational autoencoders

The maximum likelihood principle tells us to optimize the quantity p(x | θ)
as a function of θ (the model parameters). For complex models, this does
not usually lead to a closed form solution. Instead, we will rewrite the
maximum likelihood objective using the following decomposition.

lnp(x | θ) = L(q, θ) + KL(q,p)

7



with

q(z | x) any distribution on z

KL(q,p) the Kullback-Leibler divergence1

between q(z | x) and p(z | x, θ)

L(q, θ) = Eq ln
p(x, z | θ)

q(z | x)

We will first prove that this equality holds. We start with the right hand side,
fill in the components, and derive the left-hand side.

question 9: Fill in the blanks. We have written everything in terms of
expectations E to simplify the notation. The expectation is over the random
variable z, while x has some definite value. Note that Ef(z) + Eg(z) =
E [f(z) + g(z)].

L(q, θ) + KL(q,p) = Eq ln
p(x, z | θ)

q(z | x)
− Eq ln

p(z | x, θ)

q(z | x)

= Eq lnp(x, z | θ) − Eq lnq(z | x) − Eq lnp(z | x, θ) + Eq lnq(z | x)

= Eq lnp(x, z | θ) − Eq lnp(z | x, θ)

= Eq ln
p(x, z | θ)

p(z | x, θ)
= Eq ln

p(z | x, θ)p(x | θ)

p(z | x, θ)

= Eq lnp(x | θ) = lnp(x | θ)

If you’re struggling with this derivation, you can always memorize it, in case
it appears on the exam, but if you want to understand it it helps to remember
the following properties of expectations, logarithms and probabilities. To
see where they come from, review the first homework exercise.

1The KL divergence can be defined using log2 or using ln. The first leads to a value in
bits, the second to a value in the slightly more abstract unit of nats. That is, the information
distance between the two distributions is the same, but expressed in different units. In the
context of the VAE, the natural logarithm ln is preferred, mainly because it cancels out neatly
against the exponent in the pdf of the normal distribution.

8



p(a,b) = p(a | b) p(b)

log(f(x)g(x)) = log f(x) + log g(x)

log
f(x)

g(x)
= log f(x) − log g(x)

E [f(x) + g(x)] = Ef(x) + Eg(x)
Ec = c if c is a constant with respect to the distribution of E

In EM, we search by alternately (1) optimizing L(q | θ) with respect to θ
and (2) setting q equal to p (so that the KL term becomes zero).

question 10: For the variational autoencoder, we cannot (easily) perform
this last step. Why not? In the variational autoencoder, our model is a neural
network that transforms z into a distribution on x. To set the KL divergence
term equal to zero, we would have to compute p(z | x, θ): i.e. a probability
distribution on z that indicates for which z our observed x is most likely.

While sampling techniques exist to approximate this kind of distribution,
they are costly and can be very inaccurate.

Instead, we approximate p(z | x, θ) with a neural network qv(z | x) that
produces a distribution on z given some x. We call the neural network com-
puting p(x | z, θ) pw(x | z), to make the notation a little more friendly.
Here, w, stands for all parameters of the p network, and v stands for all
parameters of the q network.2

This gives us an auto-encoder-like structure. An input is mapped to a
distribution qv(z | x) by the encoder. We sample a single z from this distri-
bution and pass it through the decoder pw(x | z) to produce a distribution
on x (see the slides for diagrams).

To find a way to train such an architecture, we turn again to our decom-
position of the likelihood. In our new notation:

lnpw(x) = L(v,w) + KL(q,p) .

The KL divergence term is difficult to compute: it’s an expectation, and
it contains the function pw(z | x) which requires us to invert the decoder
neural network (that is, to reason about the inputs given the outputs).

2We’ve turned θ into w and added parameters v for our approximation q on the condi-
tional distribution on z. We’ve also taken the parameters out of the conditional, because
we will always talk about the function “given the parameter”; we will never talk about the
probability on the parameters themselves.

9

https://mlvu.github.io/lectures/51.Deep%20Learning2.annotated.pdf


However, because the KL divergence is always positive, we know that

lnpw(x) > L(v,w)

for any qv we choose. This is why L is called the variational lower bound.3 If
we choose our parameters w, v to maximize L, we are also, indirectly, max-
imizing lnpw(x).4

To do so, we rewrite L(v,w) into two separate terms: a KL divergence
and an expectation:

L(v,w) = −KL(qv(z | x),pv(z)) + Eqv lnpw(x | z)

question 11: Show that this equation holds. That is, rewrite the left part
into the right. We will assume that all expectations are over q.

L(v,w) = Eq ln
pw(x, z)

qv(z | x)

= E lnpw(x, z) − Eqv(z | x)

= E ln [pw(x | z)pw(z)] − E lnqv(z | x)

= E lnpw(x | z) + E lnpw(z) − E lnqv(z | x)

= E lnpw(x | z) − [E lnqv(z | x) − E lnpw(z)]

= E lnpw(x | z) − KL(qv(z | x),pw(z))

Thus, to optimize our variational autoencoder, we should maximize L.
In other words, −L is our loss function. The only problem left to solve is that
the second term is an expectation (which we cannot compute explicitly).

question 12: How is this solved in practice?
We take a single sample from qv(z | x) and use lnpw(x | z) as a (very

crude) estimate of the expectation term.
To let the gradient propagate through the sampling, we add a sample

from the standard MVN to the input and transform it to a sample from
qv(z | x) by multiplying by a matrix A (with Σ = AAT ) and adding the
mean.

3The word variational comes from the fact that one of its arguments, q, is a function (the
calculus of functions is called variational calculus). For our purposes, this distinction doesn’t
matter much, since the function q is defined by a set of parameters v, so ultimately we will
take the derivative over those parameters, as we are used to.

4How close the lower bound L comes to the true value pw(x) depends on how well our
encoder network qv approximates the true conditional distribution on z: pw(z | x). I.e. how
small the KL term in the original decomposition is.

10


	Decision trees
	Variational autoencoders

