on preliminaries

Quick recap
See the slides and homework for links to further resources

Skim to check that know everything mentioned here
Come back here if you get stuck in the lectures

Let us know if there's something we should add here

The preliminaries we cover in this lecture are just that:
preliminaries. They are the things you should know
already, either from prior courses you've followed, or from
your high school education. However, since this course
caters to many programs, we cannot fully ensure that all the
preliminaries have been perfectly covered in all cases. This
lecture describes and explains the basics. If you've never
seen this material before, this treatment is probably too
brief to get a deep understanding.

Think of this as a recap: if there's anything in this lecture
you've never seen before, make sure to take some time to
dig into it a little deeper. If you ever get stuck at any point in
the course, it may be that there are some preliminaries you
didn't quite cover.

If you basically know this stuff already, feel free to get
started with the lectures, and see how far you get. We try to
start slow, and gently ramp up the complexity as the course
progresses. With a bit of luck, every step is just enough
preparation for the next. If not, and you get stuck on a
particularly hairy bit of math, remember that you can
always come back here. Perhaps another look at the basic
properties of these fundamentals can help you to see what
we're doing.

In general, everything we do in the slides is an application of
the basic mechanisms presented in this lecture. However,
there's a difference between stacking a few bricks together
and building a house. At a certain level of complexity, you
may lose track of the big picture even if you understand all
the individual steps. The key to understanding the complexity,
is to get familiar with the basic building blocks.

understanding, familiarity and mastery

"Young man, in mathematics you don't understand
things. You just get used to them."
—John von Neumann

Before we get started, a note on what it means to
"understand" a mathematical topic. To illustrate, here is a
controversial quote from mathematician John von
Neumann.

He was speaking to Felix Klein, who had admitted to him that
he didn't really understand a certain field of mathematics.

Many math teachers hate this quote, because it implies
something about rote learning over intuitive understanding.
However, von Neumann was no idiot, and there is certainly
a deep truth to this statement.

For me, the key principle he's getting at is the difference
between understanding the principle of something and
being thoroughly familiar with it, to the extent that you can
even use it without conscious effort. As a metaphor, imagine
amusical score (i.e. sheet music). [had some lessons as a
child, so I understand the principle of sheet music entirely.
With some time I can find any note indicated in the score.
What I cannot do is sight read: look at a score and play it
directly, or hear in my head what it sounds like. That takes

more than understanding: it takes practice.

The same is true for mathematics. You probably understand
the ideas of logarithms and sums pretty well already, and
after this lecture hopefully a little better. However, to really
follow along with complex derivations, you'll need to get so
familiar with them that they feel like second nature: like
reading, or typing on a keyboard: the sort of thing you can
do while concentrating on something else.

When learning mathematics, sometimes you understand
first and then you slowly “get used to”. Sometimes it's the
other way around, and you need to take something you
don't fully understand, and play around with it. The more
you get used to it, the more you feel like you understand.

It can be quite instructive to read a bit how different
mathematicians think about the role of understanding. This
discussion on the mathematics stackexchange about von
Neumann's quote provides a nice selection of perspectives. If
you have trouble grasping mathematical concepts, have a
read through some of the answers. Perhaps your experience is

p(z|x,0)

Here is an example of a particularly complex derivation that
will come up in one of the later lectures. Without the
required context it will be impossible to understand what
this is about, or what we're doing here. Don't worry about
that. The reason we show this here is to emphasize that
even though this looks very complicated, it's using only a
few very basic mechanisms that you should be familiar with
already:

+ Sum (capital sigma) notation
+ Logarithms

+ Expectations

* (Conditional) probabilities

Even if you don't understand what this is about, the basic
properties of the above four concepts should be enough to
tell you how every line follows from the previous.

Don't worry if that's too much at the moment, we'll work up
to this level of complexity step by step. However this
hopefully indicates that it's crucial to not just understand
these four concepts but to really get used to them, in the
sense of von Neumann. If you do that for the topics covered
in this lecture, you should be able to follow along, even with
very complex derivations like these.

Preliminaries

Part 1: Logs, sums and argmax

Machine Learning
mivu.github.io
Vrije Universiteit Amsterdam

In this lecture, we'll go over some of the mathematical
preliminaries. The stuff you should know before you start
doing machine learning.

|section-nv|Logs, sums and argmax|

- Logarithms

- Sum notation

In the first section, we will deal with three different
mathematical topics that come up a lot. They are not
complicated, but you'll need to get very familiar with them
to read basic machine learning material. Even if you know
them already, it pays to practice, so that you get used to
them.

- Argmax/min
the logarithm Here is the basic idea of the logarithm. It's simply the
flx) = 2% fx) = logs x inverse of the the exponent function. If 64 is 2 raised to the
1000 4 10.0 | power of x, what is x? It's logz(64) = 6, because 2¢ = 64.
7.54 . , .
800 | This doesn’t, however, go very far towards explaining why
>0 the logarithm is so special.
600 2.59
0.01
400 4 —2.54
50
200 4
_75]
0 —10.01
-10 !5 6 .;: 1‘0 6 260 460 660 860 1(;00

http://mlvu.github.io

Napier In fact you may not even think of something so simple as an

inverse function to require "invention". And yet the

“Probably no work has ever invention of the logarithm (or perhaps the method of
influenced science as a whole, and
mathematics in particular, so
profoundly as this modest little
book. It opened the way for the
abolition, once and for all, of the
infinitely laborious, nay,
nightmarish, processes of long
division and multiplication, of
finding the power and the root of
numbers.”

—D.W. Waters

logarithms is more accurate) by John Napier was a great
watershed for the natural sciences.

This quote (from a book on navigation in from 1958) refers
to a small book that Napier published containing simple
tables of logarithms. This was a watershed because it
allowed people to quickly compute things that would have
been terribly laborious before.

The fundamental reason for this is that logarithms turn

multiplications, which are complex and laborious to
perform without a computer, into additions, which are a
much simpler business.

positive numbers a, b and c, for which we know that ab =c.
e The trick behind logarithms is that we can choose to refer
a=2" to a, b and c simply by different names. We know that there
b=2 must be some number x such that 2x = a. Whatever that
e=2 number is, we call it X, and we create similar numbers y and
X9y _ 9z 7 to refer to b and c.
oty _g9z <— this is where the magic happens
Chy—- How does the knowledge that ab = c translate to this new
set of names for our numbers? Filling in the multiplication,
log, a + log, b = log, (ab) we get 2x2y = 22, Now, It is a basic property of
\ exponentiation that 2x2y = 2x+y,

If this is news to you, or you've forgotten why this is the case,
Just try it with some integer exponents: 2324 = 2:2:2:2:2:2:2 =

23+4,

That is, with our new names, the multiplication has
become a sum. By summing x and y, we find the number z,
and z is the new name of the number c that we wanted to
compute.

This is why Napier is so famous (at least in certain circles).
If you have some horrendous multiplication to compute, all
you have to do is rename your numbers. After the renaming,
you can sum them and you get a solution for your
multiplication in the renamed form, for which you can then
look up the original name. The renaming back and forth is
what Napier's "little book" allowed people to do: all they
had to do was look up the right numbers in a table.

The renaming function that creates these well-behaved
numbers is the logarithm. We've used base-2 logarithms
here, but any other base would do just as well.

Ifyou want something more concrete try substituting a=16,
b=32 and c=512.

This principle is how people could calculate quickly before
computers became commonplace. First by using large pre-
computed tables of logarithms, and then by using slide rules.
The idea is that it's very easy to use the sliding action of two
rulers to mimic a summation. If you then label the rules
with logarithms rather than linearly spaced numbers, you
can use the slide rule to "look up" multiplications.

Image source: https://commons.wikimedia.org/wiki/
Category:Slide_rules#/media/File:Slide_Rule_(PSF).png

the logarithm as the "number of digits"

3
- logi03=0.5
31
314
logi0314=25
3141
31415
314159
log10314159=5.5

100 000 - 1 000 = 100 000 000

Another way to think of the logarithm is as indicating the
number of digits you'll need to write a number down. The
slide shows an example: for each of these numbers, if we
take the base ten logarithm and round it up, we get the
number of digits.

Why should this be the case? Ask yourself how many
numbers you can write down with three digits. There are
ten options for the first digit, ten for the second and ten for
the third, so the answeris 10 - 10 - 10 = 103. That is, the
first number that you can't write down with three digits is
exactly 103. The same reasoning holds for any number of
digits: the first number that you can't write down with n
digits is 10. Or, put differently if a number is smaller than
10m, you can write it down in n digits or fewer. The function
floor(logio(x)+1) gives us the first integer n such that x is
smaller than 10n. In other words, the number of digits we
need to write down x.

This provides a natural interpretation to the "multiplication
to sum" property of logarithms. Imagine the multiplication
of 100000 (105) by 1000 (103). Despite these being very
large numbers, the multiplication is easy to do. We just add
the zeroes of the second number to those of the first. The
length of the result, written down in Arabic numerals is
roughly the length of the first number plus the length of the
second number. This is roughly true for any multiplication,
if we count the length as the logarithm of a number.

You can also use this to provide crucial interpretation for
the binary logarithm logz. When we asked how many
different numbers you can write with three digits, 10-10-10,
we used the fact that there are exactly 10 digits. What if we
didn't have ten symbols but only 2? Say, 0 and 1. In such a
situation we could represent only two numbers with such a
"two-digit" after which we would need to add more to
represent a third number. With three of such two-digits, we
could represent 2:2-2 = 23 numbers. Two-digits of course,
are called bits. The binary logarithm of x indicates how
many bits we need to represent x (by the same formula as
above).

Bits have a surprising, but crucial role to play in machine
learning. For this reason, we will see the binary logarithm

being used a lot.

Here are the most important properties of the logarithm to

log 0 = -co (or "undefined") f(x) =log, x .) '

remember. These are the main things you'll need to work
log1=0 into your muscle memory.
logrb=1

For the last property, we've given a little proof to show how

I logb=1 . . .
°g 2 +logb=log (ab) it follows from the previous two properties.

log (a?) =blog a

loga-logh a b a b

=log(a/b)

2.1718.... This is because the function ex is a particularly

fix) = e~ fix)=Inx
1004 special one. We can show why this function is special later
20000 1 754 in the course. For now, just remember that this is one
s.0d particular base we will often use.
15000 4
2.59
0.01
10000 q
-2.54
5000 { =501
=754
0 —10.01
—5.0 —‘5 6 _;) 1‘0 6 50‘00 10600 15600 20600 L

why are logarithms important to us?

reason 1: the log of a formula is often simpler

Ok, so that's why logarithms are historically important. Why
do we still use them so much nowadays? We have
calculators aplenty to multiply numbers for us, so why put
logarithms front and center among our preliminaries?

There are two reasons. The first is in analysis. When we are
analysing our formulas and algorithms, we deal with a lot of
complicated expressions. Here is an example: the famous
normal distribution. Its probability likelihood curve looks
like this. It's defined by the complicated formula on the left
(this normal function has mean 0 and variance 1).

If that looks way too complicated to understand, don't worry,
that's sort of the point. We will talk about how to read this
formula at length later on. For now, just take it as an example
of a complicated formula.

The only thing we need to worry about now is that it's
positive everywhere, so we can take its logarithm. This
changes the function, but in a very predictable way: for
instance, because the logarithm only ever increases, that
means that whereever the normal function increases, so
does its logarithm. This means that, for example, the peak is
in the same place for both functions.

So, if we start with the complicated function on the left, and
take its (natural) logarithm, we end up with the function on
the left. See if you can show this with the properties from
the previous slide, it's good practice.

In "log space"” the function still has some complicated bits,
like the part in gray, but we can note that these do not
depend on x. It's just some number. That means that this
logarithmic function is just a simple parabola: the most
complicated part is just the square of x. Parabolas should be
much more familiar to you than the complicated function
on the left.

This is the first reason to use logarithms. For many of the
functions we will want to analyse, taking their
logarithm retains the important properties, but
simplifies their expression.

why are logarithms important to us?

reason 2: numerical precision

p(the)=0.1 logio p(the) =-1
p(cat) = 0.01 logio p(cat) =-2
>>> (0.1) %% 400 >>> -1 % 400
0.0 -400
>>> -2 % 300

>>> (0.01) ** 300

0.0 -600

The other reason we use logarithms often is for numerical
precision. In the platonic ideal of mathematical thought, we
don't need to worry about this. We can imagine a number
that is arbitrarily small, for instance, as close to zero as we
like. Even if it would take billions of 0's to write it as
0.0000....000000001, we can still imagine it.

When we actually want to compute with a number like that,
things don't work quite so neatly. Try and put this number
in a computer (using the standard so-called floating point
representation), and the computer essentially won't have
room for that many zeros. The result is that the number
becomes 0. We call this an underflow.

This is especially problematic if you want to deal with large
products of potentially small probabilities. Imagine for
instance that you pick a random word from a random
wikipedia article. The probability of seeing the word the is
0.1 and the probability of seeing the word cat is 0.01.

You repeat the experiment a few times. Which is more
likely, seeing the word the 400 times in a row, or seeing the

word cat 300 times in a row? Let's ask python. To do so, we
just multiply the value 0.1 by itself 400 times, and 0.01 by
itself 300 times.

Sadly, python thinks both probabilities are 0, we cannot
compare them. They aren't zero, it's just that the smallest
number that the python representation can handle is about
10-323, Smaller than that, and we underflow.

For this reason, we almost never store raw probabilities like
these. Instead, we store the logarithms of probabilities.
We'll use base 10 here, for clarity, but any base would do.
With these numbers, we can compute the log probability of
seeing "the" 400 times in a row and seeing "cat” 300 times
in a row. All we need to do is add where we would normally
multiply, so we add -1 to itself 400 times and we add -2 to
itself 300 times. This gives us the log probability of seeing
the 400 times (-400) and the log probability of seeing cat
300 times (-600). Because the logarithm is monotonically
increasing we know that when log x is smaller than log y, x
is also smaller than y (i.e. 10-490 > 10-600) From this we can

—togarithms-
- Sum notation

- Argmax/min

a; + as + as

Another topic you should make sure you get used to is sum
notation. You've probably seen it a few times before
already: it's the big capital letter Sigma (the greek s, for
"sum").

It works as follows: whenever you have a sum with many
terms, you figure out if you can write a single expression
that shows what each term looks like. For instance, if we
have a sequence of numbers (ai, az, a3) which we want to
sum, a; + az + as, then we can write each term in this sum as
ai, where the variable i takes the value i=1, i=2 or i=3.

The sigma notation allows us to express a sum like this.
Below the sigma, we define the starting value for i, and
above it, we define the final value. Then, to the right, we
define what each term looks like when phrased in terms of
i

Of course, for this example, the explicit sum looks much
simpler, and easier to understand. This is an important
point to understand: we don't just write things in sigma
notation because it looks more fancy. There are very

advanced math books that almost never touch the sigma
notation, and write all their sums explicitly, and they are
much clearer for it.

However, as sums get more comple, this balance may shift:
some formulas look much clearer in sigma notation.
Especially those that have an arbitrary number of terms, or
even an infinite number of terms. This is the case in
machine learning, and you will see a lot of sigmas in our
research papers and textbooks.

expressing the mean Here's an example you'll see a lot in the course: computing

the average (or mean) of a bunch of numbers.
student () grade(s) average grade Imagine we have a small group of 5 students, who have all
1 5 1 received a grade on an exam. We name the students 1, 2, 3,
5 7 5 (51 +So 483+ 54+ 35) 4, and 5, and we name their grades s, sz, 3, s+ and ss. You
hopefully know how to compute the average of a set of
3 3 1 5 1 & numbers: sum them all up, and divide by how many there
4 10 :5 Z sy = a Z Sq are. We can write that as an explicit sum, but we can also
5 7 i=1 i=1 write it in the sigma notation.
The second example shows one of the benefits of the sigma
, notation: the formula doesn't change much if we don't

know how many students we have. We just replace 5 by n.
And everything stays the same.

We could write this in the explicit notation as (s; + Sz + ... +
sn)/n. This is sometimes clearer, but it's also a little more
ambiguous. We need to guess what happens in the place of
the ..., and we need to guess how the formula works for 1, 2,
or 3 students since the explicit notation strictly speaking
doesn't apply in those cases. The explicit notation also
requires us to repeat at least two terms. The more
complicated the terms are, the more of a hassle this becomes,
and the cleaner the sigma notation becomes by comparison.

Y ai=ai+as+ag=3+5+1=9

i=

i=1+2+4+3=6
1

1
3
> 3ai=3-3+3-5+3-1=3(8+5+1) =27
i=1
3
D 34+ai=3+3+3+5+3+1=3-3+3+5+1=18
i=1
3
Y =3 4+5"+17=29

i=1 m

1
3

Here are some simple examples for you to test your
understanding on.

E caL=c§ a;
i i

"
> ctai=nc+) a cHai+cta+...c+an=nc+a;+as+...+an
i=1 i

caj+cas+...cap =cla; +as+...+ay,)

> aitbi=) ai+) b a +bi+...4an+bn=a+...4an+b;+...+by
: : :

In order to get properly used to sum notation, it's important
to internalize the following rules. They follow very clearly
from what you know already about regular sums, so they
shouldn't be very surprising. In practice, to follow a
derivation, you'll often need to do something like
identifying a constant factor inside the sigma, and take it
outside, as the first rule lets you do. Or, to take a constant
inside the sum applying the rule in reverse order.

D ait) b

i j

DA+ b
i j

|-

I~

D ai+) b
i j

It's important to note that the sum notation can be a little
ambiguous. Like here: is the second sigma "inside" the first,
or outside?

That is, do we first sum the a's,and then the b's and then
sum these together? Or do we take the sum of b and add it
to every element of a before summing these? The sum
notation doesn't specify. If a sum is written like this, both
could be true. Hopefully the context provides sufficient
hints to figure out what is going on.

Often, we prefer the ambiguity to the extra brackets if it's
clear from context what we mean. In many cases, however,
you can avoid both the brackets and the ambiguity by
cleverly arranging your formula.

sums as for-loops

int sum = @
for (int i = 1; i ++; i <= 3)

sum += alil;

ME
2

(ks
I
—_

For people who are more comfortable with programming
than with math, it can often be helpful to think of sum
notation as a kind of mathematical notation for a for-loop.

If this works for you, it can be a great shortcut to get
comfortable with this kind of notation. However, you should
note that while the two are similar, they actually express
fundamentally different things. A sum is simply a
mathematical quantity to refer to, while a program is a set
of instructions for computing that quantity. A sum can have
infinitely many terms, or terms that are incomputable, and
yet the sum remains a perfectly viable statement, even if the
corresponding for loop becomes nonsense

In short, it can be very helpful to translate mathematical
statements to computer programs, to help you understand
them, but you must always keep in the back of your mind
that they are not the same thing.

some variations

acA i n=1

summing over sets simplified infinite

Here are some variations of the sum notation that you are
likely to encounter. From left to right:

* Summing over sets. If you want to sum over the
elements of a set, you only need to indicate what set you
are getting your elements from and what you'll call those
elements. That looks like it does on the left. Note that you
don't need to specify in which order you are getting the
elements from the set, since the value of the sum is the
same in whatever order you sum the elements together.

+ Simplified sum notation. Let's be honest: the full sum
notation is a hairy beast. It looks intimidating and it's
difficult to parse. More often than not, it's perfectly clear
from context what the starting point and end point are. In
such case, all you really need to do is to specify which
letter indicates how the formula on the right changes
from term to term.

+ Infinite sums. One particularly powerful option of the
sum notation is to write infinite sums. We do this by
simply replacing the top element by an infinity symbol.
This doesn't always mean that the sum itself becomes
infinite as well. For instance, the value of the sum you see
hereis 1.

[

Here's a little illustration of how an infinite sum can have a
finite value (if you've never seen that before).

The square with sides of 1x1 has area 1. The first term
(1/2) corresponds to a rectangle with proportions 2:1 that
fills half the square, leaving another rectangle of the same
size. The next term corresponds to half that, so we can cut
the remaining rectangle into two equal squares: one
corresponding to the next term and one corresponding to
the remainder. The remainder is a square the same size as
the previous square. We can cut another rectangle
corresponding to the next term, leaving another rectangle
of the same size. We can continue this forever: whenever
the remainder is a square, we cut it into two rectangles, and
whenever it's a rectangle we cut it into two squares.

In the limit, we get closer and closer to filling the entire
square.

Ifyou want to be very rigorous, you can say that for any point
in the interior of the square, there is a finite n, such that the
n-th step covers that point. But we only want to give some
visual intuition here, for rigorous proofs, there are better
approaches.

NB. Slides like these, with gray headers are slides that
contain non-essential stuff. You can skip them if you're
in a hurry, but if you have time, working through
examples like these can be just the thing to help you to
get to grips with the material.

- Argmax/min

argmax and argmin

represents the value of ...

[}]
arg max f(X) w. for which
X F——1 this function
P has the largest value.
s v

The final thing we need to get used to is the argmax and
argmin notation. This is used to define where functions
have their highest and lowest values.

The reason that this comes up a lot in machine learning, is
that most of the time we are fitting models to data. If we
express the “goodness of fit” in some sort of function, then the
argmax of that function gives us the best model.

The slide illustrates the basic idea of the notation. Below
the “argmax” we write the variable for which we want to
find the value, and to the right of it we write the function
that we want to maximize.

for example

argmax —x>+1=0
X

argmin x2 +1=0
X

Here is a simple example. The function -x2 + 1 is a parabola.
It’s shaped like a “bump” and trails off to negative infinity
on both sides of the bump. This means that the highest
value we can get out of the function is at the peak of the
bump. This happens at x=0, at which point we have f(x) = 1.
Thus, 0 is the result of the argmax.

Note: not 1, but 0. The argmax returns the location of the
maximum, not the value.

Argmin works exactly the same way as argmax, except that
we are looking for the minimum of the function: that is, we
want the value of x for which x2 + 1 is at its lowest.

Note that we had to change the function to illustrate
argmin. The first function we used doesn’t have a minimum:
however low the value of -x2 + 1 is for some x that you've
chosen, we can always find another x with a lower f(x). The
takeaway is that it depends on the function whether or not
the argmin or argmax returns a meaningful result.

Ifyou want, you can say that -x? + 1 has two minima: at
negative infinity and at positive infinity. Some people dislike
this use of infinities as numbers and prefer to say that there
isn’t an minimum, or that the argmin is “undefined”. In
machine learning, we're usually happy to be sloppy with the
mathematical notation, so long as the meaning is clear.

for the programmers

arg max f(.x) int xmax, valmax = -
X for x in range(@, 100, 0.1):
if valmax < f(x):
Xmax = x
valmax = f(x)

return xmax

If you are more comfortable reading code than math, you
could again compare the mathematical notation to a
snippet of code that does a similar thing.

In this case, however, you should not that there is a more
substantial difference between the code and the math. The
mathematical expression provides the argmax over all real
values that x can take from negative infinity to positive
infinity. The code code can only ever check a finite number
of values. Even if we're sure that the answer is somewhere
between 0 and 100, we need to take a finite number of
steps between those two values. In between, say, 1 and 1.1,
there are infinitely many values that we should check if we
really want the answer.

In short, the code provides a naive approach to finding an
approximate answer. The mathematical definition points to
the perfect solution, but doesn’t tell us how to calculate it.

Throughout the course we’ll look at many more clever
algorithms to find a good approximation to a given number
defined by argmax.

manipulating argmaxes

41 i1

arg max f(x) = arg min —f(x)
X xX

1
f(x)

arg min f(x) = arg min log f(x) O N »
x x e — \
= argmin 3 - f(x) l{ \l/ \/
N <

arg min

We will often write derivations, where we turn one argmax,
the one we’re interested in, into another one, which is
easier to analyze. For this, we usually use two basic rules.
Both rules apply to argmax and argmin in the same way.

First, the argmax of f(x), is the argmin of - f(x). This is
because sticking a minus in front of a function essentially
flips in the whole function around the horizontal axis. That
means any maximum becomes a minimum.

Another manipulation that has this effect is taking 1/f(x).
You'll see this less often, since 1/f(x) is harder to manipulate,
but if you think about your logarithms, you may note that
this is the same as the first manipulation, but in log space.
This is especially relevant in combination with the next rule.

The second rule holds when we feed f(x) to any function
which is monotonically increasing. That's a fancy way of
saying that if the input gets bigger, the output always gets
bigger as well. One example is the logarithm: if we make the
input y a little bigger, the output log(y) will also get a little
bigger, no matter what value y was originally (so long as it’s
not negative, where the logarithm becomes undefined).

This means that the maximum of f(x) is in the same place as
the maximum of log f(x).

For this to work, we do need to make sure that f(x) cannot
become negative. One example where we can be sure of this,
is when f(x) represents a probability.

The final line shows another example of this rule. If cis a
constant, then the function c-y is monotically increasing, so
we can always multiply the inside of the argmax/min by a
positive constant without changing the answer. If cis a
negative constant, all we need to do is apply the first rule to
turn it into a positive constant.

example

arg max 2~ = arg maxlog (2_"“)
X

X
= arg max —|x|log 2
X

= arg max —|x|
X

=argmin|x| =0
X

Here is an example derivation.
[x| is the absolute function thatis [3]/ =3, [0/ = 0 and [-3] = 3.

See if you can tell, for every line of the derivation, which
rule we’ve applied. If you draw the graph of the absolute
function, you will be able to see why the last line is correct.

Preliminaries
Part 2: Linear Algebra

Machine Learning
mivu.github.io
Vrije Universiteit Amsterdam

In this part we'll discuss the basics of linear algebra. For our
purposes, linear algebra is just a convenient way of talking
about lists and tables (or grids) of numbers. Machine
learning deals with data, which often comes in the form of a
list or a table of numbers, and linear algebra allows us to
represent and manipulate these efficiently.

|section-nv|Linear Algebral|

Vectors and matrices
Element-wise operations
The dot product

Matrix multiplication

Symbolic manipulation

These are the topics we'll briefly discuss. As before, this is
just the tip of the iceberg, but hopefully just enough to
understand what's coming.

Pay particular attention to the slides about the dot
product. That is going to come up a lot.

http://mlvu.github.io

VIOISVI2WN P

Let's start with vectors. A vector is a list of numbers. That's
all. There's a lot we can do with vectors, and a lot of
meaning we can assign to it, but for our purposes, all a
vector is at heart is a simple list of numbers.

In other (more mathematical) settings a vector may be
defined as a member of a "vector space": a set that follows
certain rules. This is the definition taken in abstract linear
algebra. This is a fascinating and worthwhile subject, but it's
a level of abstraction we won't need. We'll deal strictly in
what you might call "concrete linear algebra"” where a vector
is nothing more or less than a list of numbers.

When we refer to a vector we will use a bold lowercase
letter, like x here.

How many numbers there are in a vector (in this case 3), is
called its dimension or dimensionality. Usually, we need
vectors to have the same dimension for them to
meaningfully interact with one another.

The reason for this name is that a vector with dimension n
can represent a point in an n-dimensional space. In the
slide, we have a 3 dimensional space. To find the point that
the vector (2,4, 1) represents, we take two steps along the
first axis, 4 steps along the second and 1 along the third.

We also use vectors to represent arrows in this space.
Arrows have a direction and a magnitude (the length of the
arrow). This makes them useful for many things: for
instance to represent the speed of something. If you're
driving a car, your speed has a certain magnitude (say 80
km/h), but it also has a direction (hopefully the direction of
the road). We can represent both with a single arrow.

When we use vectors to represent an arrow, the convention
is that we are talking about the arrow from the origin (0, 0,
0) to the point represented by the vector. That is, every
arrow represented by a single vector starts at the origin.

If we want to represent arrows that start somewhere else, we
need to specify a starting point separately.

When we want to refer to a specific element of a vector, we
put the index of that element in the subscript, and use a
non-bold letter for the vector. For instance xz = 4.

X =

0.1
3
36

< productivity
< nr of sick days

<~ age

Vectors are used to represent many different things in
machine learning, but to make things a bit more concrete,
here is one example. In machine learning we deal with
instances: examples of some sort of thing we're trying to
learn about. For example, we might be trying to learn about
employees of a construction company. If we represent each
employee with three numbers: their productivity on a scale
from 0 to 1, the number of sick days they've take this year,
and their age, then every employee in our company
becomes one vector of dimension 3.

The set of all employees then becomes a cloud of points in a
3 dimensional space.

element-wise calculations

~ N

5

The simplest way to compute with vectors is to use
element-wise operations. Whenever two vectors have the
same dimension, we can make a third vector by, for
instance, adding every element from the first to the
corresponding element of the second. Or by multiplying,
subtracting or dividing these elements.

This is called element-wise addition, element-wise
multiplication, and so on. For every operation that takes to
numbers and produces a third, we can also apply it
element-wise to two vectors of the same length.

vector addition

Vector addition is a particularly important element-wise
operation on vectors. We can easily visualize what happens
when we add two vectors a and b: we take the base of the
arrow of b and place it at the tip of the arrow of a. The tip of
this shifted copy of b is then the tip of the arrow of a + b.

vector subtraction

This also gives us a very natural way to think of vector
subtraction. When a, b, and ¢ are numbers then c - b is the
number a such thata + b =c.

For vectors c - b is the vector a such thata + b = c. That s,
the vector we need to add onto the end of b, in order to get
toc.

length and distance

[Ixll

Il =1

2

The length or magnitude of a vector (not to be confused
with its dimension) is the length of the arrow it represents.
That is, the distance between the origin and the point it
represents.

We write the length of x, also known as its Euclidean
norm, as ||x||.

In 2 dimensions, this value is given very simply by the
pythagorean theorem. The value of the first element x1, the
second element xz and the arrow the vector represents
together form a right-angled triangle. Thus, by Pythagoras,
we have |[|x]|2 = x12 + x22. Taking the square to the other
side, we see that the length is the square root of the sum of
the squares of the individual elements.

Since the square root often gets in the way (and looks a bit
messy), we will often just talk about the square of the length
of a vector ||x||2 It's a similar function, with a simpler
expression.

This idea generalizes to vectors of higher dimension in a
natural way: the square of the length is the sum of the the
squares of the individual elements.

normalizing vectors

1/2

The length of a vector often comes in when we need to
normalize a vector. That is, we want to keep it pointing in
the same direction, but other change its length to be equal
to one 1 (either by shrinking or expanding it as the case
may be).

The operation that achieves this, is to divide each element
of the vector x by the vector's norm ||x||. You can prove
this algebraically by starting with the norm of this new
vector, ||(x/]|x|])]|, filling in the definitions, and rewriting
until you get the answer 1. This is a good exercise to get
comfortable with the notation, and we suggest you try, but
it isn't very intuitive.

The intuitive explanation for why this is the case, is a
fundamental principle of geometry: if you draw a picture
and uniformly scale it, the the lengths of all line segments in
the picture are scaled by the same factor. That is if you make
any picture half as wide and half as high, all distances in the
picture will be half of what they were before.

In this case, we can image the picture being defined by the

components of x: how far they extend along each axis.
When we scale these so that x becomes x/||x||, all line
segments are scaled by the same factor, including the line
segment from the origin to the tip of x. Since its length was
||x]] before, and we scale it by 1/||x]|, it must be 1 now.

vector distance

dist(a,b) = [Ja—b||

la=bl2 = Y (0 —by)?

i

We can now express the distance between two vectors a
and b simply as the norm of the vector c that stretches from
the tip of a to the tip of b, or: ||a - b||. The square of the
distance has a particularly neat expression (and is used as
often as the distance itself).

The distance between two vectors is one way to measure
how similar they are. But there is another measure of
similarity that we tend to use a lot more...

the dot product

Z XiYi

—1-14+2-240-1=3

We call this operation the dot product. It takes two vectors
of the same dimension, and returns a single number (like
the distance). It is computed very simply by element-wise
multiplying the two vectors and then summing the result
over all elements.

It's hard to overstate quite how crucial the dot product is.
It's going to come back a lot. Honestly, the majority of
modern machine learning is built on just the basic
properties of this one simple function one way or another.

Given that, let's take some time to really dig deep into the
dot product. Let's look at various intuitions and definitions.

7 9re[dwal

candidate ¢ | I ¢"t = 1ty + waty + cats

efficiency

friendliness
risk-aversion

One way to think of the dot product is as an expression of
how similar one vector is to another. In machine learning
we often have multiple instances that we compare to a

template.

The Euclidean distance is another measure of similarity, but
for many reasons, the dot product is probably used more
often.

Imagine, for instance that you want to hire somebody for a
job. You set a few criteria you want to evaluate on: how
friendly somebody is, how efficient somebody is and how
risk-averse somebody is. You represent what you want with
a vector of three dimensions. If you want somebody who is
very friendly, you set the first value to a high positive value,
and if you want somebody who is very unfriendly (perhaps
you are looking for a bouncer or a bodyguard) you set it to a
high negative value. If you don't really care, you set it to a
value near 0. You do the same for the other two attributes.

Then, you represent each candidate with such a vector as
well: if they are very friendly, the first element is high and
positive, if they are unfriendly it is high and negative, and if
they are neither, it is somewhere near zero.

We can now take a given candidate and take the dot product
with the template to see how well they match.

Look at the first term. Imagine that you are looking for a
very unfriendly person. In that case the first element of t is
a large negative number. If the candidate is very friendly,
the first element of c is a large positive number. Multiplying
the two together, we see that the first term of the dot
product is large and negative, so this particular mismatch in
attributes results in a large lowering of the dot product. If
the two had matched, we would have a high positive first
term.

What if you don't really care about friendliness? Well, then
t1 is close to zero, so whatever the value of c1, the first term
is (relatively) close to zero as well, and the term does not
contribute much to the dot product.

This kind of diagram is probably the most crucial
interpretation of how the dot product is used in machine
learning. We'll show it again at least twice, with slightly
different settings.

some properties

a'a = al?

a'a >0
a'a=0ifand only ifa = 0
a'lb=b"a
c(a™b) = (ca)"b =a' (ch)
a'(b+c)=a'b+a'c

homogeneity

distributivity

Here are some basic properties of the dot product. You
should study each carefully to see if you understand what it
means, and how you can derive it from the definitions we
have given so far.

In the third line, 0 stands for the vector filled with zeros.

In the property of homogeneity c represents a scalar value
(i.e. a number not a vector). Multiplying a vector by a scalar
is done simply by multiplying each element by that scalar.

Pay particular attention to the property of distributivity.
We'll come back to that one.

the dot product: the geometric definition

xly = |x][ly] cos

y

One remarkable feature of the dot product is that it can also
be expressed with an entirely different formula, which at
first sight has nothing to do with the definition we just gave.
We call this the geometric definition, and the earlier
version the algebraic definition.

The geometric definition states that the dot product xTy is
also the product of the lengths of x and y and the cosine of
the angle between them.

Note that even if two vectors have high dimension, any two
vectors will still lie in a shared plane. This means that
whatever the dimension, there will always be a unique single
angle between two vectors.

We'll first look at some of the consequences of this
definition, and then show that the two are equivalent.

xTy = [|x/llly]| cos ®

candidate 2 14

efficiency

T T T
A \
candidate 1

template

Before we look into how to get from one definition to
another, let's see how this definition chimes with the
intuition we already have. We'll return to the example of
finding candidates for a job, but we'll stick to just the first
two properties, so we can easily plot the resulting vectors.

This gives us an idea of how the similarity work
geometrically. Candidate 2 is pointing in the exact opposite
direction of our template. This makes the angle between the
two vectors as big as possible, giving us a cosine of -1,
leading to a large , negative dot product. The more we pivot
the candidate vector towards the template, the closer we
get to a cosine of 1, giving us the maximal dot product.

back to the properties

a'a = al?

a'a >0
a'a=0ifand only ifa = 0
a'lb=b"a

c(a™) = (ca)™h =a'(ch)

a'(b+c)=a'b+a'c

homogeneity
distributivity

for nonzero a and b: a"b = 0 if and only if 6 = 90°

urmogumut\j

From this definition, we can look back to our list of
properties and see what they mean with the geometric
picture in mind. Some of them now become a lot simpler to
show, some less so. Distributivity, in particular, is a lot
easier to prove with the former definition.

We can also add one more property, which is almost
impossible to see with the first definition. If neither a nor b
is the zero vector, then the only way their dot product can
be zero is if the angle between them is 90 degrees. That is
they are orthogonal to one another.

This may seem a fairly arbitrary fact, but when we use the
dot product to measure similarity between vectors, an
angle of 90 degrees in a way represents the lowest
similarity. Orthogonal eigenvectors represent things that
have nothing to do with each other. This represents a kind
of independence.

This has even entered common parlance (to some extent):
for instance, people talk about problems being orthogonal to
one another, when the solution to one is independent of the
solution to the other.

On the previous slide we compared candidates to instances.
You may think that the candidate that pointed in the exact
opposite direction to the template was the least similar. And
that's a fair point, but in many ways they are still related.
The candidate is the unique opposite of the template. An
orthogonal vector is more like the "most unrelated” vector
possible.

Note that there are more orthogonal vectors than opposite
vectors. Our template has one opposite vector, but two
orthogonal vectors (and it's one vs infinitely many in 3
dimensions).

the dot product as a projection

[|aw]|
cos0 =
b Jal
lau|| = cos@llal
lau | = cos Bl bl
ay || = cos Ol|a|||b]| —
ol
0 T, 1
. oy | = aTh—L
ol
b a
ot =a (o) Il =7 (52)
ol . Tal

One final view of the dot product is that it expresses the
projection of one vector onto another. Projections are
extremely important in many areas of linear algebra,
especially in the ones related to machine learning. This is
because they define how close you can get to some target
while being constrained to some subspace.

For example, ask yourself how close you can get to the tip of
a, while staying on the line of b (its arrow extended in both
directions). The answer is given by the point where the line
between your chosen point on b and the tip of a makes a
right angle with b. This is called the projection of a onto b
(which we'll denote an)

We won't prove it here, but if you're interested, it all boils
down to Pythagoras.

The relevance to machine learning is that we often have a
function that we want to get as close as possible to the
example given by the data, under some constraints. If you
frame it correctly, and the problem is simple enough, that
boils down to finding the projection of the target onto a

linear subspace of possibilities. To find that solution, we use
projections of one vector onto many other vectors.

This projection is related to the dot product as follows. By
basic geometry, the cosine is the quotient of the length of a
by the length of ar. We rewrite this to isolate the length of
ap, and then multiply by ||b||/||b||. This shows that the
length of ay is equal to cos 0 ||a||, which is equal to the dot
product ab divided by ||b||. Since the multiplier 1/||b|| is
just a scalar, we can work it into the dot product, making
the second argument b/||b||, or the normalized version of
b.

That is, when we project a onto b, the length of the resulting
vector is the dot product of a with the normalized b.

By following the same derivation with a and b interchanged,
we see that the reverse also holds.

third formulation

a'b = [lap|[[b]l = [[ball[la]

This doesn't just give us an interpretation of the dot
product: by re-arranging the factors, we also get this third
way of expressing the dot product, which we’ll call the
projection definition.

The dot product between a and b is the length of a
projected on to b, multiplied by the length of b.

unifying the three definitions

a'b

= || a“ ||b || CcOSs e - Start with the geometric definition
= | | ay | | | | b | | - Show that distributivity holds
Z a:b - Use distributivity to rewrite to the
= iUl algebraic definition
i

This leaves us with three definitions of the dot product. We
have shown already that the second follows from the first.
What about the third? How can we unify the algebraic and
the geometric definitions?

The proofis a little involved—and you don't have to know it
to do machine learning—but following it is a good exercise
in getting comfortable with linear algebra, and many of the
notations you need to get used to.

The plan is as follows: We will start with the geometric/
projection definition. From that we will show that
distributivity holds. This is the hard part: distributivity is
much easier to show using the algebraic definition, but we
haven't proved yet that they're equivalent.

Then once we have distributivity, we can follow some
simple rewriting steps using a set of vectors called the
standard basis vectors.

distributivity from the geometric definition

(b+c)Ta = ||(b+c)allllall

= (lIball + llcall)llall

= [Iballllall + llcallllall

=b'a+cTa

b

(b+¢)

ba Ca

(b+c)a

What we want to show is that (b + c)Ta = bTa + cTa. That is,

the dot product distributes over the sum.

The first line rewrites the dot product into the projection
formulation (which we know follows from the geometric
definition).

The second line is the hard part. How do we show thatb + ¢
projected on to a has the same length as b projected onto a
plus c projected onto a? First, we draw a picture.

Now, imagine rotating this picture (as we’ve done on the
right) so that the vector a is aligned with one of the axes,
say the 1st axis. In that case, the projection of b on to a is
just a vector with element b1 in the first position, and zero’s
everywhere else.

This is how we project a vector onto an an axis the vector (2,
3, 4) projected onto the first axis is (2, 0, 0), onto the second
axis is (0, 3, 0) and onto the third axis is (0, 0, 4)

Likewise, the projection of c onto a is just a vector with c1 in
the first position and zeros elsewhere. And the projection of
b + conto ais a vector with element 1 of b + ¢, or by + ¢,
and zeros elsewhere This tells us what we want to know: b
+ c projected on to a has length by + c1, and b projected onto
a plus c projected onto a also has length b1 + c1.

That is, if the whole picture is rotated so that a points along
axis 1, the result follows directly from the way we add
vectors. And, since a rotation doesn't change any of the
distances in the picture, the same must be true if we don't
rotate. This shows that the second line is true.

Now, the third line may look complicated, but remember
that |[x]| is just a scalar, so we're just getting rid of the
brackets in a scalar multiplication. The final line follows
from recognizing that the two terms are now separate dot
products, in the projection formulation, so we can rewrite
them in the more familiar dot product notation.

With that, we have shown that distributivity follows from
the geometric definition.

This kind of reasoning perhaps appeals to intuition a little
too much to count as a real proof, but if you want something
more rigorous, it shouldn’t be too much work to fill in the
blanks. We’re not so much trying to convince you that this is
true, as trying to give you an intuition for why it is true.

€y =

Now, we can show that the geometric and algebraic
definitions are equivalent. We will assume the geometric
definition and derive the algebraic one. The first thing we
will need is the standard basis vectors (also known as
one-hot vectors). These are vectors that are zero
everywhere, except in one place, where they have a 1. We
call the standard basis vector that has a 1 in place i the
vector e;.

Note that in e; the letter e is bold so this does not refer to
the i-th element of a vector but to the i-th vector in some
collection of vectors.

With the standard basis vectors we can write any vector as
the sum over its elements, each multiplied by the requisite
basis vector.

This may seem a little redundant at the moment, but it will
help us later on.

We also know that the dot product of x with basis vector e;
is just the i-th element of x. Why? Remember the projection
perspective: the dot product of x with e; is the projection of
x on to ej, times the length of ei. The projection of x onto
axis i is just the i-th element of x and the length of e; is 1.

a'b

= Z aibi

And with that, we have our ducks in a row. Now, it's just a
matter of rewriting.

We start with the dot product (which we take to represent
the geometric formulation). In the first line, we rewrite b as
a sum over the basis vectors.

In the second line, we used the distributive property, which
we showed holds for the geometric definition.

On the third line, we work the scalar b; out of the dot
product (this is allowed by the property of homogeneity).

In the third line, we use the fact that a dot product with a
standard basis vectors selects an element of the vector (in
this case the dot product aTe; selects the element a;). This
gives us the algebraic definition, which completes our proof.

matrices

X

— DN

N O =

X21 —4

A matrix is a grid of numbers. Like a vector, it can represent
a lot of things, but at heart, that's all it is. When we refer to a
matrix, we use a bold, uppercase letter.

This matrix has 3 rows and 2 columns. Whenever we talk
about the elements of a matrix, we always take the vertical
dimension first and then the horizontal. For instance, we
say this is a 3 x 2 matrix (pronounced as "three by two"),
and the element at index (2, 1) is 4 while the element at
index (1, 2) is 1.

Do your best to commit that convention to memory, it comes
up alot.

When we want to refer to a specific element of a matrix, we
take this index, and put it in the subscript, using the non-
bold version of the letter we used to refer to the whole
matrix.

We can think of a vector as a matrix with one dimension
equal to 1. When we do so, we will adopt the convention that
the width is 1: that is, our vectors are "column vectors" unless

element-wise calculation

Element-wise operations work the same as they do on
vectors. If we have two matrices A and B of the same size,

1 0 2 1 3 1 we can add them and the result will have at index (j,) the
4 1 +14 0 — 8 1 value Ajj + Bij.
0 1 1 2 1 3
1 0 2 1 2 0
4 1]l x |4 0)=1(16 O
0 1 1 2 0 2
transpose An important way to manipulate a matrix is to take its

transpose. This simply means interchanging the horizontal
and the vertical indices. We indicate this with a superscript
T.

You can think of this as flipping the matrix across the
diagonal element (2 and 0 in this case). The rows become
columns and the columns become rows.

Note however, that the order of the elements in the rows
and columns is not changed. In the example above, 4 is the
first element in its row before the transposition and its the
first element in its column after the transposition.

matrix multiplication

j

Cy = Z Aix By
K

A particularly common operation on matrices which isn't
element-wise is matrix multiplication.

This is different from what we did two slides ago which you
should always call element-wise matrix multiplication (or
the Hadamard product if you want to sound fancy).

Matrix multiplication takes two matrices A and B—where A
has the same number of columns as B has rows—and
produces the product C = AB, which has as many rows as A
and as many columns as B.

The clearest way to illustrate this is to draw a multiplication
diagram like we've done on the left. Note that the horizontal
dimension of A needs to match the vertical dimension of B.
The other two dimensions can be anything, and these
become the height and width of C.

The simplest way to define the contents of C (we've only
defined its size so far) is in terms of dot products. Note that
for every element of C there is one corresponding row of A
and one corresponding column of B (and vice versa). Its
content is the dot product of the row of A and the column of
B.

We can now also see where the notation for the dot product
comes from. It's just a matrix multiplication of a row vector
with a column vector.

matrix multiplication: sum of outer products

bT

aibj|

ab'

.
0
s
or,

AB=) AuBy
k

(AB)y; = (Z A.kBk.)
k
= Z (A-kBk-)ii
k
= ZAikBkj
k

Bl

Another way to define matrix multiplication is as the sum
of outer products. This is less intuitive, but it's sometimes
useful in analyses.

The outer product is what happens when we multiply a
column vector with a row vector (the opposite of a dot
product, which is also called an inner product). The result is
a matrix where element i, j is the product of a; and b;.

The outer product essentially arranges all ways of
multiplying one element of a with one element of b in a grid.

The relevance to matrix multiplication is that we can also
write the matrix multiplication AB as the sum of all outer
products of one column of A with the corresponding row of
B.

If we denote the k-th column of A as A and the k-th row of
B as Bk, then we get the definition on the right for matrix
multiplication based on outer products. The lines below
that are a short proof that it's equivalent to the dot product
definition. Try to follow this proof, it’s good practice in

getting comfortable with manipulating matrix indices,
which will become important later on.

In the first line we fill in the outer product definition of
matrix multiplication. In the second we note that when we
sum a series of matrices element-wise the element i, j of the
result is the sum of the elements i, j of each term. Finally we
use the definition of the outer product; the element i, j of the
resulting matrix is the i-th element of the first vector times
the j-th element of the second.

matrix multiplication

AB: # columns of A must equal # rows of B

AB = BA does not always hold

Non-commutativity. Often, BA is not even possible.

A(BC) = (AB)C=ABC

Associativity.

cAB =AcB = ABc

Homogeneity (c is a scalar).

A(B +C)=AB +AC

Distributivity.

These are the main rules to remember about matrix
multiplication.

As an exercise, see if you can quickly prove these to yourself,
or illustrate them with some explicit examples of matrices.

matrix multiplications as transformations

e

.

Ab=c

Matrix-by-vector multiplication is a specific case of matrix
multiplication (if we think of the vector as an n-by-1
matrix). As we see in the multiplication diagram, this yields
another vector. If the matrix is square, both vectors have the
same dimension. This allows us to think of the matrix as a
map: a function that transports every vector in our space to
a new position.

matrix multiplications as transformations We can think of this as a transformation of our space. Here

is a visualization of that in 2D. We start by taking a grid of
points, and coloring them according to some image. If the
grid is fine enough, it simply looks like we've overlayed the
image over the plane.

This is sometimes called domain coloring.

Then, we multiply every vector b in our grid by the matrix
A, resulting in a new vector c. The resulting grid of vectors

c=Ah

looks like a squished and stretched version of our original
image.

Which transformations can we represent in this way, by a
single matrix multiplication? Exactly those transformations
that keep the origin where it is, and for which every line
before the transformation is still a line after the
transformation (or a point). These are the so-called linear
transformations.

In more general term, anything that keeps the origin in place
and maps every linear subspace (a point, a line, a plane, etc.
through the origin) to another linear subspace (possibly of a
different dimension) is a linear transformation.

Some examples of transformations that you can represent
by matrix multiplication are scaling, rotation, flipping and
skewing, and combinations of these.

linear affine If you don't want to keep the origin where it is, you can
simply add a translation vector to your function. This turns
it from linear to affine (although in machine learning we
often use the term linear to apply to both).

We see linear and affine functions a lot in machine learning.
This is because they are the easiest to learn. Even the most

modern models are based on linear and affine functions,
with just enough non-linearity thrown in to make things a

little more interesting, but not so much that the function
becomes difficult to learn.

other concepts and rules

Identity L Al=IA=A

Determinant: |A|
Trace: % Aii

Inverse A-: AA 1= ATA =1

Orthogonal matrix: A-1 = AT
Rotation, flipping, identity.

Transposing and inverting over multiplication:
(ABC)T = CTBTAT
(ABC)' = C-'B- 1A

These concepts are important to be aware of. We'll only give
you the highlights here. Look them up if you don’t
understand what we’re referring to.

The identity matrix is the square matrix that is zero
everywhere with 1's along the diagonal. It plays the same
role in matrix multiplication as the number 1 does in
regular multiplication: multiplying anything by I doesn't
change it.

The determinant of a square matrix is a number that
expresses how much it shrinks or inflates space (when
viewed as a transformation). For instance, in the previous
slides, if the picture of the Mona Lisa has twice the area
after the transformation as it did before, then the
determinant of the transformation matrix is 2.

The trace of a square matrix is the sum of its diagonal
elements. It doesn't have a very intuitive meaning, but it
comes up occasionally.

The inverse of a square matrix A is a matrix A-1 such that
AAT=1

An orthogonal matrix is a matrix for which its inverse is
equal to its transpose. This is equivalent to saying that all its
columns are unit vectors that are all orthogonal to one
another (which implies that this also holds for the rows). As
transformations, the orthogonal vectors correspond to the
rotations, mirrorings and the identity.

Finally, note that when we distribute the transpose or the
inverse over a multiplication of matrices, this is allowed,
but the order of the multiplication changes (in the case of
the inverse we assume that the inverse is defined for all
factors).

This may look odd but it becomes perfectly natural when you
draw a multiplication diagram. You'll see that this must be
the case for the transpose if the dimensions are going to
match. For the inverse, just consider what happens to the
product of orthogonal matrices.

understanding complicated matrix equations

C

—ATA+B Cyj

— = Z AxiAxj + By
+| K

B

In the lectures, we will start writing increasingly
complicated equations, using matrices and vectors. Here’s a
relatively simple example. If you come up against an
equation like this, and you have trouble understanding
what it means, or you need to rewrite it in some way, and
you don’t know how, there are two time tested techniques
to help you figure out what is happening.

The first is to express the equation in a diagram. This will
help you visualize the computation. It’s also a particularly
good way to check that all the dimensions match. For
instance, in this case, we see that this equation only works if
C and B are square (that is, they have the same height and
width), because the result of ATA will always be square.

We will do our best to draw these diagrams in the slides
whenever possible. However, you should also get used to
doing this yourself whenever you come up against an
equation you have difficulty with.

The other option is to remember that this is just a concise
way of expressing a large number of scalar equations. With

a little elbow grease you can always rewrite the equation in
purely scalar terms. The safest way to do this is to just put
indices on both sides of the equation: both sides represent a
matrix, with all elements on the left equal to the
corresponding element on the right. This means that the
scalar equation top right expresses the same thing.

In fact it’s a set of scalar equations, one for every possible
pairi, j.

The right hand side still contains a bunch of matrix
operations. We can get rid of this by working the indices
inside the brackets step by step. First, the ij-th element of a
matrix that is the result of summing two other matrices is
just the ij-th element of the first plus the ij-th element of the
second. Next, we have the ij-th element of ATA. This is just a
matrix multiplication of AT by A. We can fill in the definition
of a matrix multiplication from slide 49. Finally, this leaves
us with the ik-th element of AT. Since transposing is just
interchanging the rows and columns, this is the ki-th
element of A.

Tips:
- Draw matrix multiplication diagrams

- Everything can be rewritten in scalar terms

- Practice applying the rules @

Whenever you get stuck on something involving linear
algebra, remember that it's just a concise way of writing
down an equation involving lots of variables, which are
being multiplied and added. If you don't know how
something works in the domain of linear algebra, you can
always rewrite it in scalar terms.

It'll be more involved, but it will let you figure out what's
happening.

Preliminaries
Part 3: Calculus

Machine Learning
mlvu.github.io
Vrije Universiteit Amsterdam

Calculus (short for the calculus of infinitesimals) is the
branch of mathematics that deals with differentiation and
integration. Fortunately for us, integration rarely comes up
in machine learning, so we'll only need to explain
differentiation. The flipside of that coin is that we will need
to understand differentiation really well.

The reason is that differentiation is an almost magical
method for optimization: the business of finding the
minimum or maximum of a function. In machine learning
we want to fit shapes to data. If we can express as a function
how well a shape fits some data, then maximizing that
expression will give us an optimal fit. Maybe that all sounds
too abstract right now, but that's the big picture: machine
learning is basically optimization, and calculus is really
helpful for optimization.

|section-nv|Calculus|

http://mlvu.github.io

Slopes and derivatives

The most important rules for derivatives
Multivariate functions and partial derivatives
The gradient

Matrix and vector calculus

an illustrative example: speed There is an old joke that goes something like this. Someone
is speeding and is pulled over by the cops. The officer goes
"The speed limit is 70 miles an hour, and you were going 90
miles an hour" The driver goes "90 miles an hour? But I've
only been driving for 15 minutes."

0k, so maybe it's not a very good joke. But it highlights an
important point about how strange the notion of speed is
when you think about it. Let's imagine the cop trying to
answer. They might say something like

“Sure, but if you had been going for an hour at this speed,
you would have traveled 90 miles.”

The driver would reply: "Not really, because when I started
driving I was standing still. And at that off-ramp over there,
I would have slowed down. How do you even know what I

was doing fifteen minutes ago, you were nowhere near me."

Let's see if we can give the officer a more rigorous answer. It
would go something like this.

“Sure. But what I did to establish your speed was to
measure how far you traveled over a small interval of time,
say one second. Over such a small interval you can't
meaningfully change your speed, so we can treat it as
constant. We then extrapolate: how far would you travel if
you kept going like that for an hour: if you had traveled the
same distance you traveled in that second for the remaining
3599 seconds. This is what we call your speed in miles-per-
hour”

It's a bit of a mouthful, and it may be hard for the police
officer to maintain their natural authority through an
answer like this. But it shows us that something quite subtle
is happening when we talk about speed.

distance from home

Here's a little diagram to help us understand. We'll assume
that the driver drove away from home in a straight line, so
we can measure their position as a single number on the
o vertical axis.

We see here that at no point did the driver have a constant
speed. That is, at no interval, no matter how small, did they
cover the same distance in the first half of the interval as
the second. What we can say, however, is that as the interval

prom gets smaller, the difference becomes smaller as well. That s,
the more we zoom in, the more the curve looks like a

straight line.

This is not always true. It's a property of this curve, the
property of smoothness, and it's required for calculus. If a
curve isn't smooth, we can't do calculus on it.

Like our cop in the previous example, we can take the linear
way that the function behaves in this tiny interval, and
extend it: we imagine that the driver drove the way they did
in the interval for a longer amount of time: at a constant
speed. The further we get from our interval, the less this
looks like what actually happened, but near our interval, it's
a pretty good approximation.

To make this more precise, we start with an interval defined
by two points. We draw a line through the two values of our
function at that point. As the points get closer to each other
(the interval gets smaller), this line becomes a better and
better approximation to our curve, within the interval.

In the limit, as the points gets closer and closer together, we
get a line that just touches the curve at a single point. This is
called a tangent line.

derivative: the slope of the tangent We want to specify what this tangent line actually looks like.
The specific property of the tangent that we're interested in
is the slope. How much it rises if we take a step of size 1 to
the right.

:ahance traveled

slope = w distance of h to the right of it, at x + h. We mark two points
1

over time

Let's say our leftmost point is x and the other pointis a

on the curve of f at these points and draw a line through
them. What is the slope of this line, and what happens to
that slope as we make h smaller and smaller?

: Over the space from x to x+h this line rises from f(x) to
/ x x+h . f(x+h). That is, over a horizontal interval of size h, the line
rises by f(x + h) - f(x). If we want to know the vertical

change for one unit of horizontal change (one step to the
right), we divide f(x+h) - f(x) by h. This is the slope of the
orange line. The horizontal distance, the size of our interval,
we'll call h. In this case h is bigger than 1, but the formula
works the same for h smaller than 1. The question is, what
slope do we converge to if h gets smaller and smaller?

If this seems abstract, consider the example of the speeding
driver. To work out their speed at the moment of
measurement, we assume that the driver maintains that
speed for 1 unit (hour) and see how much the function
changes over the vertical axis. In this case, we measure their
distance traveled over a certain time, and divide by that time
to get the distance traveled over one unit of time, which is
how we express the speed.

The problem is that once the two points come together,
with h=0, there is no longer a single unique line through it/
them. This shows in the formula by the fact that we get a
division by zero. The whole thing becomes undefined.

We need to figure out what the tangent converges to. We
make the distance between the two points smaller and
smaller, without letting it get to zero, and we look at the
behavior of the line through them. This line will eventually
get closer and closer to one specific line, as the two points
get closer and closer to each other. This is how we define
the tangent line.

The slope of the tangent is called the derivative. It is the
slope of the line we get in the limit if we shrink the distance
between x and x' to be smaller and smaller.

the derivative as a function

| >0 =0 =0

<0

What the slope of the tangent is, depends on where we are
on our function, just like our driver's speed was different at
every point in time, we get a different value for the
derivative at every point on a curve.

Just like we can plot a driver's speed over time, we can plot
the slope of the tangent of f(x) for every x. This gives us a
second function of x, which is often labeled f'(x) and called
the derivative. Working out what a derivative looks like is
called differentiation (or "taking the derivative") .

We can work out some basic rules about what to expect
from the derivative, based on what we know:

+ If the function f(x) increases at x, then its derivative
should be positive at x, f'(x) > 0. This is because the slope
measures how much the tangent increases if we take one
step to the right. If it does increase, this is a positive
number.

+ Likewise, if f(x) decreases at x, then its derivative should
be negative at f'(x).

+ Finally, if f(x) neither increases, nor decreases, that is
when f(x) is the tip of a peak, the bottom of a valley, or
simply a flat region, then the derivative should be exactly
Zero.

These three properties are why calculus is so important in
machine learning, so remember them well. The key idea is
that we often want to find a minimum or a maximum of a
function. For instance, if we have some points in space, and
we want to fit a line through those points, to predict where
the next point will be, then we want the difference between
the line and the points to be as small as possible.

If we can work out how to express this difference as a
function, then the derivative of that function can tell us how
to find the point where that function is as small as possible:
at that point the derivative should be zero. And if it isn't zero,
the derivative can tell us in which direction to move.

f/ =1
(x) hlir%) h

Here's how all of that translates to a mathematical
definition. We take the definition of the slope over an
interval (x, x+h) that we saw earlier, and we see what that
slope converges to as we make the interval smaller and
smaller.

This is what the "lim" operator does: it says take the
process at the bottom (h -> 0) and finds out what the thing
on the right converges to under this process. In this case,
we can't set h = 0, because we would get a division by zero,
but we can let h go to 0.

Since we haven't specified what x should be, the result of this
limit is a function of x. That is, we want some expression that
tells us what this limit is for any given value of x.

One of the great achievements of calculus is that if we
happen to have a functional form for f(x), that is we can
express it in a formula like f(x) = x2 + x +1, then we can also
work out the functional form of the derivative f'(x). This is
called taking a derivative.

The way we do this is by starting with this definition and
applying some simple rules that we know always work for
limits. This has led to a set of general rules for taking
derivatives, which we can use to get from almost any
function f(x) to its derivative f'(x).

Four operations:

li h
hlggg()

- Rewrite g using algebra
- lim g() + h() is equal to lim g()) + lim h(-)
- limhsoh=0

- limhsoc=c

To work out the following examples, we'll need to know
how to think about limits. In a proper calculus course, we'd
take you through both the intuition behind them and then
derive the rules for correctly working out algebraic
derivations with them.

These aren't complex, so if you've never seen them, it's worth
having a look.

However, once we've used limits to derive the rules for
differentiation, we won't see them again in the rest of the
course, so we can allow ourselves a little shortcut. There
are only three things we need to understand about how
limits work.

1. First, the function for which we take the limit, g(x) here,
can be rewritten using any of the rules of algebra. This
just turns it into the same function, expressed
differently, so it doesn't change the limit we're
expressing with the notation "lim g(x)".

2. If the function to the right of the "lim" is a sum of two
other functions, like x2 + x is a sum of the functions x2
and x, then the limit of that sum is just the limit of the
first term by itself plus the limit of the second term by
itself.

3. If our limit is for h going to zero, and the function to the
right of "lim" is just h by itself, then the result is just 0.
This hopefully makes intuitive sense: if we make h
smaller and smaller so that it converges to zero, then the
function "h" becomes zero.

4. If the function c to the right of "lim" is constant with
respect to h. That is, it cany be any expression, with any
number of variables, but it doesn't contain h, then the
result is just c. Again, this should make intuitive sense. If
we make h smaller and smaller, but its value doesn't
affect c, then the result will just be c.

To properly work out all limits you might encounter, you'll
need a little more than this (not much though), but to
illustrate the principle we can make do with these four
rules.

example: square

=2x

Here is an example for the simple function f(x) = x2.

First, we write down what it is we're interested in: f'(x).
The only thin we know so far is the definition of the
derivative, so we fill that in.

Next, we notice that f(x+h) and f(x) appear. These we can
replace using the definition of f(x). This is just rewriting the
function to the right of the "lim" into something equivalent.
That means that the limit we had before we rewrote it is the
same as the limit afterwards.

Next up, we can rewrite the term (x + h)2 into x2 + 2xh + h2.

This is the expansion of a square of a sum. See an
explanation here.

The first and last term are x2 and -x2, so these cancel each
other out. Next up, we are dividing by h, so we remove one
factor of h from each of the terms above the division line.

Finally, we are left with the limit of 2x + h as h goes to zero.
This limit we can solve by the rule from the previous slide,
and setting h=0.

We can also appeal to intuition. Perhaps we can't
immediately see what the limit at the top should be, but once
we've rewritten it to this, it's pretty clear. As we make h
smaller and smaller, the only thing that remains is 2x. There
are no divisions by zero or any other difficult consequences of
letting h go to zero, so the answer is plain to see.

example: sum rule

=9'(x)+h(x)

Here is another example. This shows a powerful principle:
we can often work out basic rules, by not specifying what all
the details of a function are. In this case, we don't specify
what f(x) is, we just say that it is the sum of a function g(x)
and another function k(x). Anything we can work out about
what {'(x) looks like without specifying the details of g(x)
and k(x), must then hold for all functions that look like this.

For example any rule we derive this way must apply to x? + x
but also to sin(x) + cos(x) and to x + 3 and any other function
that can be written as the sum of two others.

We start by filling in the definition of the derivative, and
filling in the definition of f(x) (lines 1 and 2).

We then group the terms for g and the terms for k together,
and split the division into two divisions (lines 3 and 4).

We can now apply the sum-rule for limits, and split the limit
into the sum of the limit for g and the limit for k. (line 5)

Finally, and this is the magic trick, we recognize that these
two terms both correspond to the definition of a derivative.

We can do the opposite of "filling in the definition" that we
did in the first line. We replace the definition of g'(x) with
the label g'(x) and likewise for k'(x)

The end result is the sum rule. It states that if our function
is the sum of two others functions, then its derivative is the
sum of their derivatives.

come from. The rest of the rules we will just give you to

memorize.

In most calculus courses, you would go through each one and

sum rule: f(x) = g(x) + h(x) f'(x) = g’ (x) + h'(x)
constant factor rule: f(x) = cg(x) f(x) = cg’(x) prove it from the definition. It’s worth trying if you've never
exponent rule: f(x) = x™ f/(x) =nx"t done that before.
the other exponent rule: ;Eg - :: :;Ezi = :: b Pay particular attention to the second exponent rule. It tells
the chain rule: f(x) = g(h(x)) V(%) = g'(h(x)) K (x) us that the derivative of the exponential function bx is

proportional to itself. That is, it's just the same function
again, but multiplied by some constant independent of x (a

constant that happens to be In b). This suggests that if there

is some value of b for which this constant is equal to 1, we
get a function that is equal to its own derivative. It turns out
that this happens is b = 2.7182818284... This number we
call "e", Euler's number. The logarithm with base e, we call
the natural logarithm (we already saw this in the first part
of the lecture).

Obviously, this is a bit of an open door if you already know
that the constant in the other exponent rule is the natural
logarithm of b. You have to imagine that people in Euler’s
time only knew that bx was proportional to itself, but they
didn't have a good way to express the constant by which it
was multiplied. Then they figured out that the constant was
equal to 1 for a particular number, and then they realised
that the constant must be loge b.

The other rule that you should pay attention to is the chain
rule. It is no exaggeration to say that the method that drives
90% of modern machine learning is derived from this one
simple rule. It's hard to convey exactly why just yet, except
to say that when we design complex models, we do it by
chaining functions together: making the output of one the
input of the next (much like we build computer programs).
The chain rule gives us a derivative over such chains of
functions.

There are some more rules, but these are the ones we will use
most often in the course.

Lagrange's notation Leibniz's notation

7 (x)

df(x)

dx

The notation on the left, using f' to indicate the derivative of
f, is probably the most precise notation, and the best suited
for explaining the principles of calculus in general.

However, in machine learning, the notation we use almost
exclusively is the one on the right: Leibniz's notation. It
can be a little bit more work to get used to this way of
writing derivatives. All I can say at this point, is that it pays
off eventually. For now, let's take a closer look at where this
notation comes from and at how exactly it's defined.

Leibniz

the resulting
infinitesimally small
change in f(x):

df (X) x+ dx) - f(x)
dX an infinitesimally

small change in x:
X <= X +dx

Leibniz is one of the two inventors of calculus, the other
being Newton. Neither of them were particularly obsessed
with mathematical rigour. They worked things out based on
intuition and guesswork, being as much physicists as
mathematicians. They were looking for the fundamental
rules that governed the world, and a lucky guess followed
by an experimental verification on a few examples was
perfectly acceptable.

The way both of them though about calculus was in terms
of infinitesimal quantities. Numbers that are as close to
zero as you can possibly get, but not equal to zero:
something infinitely small but bigger than zero.

It was in terms to these infinitesimals that Leibniz
developed his calculus. For a function f(x), an infinitesimal
change to x, which he called dx, would cause an
infinitesimal change to f(x). The latter would also be
infinitely small, but still potentially different from dx.

If you think this all sounds a bit fuzzy and imprecise,
modern mathematics agrees with you, but the key property
that Leibniz cared about was that the quotient between
the two quantities (one divided by the other) could be
worked out.

/ 1
f(x)_rlll—% h <> dx

And in this respect, Leibniz wasn't wrong. This is still the
idea behind the derivative: we make a small change to x and
see how much f(x) changes as a result. Then we divide the
latter by the former. If the result converges to some fixed
value as the small change goes to zero, we have a well-
defined derivative.

It's just that the language of limits had not been established
yet, so Leibniz couldn't write his ideas down with the rigour
we have available today.

re-interpreting Leibniz notation

okoT
okive c?e\’

deriv!
d flx + 1) — f(x)
—f(x) = lim
dx (qrgzm h—0 h
@,.9&(;) ent of the Operate,
qr‘.“éze

For this reason the Leibniz notation is usually re-
interpreted from how it was originally intended. It looks
like we’re dividing one quantity by another, but that's
not what it represents.

The d-/d- notation actually represents an operator, it takes
a function as its argument, written to the right or above the
line, and returns another function: the derivative of the
argument. The letter below the line (x) represents the
variable that we take the derivative for.

It's perfectly fine to still think of dx and df{(x) as infinitesimal
quantities that somehow exist independent of their quotient.
In physics, people often think this way, and explain concepts
this way. However, you should remember that such thinking is
usually more akin to a guess than a derivation. To confirm
that your guess is correct, and that you haven't been tripped
up somewhere by the impossibilities of infinitesimals, you
should translate your result to the proper definition.

There are modern, rigorously defined number systems
that actually allow infinitesimal quantities, so that Leibniz'
intuition may be used with rigour. It's debatable however,
whether this makes the exposition of calculus more intuitive,
and they are not widely adopted in our field.

d x2
dx

The main benefit of the Leibniz notation is that you don't
have to refer to your function by an explicit name like "f(x)".
You can just fill in its formula directly into the operator.
Here we say that for f(x) = x2 the derivative is f'(x) = 2x in
one single statement. This is one reason we prefer the
Leibniz notation in machine learning: it makes long
derivations simpler to write down.

In the Lagrange notation this is occasionally done with a
notation like [x2]" = 2x but this is not commonly accepted.

df(x) df
dx dx
dx?+x+1) dx*+x+1
dx N dx

Here are two forms of shorthand we will occasionally allow
ourselves, to simplify the notation. At the top, if it is clear
that the result of fis a function of x, we will omit its
argument. You can think of this in Leibniz's terms if you
like: we divide the change in f by the change in x. What is
left more implicit by this notation is that we create the
change in x, and observe the resulting change in f.

In other words, we think of f as referring both to the function,
and a variable representing its output. This is a little
ambiguous, but if it's clear from context what we mean, it
simplifies things a lot.

The second line shows what happens when we fill in the
explicit functional form of f in terms of x. We will do this
very often. Technically, we need to put brackets around the
whole function, or the statement might be ambiguous
(especially if we write the function to the right of the
division line as in the previous slide). In practice, things
look a lot clearer without the brackets, so if the potential
ambiguity is minimal, or can easily be resolved from

examples

dx T dx + dx dx dx | dx
3
b
wz?’“z*b

Here are some examples. The first two lines show the
derivatives we've already worked out in the Lagrange
notation.

The right part of the second line shows how much clearer
things can become when we assume that we know which
variable is dependent on which. The notation is more
ambiguous, but a lot clearer.

The third line shows the benefit of indicating the
independent variable. The variables a, b, c are indicated
with letters in the function, but we treat them as constants:
x is the only variable we change to observe the resulting
change in the function above the line. The rest is treated the
same way as the 3 in the exponent is.

This can get a little confusing when we combine it with the
shorthand from the previous slide. We assume that the reader
knows whether a is a constant, or a function a(x). If things
get too ambiguous, we can always spell them out more
explicitly.

the rules according to Leibniz

df+g¢ df dg

sum rule: =—
dx dx + dx
1cf 1fi
constant factor rule: —C () =cS ()
dx dx
d
exponent rule: —x™ =nx""!
P dx

1
the other exponent rule: (;—Xb" =b*Inb

—eX=¢*
dx
the chain rule: L(g(x)) = dflo(x)) Lg(x]
dx dg(x) dx
ar _ af dg

or in shorthand: — =
dx dgdx

Here are the basic rules again, but this time in Leibniz
notation.

Pay particular attention to what we're doing for the chain
rule. In the first factor on the right hand side, we are taking
the derivative with respect to a function of x, not x itself. This
can be a little tricky to wrap your head around, but it's a
very powerful way of writing derivatives.

We can even use our shorthand to write the chain rule very
concisely. This requires us to state somewhere in the context
that fis a function of g, which is a function of x, but if that is
known, we can use the chain rule very cleanly. We’ll see some
examples of this when we get to backpropagation.

Let's look at a simple example of the chain rule in Leibniz
notation.

the chain rule in Leibniz notation

d(x—3)%2 d(x—3)?2dx—3
dx dx—3 dx
=2(x—3)-1

The function (x-3)2. We can see this as the function x-3 fed
to the function that squares its input.

Applying the chain rule means first taking the derivative of
this “squaring function” with respect to its input. The input
to the squaring function here is not x, it's (x-3). So we want
to take the derivative of (x-3)2, but treat the whole
expression x-3 as the input. This is what the factor in blue
represents: we are taking the derivative with respect to
(x-3). When we look at it like that, the exponent rule
applies, and the result is simply 2(x-3).

We then multiply this derivative with the derivative of x-3
over X, which is 1.

We will use the chain rule a lot, and always write it like this.
Make sure you understand what is happening in this slide.

multivariable calculus

For this course, multiple inputs but only ever one output.

f:R"— R

The final subject we will need to discuss is multivariate or
multivariable calculus.

This is the kind of calculus you use when your function has
multiple inputs and/or multiple outputs. Luckily, the basic
principle is almost the same as for functions of one variable.

We will see a lot of functions with multiple outputs, but we
will never apply calculus to them. We will only ever take
derivatives of functions with a single output. Happily, this
simplifies things a little bit.

example

The simplest example is a function with two inputs and one
output. Here's some arbitrary polynomial in arguments x
andy,

Put more technically, a scalar function of two arguments.

using vectors

f[x]:f(("i)) =xi2 Fxxe —xy2 =X+ xa+ 1

We can use vectors to easily express a function of multiple
variables. Here is the same function as before, but now
expressed using a single vector argument.

linear functions

flx)=x"w+2 w= <3>

= 1x1 + 3x2 + 2 5

One particularly simple type of vector function, which we
will see a lot is a linear function. In this function, we take
the dot product of the input vector with some other
constant vector (and possibly add a constant scalar). Such a
function draws a flat plane.

If the function has more than 2 arguments, we call the
resulting structure a hyperplane.

a 2D linear function

fx1, X2) = wixi + waxa+ b

Here's how to interpret the parameters of a linear function.
Note that in a 1D linear function, f(x) = wx + b, the constant
w is the slope, how much the function moves up if you take
one step to the right, in a 2D function the values w1 and w2
provide two slopes. How much the plane moves up if you
take a step of 1 along the x; axis and how much the plane
moves up if you take a step of 1 along the x2 axis.

The term b doesn't change the angle of the plane, but serves
to translate it up and down.

direction of steepest ascent

One fact that will become very important is the meaning of
the vector w in linear functions like these. It has a simple
interpretation. When we view it as an arrow in the x1/x2
plane, it's the direction in which the (hyper)plane of our
function increases the quickest. Wherever you are, if you
want f(X) to increase as much as possible, move in the
direction of w.

The reason that this will become important, again, is that we
will try to find the highest and lowest points of functions. We
will do this by approximating them with a linear function,
and then in that linear function using the constant w to tell
us in which direction the function increases and decreases the
quickest.

proof: w is the direction of steepest ascent

argmax(x+u)Tw+b such that |ul| =1
u

=argmax(x+u)'w
u

=argmaxu'w u w
u

=arg max ||ul|[|w|| cos ®
u

=arg max || w|| cos 0 1
u

To prove this, we can first make a few simplfying
assumptions. The question is, in which direction does f(x) =
xT™w + b increase the quickest. The scalar b only translates
the hyperplane up and down, it doesn't change its angle.
Therefore, the answer is the same for f(x) = xT™w + b as for
f(x) = xTw.

To make our question more precise, we need to state what
we mean by a direction. We can represent this by a unit
vector u (a vector with length 1). The question is then for
which unit vector u is f(x + u) the largest.

Finally, note that in a hyperplane, it doesn't matter where
we start. The direction of greatest ascent is the same at all
points. So we can set x=0. The question then becomes for
which unit vector u is the value f(u) = uTw the greatest?

The question is easily answered by switching to the
geometric definition of the dot product. The question then
becomes, for which unit vector u is f(u) = ||u]| ||w|| cos 6
the greatest. Since u is a unit vector, this becomes f(u) = ||
w]|| cos 6. The only part of this expression that the choice of

u affects is 0, the angle between u and w. We maximize cos
0 by making the angle minimal, which means that we
maximize f(u) if u points in the same direction as w, which
completes our proof.

partial derivatives

of(x,y) of(x,y)

ox ~ Ou

Now, let's look at what a derivative means in the context of
a multivariate function. The first thing we define is a partial
derivative.

This is simply the derivative as we already know it, with
respect to one of the arguments of the function, treating the
other as a constant. For a function f(x, y) with two
arguments, we can take two partial derivatives. One with
respect to x and one with respect to y.

For a function with n inputs and one output, we can take n
partial derivatives.

When we take a partial derivative, we replace the d from
the Leibniz notation with the symbol 9. This has the exact
same meaning, it only signifies that the function you are
taking derivatives over has more than one symbol, and that
you are treating the others as constants. Since almost all
functions in our course are multivariate, we will always use
the 0 symbol from now on.

They are sometimes used together with different meanings in
differential equations, but we won't use those in this course.
So long as you use the Leibniz notation as an operator (as
shown earlier) the two symbols mean exactly the same thing.

example

fx,y)=x> +yx —y> —x +y +1

of
— =2 -0 =1 0 0
< x +y +0 +
of
— =0 -2y — 0 1 0
3y + x Y + +

Here is an example (the function for which we plotted the
surface earlier).

When we take the partial derivative with respect to x, we
treat all the ys as constants. This means that when we get to
the term xy, The result is y times the derivative of x over x,
which is 1, so the derivative for that term is y.

When we then take the derivative with respect to y, the
opposite happens, and the derivative is x.

Here's a visualization of what it means to take the partial
derivative as a point x=0, y=5, with respect to x.

We let the function vary with x, keeping y fixed. This gives
us a kind of "slice” through the surface f. The result is that
we have a one-dimensional function again, for which we can
take the derivative. We do this by only caring about the way
f changes if we change x. In other words, by treating y as a
constant.

Then we do the same for y, treating x as a constant.

For both curves, the derivatives give us the slope of the
tangent line. We've shown these as dotted lines here.

These lines cross the same point, so together, they lie in a
shared plane. In higeher dimensions, the tangent lines of all
partial derivatives lie in a shared hyperplane. This is the
tangent hyperplane. The hyperplane that just touches the
surface of f.

How do we describe the tangent hyperplane? Note what the
tangent slopes indicate: how much the plane moves up if we
take a step of 1 along the x axis and how much the plane
moves up if we take a step along the y axis. These are
exactly the roles of the constants in the function xw1 + yw>
+ b. Or, in vector notation the elements of the vector w in
the function xT™w + b.

This tells us that if we take all of our partial derivatives and
stick them in a vector w, the function that will describe our
tangent hyperplane is X™w + b (for some value of b, which
we don't usually care about).

Here is the whole process again in a simple animation.

+ We start with a function with two inputs and one output.
In this case the function f(x, y) = x2 + y2 - Yaxy + x -y +1

+ We pick a point on the function, in this case (10, 20).

» We can define two partial derivatives. One is the
derivative of f as x varies and y is kept fixed.

» The other is the derivative of f as y varies and x is kept
fixed.

» Both of these are functions of one variable, so we can
apply what we know from univariate calculus to work out
the derivatives. At our point (10, 20), this gives us a
tangent line touching the red function and a tangent line
touching the blue function.

+ Since these lines cross, they lie in a shared hyperplane.
That is the plane that (in most cases) just touches but
does not cross f. Like the tangent line, the tangent
hyperplane functions as a locally linear approximation of
f: in a small enighborhood around the point (10, 20), it
behaves as much like f as any linear function can.

Vi(x)

the gradient and the tangent hyperplane

af/6x1
af/aXQ

0f/0xn

This vector, containing all partial derivatives, is called the
gradient.

The gradient is the "slope vector" in the function describing
the tangent hyperplane.

why we care about the gradient

On the left is a screenshot of one of the most popular online
magazines about machine learning. It's called The
Gradient. This should tell you that the gradient is a very
central idea in machine learning.

The reason is the same as before. In machine learning, the
main thing we care about is optimization, finding the
highest or the lowest point of a complicated function:
solving an argmin problem.

The tangent hyperplane is a local approximation of a
function. In general it behaves nothing like the function, but
in a very small neighborhood where the two just touch, the
tangent hyperplane is a great approximation. That means
that so long as we stay in that neighborhood, we know
where to move it we want the function to increase.

The idea is that we take a small step in that direction, and
then recompute the gradient. This gives us a new, slightly
different direction to move in, which allows us to take
another small step and so on. So long as we take only small
steps before recomputing the gradient, we will always be
following our function. This is called gradient ascent. If we
want to find the minimum of a function, we take the small
steps in the opposite direction

image source: http://charlesfranzen.com/posts/multiple-
regression-in-python-gradient-descent/

Preliminaries
Part 4: Probability

Machine Learning
mlvu.github.io
Vrije Universiteit Amsterdam

Probability is an important tool in Machine Learning. We
expect that you have been taught probability theory already,
but since it’s a subtle concept, with complicated
foundations, we’ll go over the basics again in this first video.

If you have never done any probability before, please
consult the homework exercises and the recommended
reading to brush up first.

|section|Probability|
|video|https://surfdrive.surf.nl/files/index.php/s/
5KO0IMECjsd4fXPX/download|

http://mlvu.github.io

Youngpeople Ope in eight European teenage boys
gamble online, says survey

To start, let’s look at the way we use probability informally.

Let’s say you are a concerned parent, you read this headline
and you are shocked by it. You turn to your partner, and you
say “that means that the probability that our son is
gambling online is 12.5%”". Your partner disagrees, you have
a good handle on your son’s behaviour and his spending.
Unless he has a credit card you don’t know about, and the
probability of that is much lower.

Well, then the probability that Josh, his closest friend,
gambles online must be 12.5%. If one in eight teenage boys
is gambling, they must be hiding somewhere. Your partner
disagrees again: probability doesn’t enter in to it. Josh is
either gambling or he isn’t.

Clearly, we need to look at what we mean when we say that
a probability of something is such-and-so. There are two
commonly accepted ways of looking at it: objective and
subjective probability. We'll start with objective
probability.

image source: https://www.theguardian.com/society/
2016/sep/20/one-in-eight-european-teenage-boys-
gamble-online-says-survey

objective probability

frequentism: probability is only a property of repeated
experiments.

In objective probability, “the probability that X is the case”
represents an objective truth: whatever a probability is, it
must be the same for everybody. You and I may disagree
over a probability, but only because one of us is wrong.
There is one true probability. An example is the probability
that a coin-toss will land heads. If nothing unusual is going
on, everybody should agree that the outcome is uncertain
and that the probability will be 50%. We can't have a
situation where one person thinks it's 10% and the other
thinks it's 90% and they're both right.

The most common form of objective probability is
frequentism. Under the frequentist definition, probability
is a property of a (hypothetical) repeated experiment. For
instance, take the statement “the probability of rolling 6
with a fair die, is one in six.”

The experiment is rolling a die. The outcome we are
discussing is the roll resulting in a 6. If we were to repeat
the experiment a large number of times, N, then the
proportion of times we observe the discussed outcome is

close to 1 in 6. More precisely, as N grows, the proportion
converges to 1in 6.

Under a frequentist interpretation, saying “the probability
is one in six", is equivalent to saying “if I roll the die
repeatedly, the relative frequency of sixes will converge to 1
in 6 as the number of rolls grows.”

Youngpeople Ope in eight European teenage boys
gamble online, says survey

School stude
health conce

rink less but there are new public

000

< =
191 15

Alan Travis Home
affairs editor

Under objective probability the statement “the probability
that Josh is gambling is 12.5%” is indeed nonsense. There is
no experiment we can imagine where Josh “turns out" to be
a gambler one in 8 times. He either gambles or he doesn’t.

What we can say is that the probability that a teenage boy
drawn randomly from the European population gambles
online is 12.5%. This is an experiment we can repeat, and at
every repetition, we choose a different boy, so we geta
different outcome.

subjective probability

Bayesianism: probability is an expression of our
uncertainty and of our beliefs.

The alternative to objectivism is subjectivism. It states that
probability expresses our uncertainty. If X is a boolean
variable, one that is true or not true, and we are uncertain
whether X is true, we can assign a probability to X being
true. A probability of 0.5 means we are entirely ambivalent,
a probability of 0.75 means we think X is pretty likely, and a
probability of 1 means we’re entirely sure that X is true.

In this case, different people can have different probabilities
for the same thing being true. You and I may "assign"
different probabilities to something being true and both be
right. If you have information I don’t have, your probability
may be closer to certainty than mine.

Bayesianism is the main form of subjective probability. It
builds on Bayes’ rule, which we will discuss later, to tell us
how we should use observations to update our beliefs.

Youngpeople Ope in eight European teenage boys
gamble online, says survey

School students
health conce

000 -

< m
191 45

Alan Travis Home
ffairs editor

Under subjectivism, we can say “the probability that our
son is gambling is 12.5%” We don’t know precisely what he
gets up to, so even though there is a definite objective
answer, we are uncertain. If we know only this headline, we
may well pick 12.5% as our belief that our son is gambling.
Of course, as noted before we have a lot more knowledge
about our son than about other teenage boys. We know he
goes to bed on time, we know where he gets his money, and
we know he probably doesn’t have a secret credit card. So
even though the probability for a random teenage boy
would be 12.5%, the probability for our son is actually
much lower, because we have extra information.

This is the fundamental difference between the two views:
under frequentism, probability is defined as an objective
property of the world. The probability of X is the same for
all people regardless of what we know or don’t know. Under
Bayesianism, probability is an expression of a subjective
property: it can change from one person to the next, and if
we learn new information, it can change from one moment
to the next. If we find out that our son does have a secret
credit card, the probability that he is gambler, suddenly
jumps up dramatically, even though nothing about him has
changed, only our knowledge about him.

Note that Bayesianism, in a sense encompasses
frequentism. If we define probability as the outcome of a
repeated experiment, then before we do the experiment we
are uncertain about its outcome. If we understand the
experiment perfectly, then the Bayesian probability we
assign to the outcomes will coincide with the frequentist
probabilities of the outcomes.

subjectivism vs. objectivism

A disambiguation of the word probability.
Leads to fundamentally different ways of doing statistics.

Is machine learning a probabilistic discipline?

If 5o, is it subjective or objective?

So, at heart subjectivism and objectivism are
disambiguations. The word probability is ambiguous, and
these additional terms allow you to be precise in what you
mean.

Note that you don’t have to commit to one view or another.
Subjective and objective probability are just ways to be
more precise about what the word probability means. You
can use the subjective definition one day and the objective
definition the next.

However, once you start doing statistics, the two definitions
lead to fundamentally different approaches (which we’ll see
in more detail later). And in the statistical community there
are definitely two camps: the frequentists and the
Bayesians, and arguments between the two can get very
heated.

Since machine learning is often seen as another form of
statistics, you may ask whether it is usually seen as using
subjective or objective probability. I can’t give you a
commonly accepted answer, | think opinions differ.

My view (which is definitely not shared by everyone) is that
Machine Learning, while being statistical in nature, is not
fundamentally probabilistic. The fundamental principles of
machine learning can be defined and explained without
recourse to probability theory (and indeed, we have done so
for most of the start of the course). The fundamental goal of
(offline) machine learning is to minimise test set loss given
only a training set, and some hint as to the relation between
the two datasets. This definition does not require probability.

Of course, even if machine learning is not fundamentally
probabilistic, probability has proven to be a very powerful
tool (much like linear algebra and calculus), in helping us
solve this problem. The consequence, is that we can borrow
whatever methods are most helpful to us at the time. We'll
use the frequentist methods when we need them, and the
Bayesian methods when they prove most helpful. We'll even
happily mix the two in a single model.

probability theory

Basic ingredients

- sample space

- event space

- probability function p(...)

- random variable

All that was about the interpretation of probabilities. This is
what the field of statistics is about. We have frequentist
statistics and Bayesian statistics.

The mathematical definition of probability, studied in the
field of probability theory, which is very different from
statistics, is entirely distinct from the question of how
probability applies to the real world. Both frequentists and
Bayesians use the same mathematical framework to
express probability as a number between 0 and 1. The only
difference between them is in what this number is taken to
represent.

We’'ll go through the basic ingredients of probability theory
quickly. This is a complex field, and a complete basis is too
technical for this course. We'll handwave some of the
technical details, and you can hopefully get by with a little
bit of intuition.

Ifyou plan to make machine learning your main expertise,
you should probably resolve to return to the fundamentals of
probability theory at some point and learn how everything is
properly defined.

sample space Q

£

&

a = {heads, tails}

a={1,2,3,4,5,6}

First the sample space. These are the single outcomes or
truths that we wish to model. If we flip a coin, our sample
space is the set of the two outcomes heads and tails.

We can have discrete sample spaces or continuous ones.
In a continuous space, you can imagine that in between any
two values there is always another value (like when we
measure someone's height very precisely). In a discrete
sample space this isn't usually the case.*

A discrete sample space can also be infinite: consider
flipping a coin and counting how many flips it takes to see
tails. In this case any number of flips is possible, so the
sample space is the natural numbers (although any number
larger than 40 will get an astronomically small probability).

* As we said before, this is not a proper definition of a
continuous space, and there are some odd exceptions, but it
should be enough to tell the most common continuous and
discrete spaces apart. The proper definition is a bit too
technical at this point.

&

E= {05 2,83)...,{1,2,..,01,2,3,4,56}}
Events are the things that have probability: subsets of
the sample space. All even throws, all throws higher

than three, etc.

powerset: the set of all subsets

From the sample space, we construct the event space.
Events are those things that can have probabilities. These
include the elements of the sample space, like the
probability of rolling a six with a die, but they also include
sets of multiple elements of the sample space, like the event
of "rolling a one or a six" and the event of "rolling an even
number”. Even the empty set and the set of all six numbers
are events. As we will see, these will get probabilities 0 and
1 respectively.

The events containing only one element of the sample
space, like "rolling a 1", are called atomic events.

How the event space is constructed is a technical business.
For our purposes, we can simply say that if the sample
space is discrete, then the event space is the powerset of the
sample space: the set of all possible subsets we can make.

For continuous sample spaces, not every subset can be an
event. We need to make sure that our event space is a thing
called a “sigma algebra.” We won’t need to worry about this
in this course. We can simply trust that if we don't try to
assign probability to any particularly unusual subsets of the
sample space, everything will work: these will be in the
sigma algebra, so they will be events, and we can assign a
probability to them.

random variable, probability function

A way to describe events
D“takes values"1,2,3,4,5,6
@& p(D=4),p(D > 3),p(Dis even), p(D=d) .etc

Random variables in ML:
- features i of instance: X;
- class of instance: Y

- Model (parameters): M

Random variables have a confusing and convoluted
definition, so we'll just give you the intuitive interpretation.

Random variables help us to describe events. We can think
of a random variable D as something that takes the values
in the sample space, so that we can use it to describe

events: instead of describing an event like "rolling a number
larger than three" in natural language, we can describe it
symbolically using the random variable D as "D > 3". This
usually makes our notation more concise and precise.

We usually use capital, non-bold letters for random
variables, or a capitalized word, and lowercase letters for
traditional variables. A statement like "D=d" refers to the
event that the random variable takes the value that the
regular variable d currently represents.

Once we have a way to describe the events we are
interested in, we can assign a probability to each event. We
do this with a probability function p. This function must
satisfy several constraints, but we’ll take those as read for
now, and just say that it takes an event, and maps it to a
value between 0 and 1 (inclusive).

In probabilistic machine learning, it's common to model
features, target labels, and sometimes even model
parameters as random variables. If we are referring to a
dataset of multiple instances, we model each as a separate
random variable with the same distribution. We'll see some
examples later in this lecture.

p(X = 0): the probability that X takes the value 0

A number between 0 and 1

p(X = x): the probability that X takes the value x.

A function of x.

Loifx=—1
X=x)=<1
P X {% ifx=1

Interpreting what a statement including a probability
function means depends on whether all variables are “filled
in”

In the first line, X=0 refers to a single, well-defined event, so
p(X=0) refers to a single value between 0 and 1. In the
second line we have a regular variable x, so the statement
“X=x" can refer to different events, depending on what x is.
In other words, here “p(X=x)” is a function of x. For
example, if x can take one of two values, -1 or 1, then the
function p(X=x) has a range of only two values as shown
here.

Note that this is is not the complete probability function p,
since that also assigns probabilities to events like "X=-1 or
X=1"and the empty event. However, if X=-1 and X=1 are the
only two atomic events, you can work out the complete
probability function from the definition given here.

shorthand for P(X = x):
p(X) or p(x)
for Boolean random variables:
p(X) means p(X = true)

p(=X) means p(X = false)

Since we usually know which outcomes belong to which
random variables, p(X) and p(x) can both be used as
shorthand for p(X=x).

If we have a Boolean random variable, which takes values
true or false, people often use a different shorthand, where
p(X) represents the probability that X is true and p(-X)
represents the probability that it is false.

All these conflicting shorthands may be a little confusing at
times, but there is usually enough information in the
context to figure out what the author means (and writing
everything out in unambiguous notation usually leads to an
unreadable mess).

probability vs. probability density

On both discrete and continuous sample spaces, the events
we describe have probability. Where they differ, in an
important way, is in whether a meaningful probability is
assigned to the elements of the sample space. Here is how
such probabilities are usually visualized: discrete on the
left, continuous on the right. In both cases, we are looking
at the sample space.

On the left, we are seeing the probabilities assigned to each
element of the sample space. Using this, we can easily work
out the probabilities of every event as well (just add up all
the probabilities of all the atomic events in the event).

However, when we look at a graph like the one on the right,
describing a normal distribution, it's important to realize
that this function does not express a probability. If | ask
you, under this distribution, which has the higher
probability, 0 or 1, the answer is that they both have the
same probability: 0. This should make intuitive sense: What
is the probability of meeting somebody who is exactly 2m
tall? Surely, if you measure more and more precisely, the
probability of getting exactly 2m goes further and further
down, converging to 0.

In short, when it comes to probability distributions on
continuous spaces, the atomic events normally all have
probability 0. The things that have nonzero probability are
ranges of values. The probability of somebody being
between 2.0m and 2.1m tall is more than 0, no matter how
precisely you measure them.

So what does this curve express? Not probability but
probability density. The probabilities can be retrieved by
integration. For instance, the probability of getting a sample
between 0 and 1 from this distribution is equal to the area
highlighted in the slide. The total area between -co and oo is
exactly 1.

These integrals usually cannot be worked out analytically so
we use numeric approximations. In the old days, you'd look
these up in tables at the back of a statistics textbook.
Nowadays, we let the computer do it for us on the fly. You
don't have to worry about the technical details in this course,
but you do need to understand the principle.

probabilities and concepts

for random variables X and Y
joint probability: p(X, Y)
marginal probability: p(X)
conditional probability: p(X | Y)

(conditional) independence

Bayes'theorem

Expected values

Now that we have the basic language of probability theory
in place, we can look at some of the most important
concepts. We will quickly review these five.

Note that even though we have multiple random variables in
some of these examples, we still have a single sample space
and event space, and the random variables X and Y will help
us describe the events that we're interested in. Think of the
single sample space for rolling two dice. You could use X for
the result of the first die, and Y for the result of the second to
describe events in this situation.

running example

Age = {young, teen, old}

Teeth = {healthy, unhealthy, fake}

We will use the following running example: we sample a
random person from the Dutch population and we check
their age and the health of their teeth (binning the results
into three categories for each variable).

We want to ask questions like:
+ what is the probability of seeing an old person?

+ what is the probability that a young person has fake
teeth?

- does a person’s age influence the health of their teeth, or
is there no relation?

The sample space is the set of the nine different pairs of
values we can observe, and the event space is the powerset
of that. The random variables A(ge) and T(eeth) will help us
describe these events.

joint probability

p(Age = old & Teeth = healthy)

p(Age, Teeth):

T
h u f
y 5 3 1
At 1 1 2
o 1 1 3

The joint distribution is the most important distribution. It
tells us the probability of each atomic event: each event
that contains a single element in our sample space.

Since we have two random variables in our example, which
together capture the whole sample space, we can specify
the joint distribution in a small table. The probabilities of
all 9 events sum to one.

Note that p(Age = old & Teeth = healthy) refers to a single
value (1/18), because we have fully specified the event.
p(Age, Teeth) does not refer to a single value, because the
variables are not instantiated, it represents a function of
two variables, i.e. the whole table.

marginal probability

T
h u f
y 5 3 1 918
At 1 1 2 4/18
7/18 5/18 6/19~ -7
o\'&3
e
Y&‘P\C)

If we want to focus on just one random variable, all we need
to do is sum over the rows or columns.

For instance, the probability that Age=old, regardless of the
value of Teeth, is the probability of the event {(o,h), (o,u),
(o,f)}. Because we can write these sums in the margins of
our joint probability table, this process of “getting rid” of a
variable is also called maginalizing out (as in “we
marginalize out the variable Teeth”). The resulting
distribution over the remaining variable(s) is called a
marginal distribution.

marginal probability

p(y) = p(y,h) + plyu) + p(y,f)

in general, for joint distribution p(X, Y):

p(xX) =Xyiny p(x,y)

This is what marginalizing looks like in symbols: we sum
the joint probabilities for all values of one of the random
variables, keeping the value of the other fixed.

Remember that p(X) and P(x) are both shorthand for
p(X=x).

conditional probability

p(T=f[|A=y)=p(f,y)/ply)=1/9

T
h u f
T
At 1 1 2
o 1 1 3

If we know that somebody is young, we know that the
probability of them having false teeth must be low. This is
called conditional probability: our knowledge of one
random variable, given that some other variable takes some
specific value. This is expressed with a vertical bar, with the
known part, the conditional on the right.

The conditional probability p(X=x|Y=y) is computed taking
the joint probability of (%, y) and normalising by the sum of
the probabilities in the row or column corresponding to the
part that’s given in the conditional.

Imagine we’re throwing darts at this table, and the
probability of hitting a certain cell is the joint probability
indicated in the cell. The conditional probability p(T=f|A=y)
is the probability that the dart hits the (y,) cell, given that
it has hit the y row.

Note that a statement about conditional probability tells us
nothing about causality. In our example age causes bad
teeth, but we can express both the probability that
somebody has bad teeth given that they are old (in the

causal direction), and the probability that somebody is old
given that they have bad teeth (in the opposite direction).

conditional probability

L pX=xY=y)
p(X—X|Y*y)_Zx/p(X:X/,Y:y)

Here is what conditional probability looks like in abstract,
symbolic terms. Note that the denominator is just the
marginal probability

useful

p(x,y) =pxly)ply)

If we re-arrange the factors in the definition of the
conditional probability, we get this equation, showing a
kind of decomposition of the joint probability. This comes up
a lot, so make a note of it.

For a specific example, the probability of seeing an old
person with false teeth, is the probability that an old person
would have false teeth, times the probability of seeing a old
person at all. The probability that an old person has false
teeth may be very high, but if the probability of seeing an
old person is very small, there's still a very small
probability of seeing an old person with false teeth.

Note that the same decomposition works with the reverse
conditional, the probability that someone with false teeth
would be old. Try it.

image source: By IkamusumeFan - Own work, CC BY-5A 3.0, vikimedia org/w/index phpcurid=30432580

Here is what these concepts look like with continuous
random variables (a bivariate normal distribution in this
case). The joint probability distribution is represented by
the point cloud in the middle. These are the values of X and
Y that are likely.

Marginalizing out either variable results in a univariate
normal (the red and blue distributions), the projection of
the multivariate distribution onto the X and Y axes.

The conditional distribution corresponds to a vertical or
horizontal slice through the joint distribution (and also
results in a univariate normal).

We won't go into the definitions, but it boils down to
replacing sums with integrations.

image source: By IkamusumeFan - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?
curid=30432580

X andY are independent if
p(X]Y) = p(X)

which implies p(X, Y) = p(X)p(Y)
X and Y are conditionally independent given Z if

p(X,Y|2)=p(X|2) p(Y|2)

If two variables X and Y are independent, then knowing Y
will not change what we know about X. More formally, the
conditional distribution p(X|Y) is the same as the
distribution P(X): knowing the value of Y doesn't affect our
knowledge of the value of X.

If we fill in the definition of conditional probability and re-
arrange the factors, we see that this implies that the joint
probability of X and Y is just the product of the marginal
probabilities p(X) and p(Y). Have a look at the joint
probability of the age/teeth example. Are these
independent random variables? What would it mean for the
example if they were?

Conditional independence means that the two variables
can be dependent, but their dependence is entirely
explained by a third variable Z. If we condition on Z, the
variables become dependent.

conditional independence

A: Alice is home in time for dinner
B: Bob is home in time for dinner
G: a monster attacks the city

p(A,B|G)=p(A|G) p(B|G)

p(A|G,B) =p(A|G)

Conditional independence comes up a lot, and it can be
tricky to wrap your head around at first, so here’s an
example.

Imagine two people who work in different areas of a very
big city. In principle, they work so far apart that whether or
not they arrive home in time for dinner is completely
independent. Knowing whether or not Alice is late for
dinner tells you nothing about whether Bob is home in time
for dinner. No aspect of their lives (weather, traffic)
intersect in a meaningful way, except one.

Very rarely, a large monster attacks the city. In that case, all
traffic shuts down and everybody is late for dinner. That
means that if we know that Bob is late for dinner, there is a
slight chance that it’s because of the monster, which should
slightly raise the possibility that Alice is late for dinner.
However, once we know whether or not the monster has
attacked, knowing that Bob is late provides no additional
information.

conditional independence

Here is another visualization, taken from Wikipedia. This
one is more abstract, but sometimes, sitting down with an
abstract example and trying to work through it can help a
lot to train your brain to get used to complex concepts. If
you're in a hurry, you can skip this one.

Imagine throwing a dart at the square on the right. We look
at the probability of hitting a yellow, red or blue square (the
purple ones are both red and blue). Describe these events
by boolean random variables Y, R and B.

We have p(R) = 16 and p(B) = 18/49. These
probabilities are not independent. We can work this out by
counting all the squares for the event (R, B) (R, =B), (7R, B)
and (—R, =B) and seeing if they are the product of the
marginal probabilities, but we can also tell directly by
looking at the picture: if we know that we've hit a blue
square, there is a certain probability that that blue square is
purple (i.e. also a red square). If we know that we haven't
hit a blue square, there is also a certain probability that that
square is red. The proportion of red inside the blue region
looks different to the proportion of reds inside the non-blue
region, so knowing whether we are in a blue square tells us
something about how likely we are to be in a red square.

Now, let's condition on Y. Somebody tells us the dart landed
in a yellow square. Now that we know this, does knowing
whether the square is blue still tell us anything about
whether the square is also red? Note that within the
yellow block, the proportion of red within the blues is
the same as the proportion of reds within the non-
blues. Once we're inside the yellow block, it doesn't matter
anymore whether the block is blue. The probability of red is
the same either way. Conditional on the knowledge that
Y=true, the probabilities of red and blue are independent.

What about when we hear that the dart has landed outside
the yellow block? It's harder to see, but the proportions are
4/12 for the blue blocks and 8/25 for the nonblue. Thus the
probabilities of blue and red are not conditionally
independent given that Y=false.

By AzaToth at English Wikipedia, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=3206668

Bayes'rule

the inversion problem:

It's easy to express the probability of an observable given
some hidden cause (assuming we have a model of the
world). However, we usually want the opposite.

Now that we have a decent understanding of conditional
probability, let's look at Bayes' rule, probably the most
important application of conditional probabilities.

Bayes' rule is a solution to the inversion problem. What
usually happens is that we have some idea of the mechanics
of the world, and we observe some outcome, that could
have happened through these mechanics in different ways.
We didn't observe how it happened: that's the part that is
hidden, and the part that we'd like to reason about. It's
usually easy to reason about the probabilities of the
outcomes given the observables (because we know the
mechanics of the world) but we'd like to reverse this.

For example imagine that you call a restaurant to book a
table, and nobody picks up. This is unusual, and you wonder
if it means the restaurant has burned down. You can easily
reason forward, from the cause to the effect. If the
restaurant has burned down, you would be sure that
nobody would pick up the phone. If it hasn't, you would be
quite sure that somebody would pick up the phone, but not

certain. This is how you would reason if you observed
whether or not the restaurant burned down and had to
guess whether or not the phone would be answered. You
are reasoning in the causal direction, so you use your
understanding of the mechanics of the world to arrive at an
intuitive conclusion.

The problem is that we usually want to do backward
reasoning. We observe the outcome of some event and we
don't observe the cause. What we want to figure out is how
to assign probabilities to the different causes. In this case,
given that we observe nobody answering the phone, what is
the probability that the restaurant has burned down?

In short, we need a way to “turn around” the conditional
probability. If we know p(X|Y), how do we work out p(Y|X)?

To do this, we need some additional probabilities. This
makes sense if you think about our example. If the
restaurant has burned down, we are sure that the phone
won't be answered, but if we observe that the phone wasn't
answered, we can't be sure that the restaurant has burned
down. We need to take into account the fact that it's very
rare for a restaurant to burn down, even though it would
definitely lead to this observation. We also need to take into
account the probability that something else has caused the
restaurant not to answer. Intuitively, you probably wouldn't
jump to the conclusion that the restaurant has burned
down because this is an unlikely event, and there are many
other reasons for the phone not being picked up.

If the cause and effect are labeled Y (the restaurant burning
down) and X (the phone going unanswered), then the
marginal probabilities p(Y) and p(X) capture all this
information indirectly (we'll see how in a bit). Combining
them this allows us to reverse the conditional from the
probability of the effect given the cause to the probability of
the cause given the effect.

This is the way Bayes' rule is usually written. You can prove
that this is true very simply by starting with the definition
of conditional probability and using the equation in slide
119 to rewrite the numerator.

conditional probability and Bayes’ rule Here's the two-step proof. It probably won't convey much

intuition for why Bayes' rule looks the way it does, but it
should at least convince your inner mathematician that it is

true.
_pv,X) definition of
p(X | Y) - W csnggtilgrr:acl)probability
— M see slide 21
p(Y)

To build a more intuitive understanding of how this formula
works, let's return to the example of the monster attack.
We'll focus on Alice only, and forget about Bob.

Let’s say that we observe that Alice is late for dinner (and
we observe nothing else). Does this tell us anything about
whether a monster has attacked the city? It doesn’t tell us
much; it's extremely rare that a monster attacks the city so
it’s almost certain that Alice is late for other reasons. Still, if
Alice were on time, we’d know that a monster couldn’t have
attacked the city, since that would certainly make her late.
So we may not know much, but we know something.

In this case it’s easy for us to work out the probability that
Alice is late (the effect) given the monster attack (the
cause). This is because in p(a|m), the conditional m is the
cause of the observable a. The opposite is usually what we
are interested in, since we have the observable and want to
reason about its cause. This is where Bayes’ rule comes in.

Say that we know the probability that we observe Alice
being late, given that a monster attack happened, p(a | m),
is somewhere near 1. Bayes’ rule tells us how to use this to
calculate the opposite conditional p(m | a). This is not near
1, because we multiply it by the marginal probability of a
monster attack p(m), which is really low. We then divide by
the probability of Alice being late in general p(a): the more
likely Alice is to be late due to other causes, the lower the
probability that it is caused by a monster attack.

pla|m)p(m)

p(ml|a)= (@)

pla|m)p(m)

caused by caused by
traffic monster

“oplalt)p®) +plalm)p(m)+plals)pls)

caused by
snowfall

If there are three possible reasons for Alice to be late:
traffic, monster or snowfall. Then we can see the
denominator as a sum marginalizing out the cause for
Alice’s lateness. The proportion of this sum given by the
middle term is the probability that Alice’s lateness is caused
by a monster attack.

Consider the situation where both traffic and snowfall are
far more likely than a monster attack, so p(t) and p(s) are
much higher than p(m), but neither traffic nor snowfall ever
cause Alice to be late, perhaps because she cycles home
from work, and has a bike with good snow tires. In that case
both the first and last term in the sum become zero, and
despite the fact that monster attacks are really rare, we can
still conclude that a monster has attacked if we notice that
Alice is late for dinner.

There is nothing causal about Bayes’ rule: we could also
marginalize out the effects at the bottom, and work out the
effect conditioned on the cause. In practice, however, you will
usually see Bayes’ rule applied to work out the probability of

6 6 6

1 1 1,1
s Gl 2B

An expectation, or expected value, is a way of expressing
what you can expect to “gain” from a random process.

For example, imagine the following gamble. I roll a die and
if the the number of eyes is three or fewer, you pay me that
number of euros, and if it’s four or more, [pay you that
number of euros.

Should you accept this gamble? Intuitively, it seems like you
should. Even though you could lose money, and you are as
likely to lose money as you are to gain money, in some
sense, you can expect to gain more money. One way of
thinking about this is what would happen if we were to
repeat the gamble a large number of times. If we did that,
how much would you gain, on average per roll of the die?

You can compute this by taking your gains from each
possible outcome (with losses represented as negative
gains), multiplying each by the probability of that outcome
occurring and summing all these up. The result is that on
average, you can expect to gain 1.5 euros from this gamble,
even though in each individual gamble you can still lose.

Note that a positive expectation is not always a sign that you
should accept a gamble. In this case, for instance, you should
still reject the proposition if you have only 3 euros and you
still need to pay for dinner today. The expectation can’t tell
you how bad a loss is for you. It just tells you that you will
gain on average if you have the means to repeat the gamble a
large number of times.

On the other hand, if the expectation is negative, it will
almost always be a bad choice to take the gamble. Virtually
actual gambling (the lottery, sports betting, scratch cards,
roulette) has a negative expected value, since your negative
expectation is the operator’s positive expectation.

]
Evpfl) = D

x € Outcomes

:J px)f(x)dx

p(f(x)

We can use the sum notation from earlier in the lecture to
provide a concise definition. To compute the expected value
of a function f of outcomes x, under probability p, we
multiply f(x) by p(x) and sum over all outcomes.

We denote the expectation with a bold or blackboard
capital E. If it’s not clear which variable represents the
outcome we're summing over, or what the probability is, we
can specify this in the subscript as shown (but we often
leave this out to simplify the notation).

Things get a little bit more tricky if our outcomes x are
continuous (i.e. real-valued numbers). In this case, our sum
becomes an integral, and our probabilities become
probability densities. Integrals are tricky, and it takes a lot
of skill to work them out. Luckily, ion this course, you’ll
never be asked to work out an integral. You just have to
understand what it represents.

Moreover, most of the rules for expectations are the same
whether you're dealing with a sum-based expectation or an
integral-based expectation. That means that if you never
open up the E, you can just apply the rules for dealing with
expectations, and simplify the function until you have the
desired result.

E x : expected value of x

Ecf(x) = cEf(x)
E [f(x) + g(x)] = Ef(x) + Eg(x)

c.&. su,de B

Ec=c
Elc+ f(x)] =c+Ef(x)

If the function f(x) is the identity (i.e. it just returns x), then
we say that the expectation is the expected value of the
random variable x. For example the expected value of the
number of eyesonadieis (1+2+3+4+5+6)/6.

question Imagine we have a loaded die. All outcomes are
equally likely, except 1 which is twice as likely as each of the
others. What is the expected value of x if x is the number of
eyes on the side we roll with this die? |hide|The answer is 3
and 1/7 or ~3.14.|

To work out the rules for manipulating expectations, all we
need to do is expand the definition into a sum. What we see
is that the first two rules for sums (on slide 19) also apply
to expectations.

When we have constant terms, however, the rule is slightly
different. The expectation of a constant value is just that
constant value. That is, if [say [will roll a die and then give
you 1 euro regardless of the outcome, then your expected
gain is just 1 euro. With this we can show that if we have a
constant term in our expectation, we can just take it

outside.

Compare this to the case of the sum notation, where a
constant term inside the sum needs to be multiplied by the
number of terms before taking it outside the sum.

Monte Carlo estimation

In machine learning, we often have expectations that we
cannot explicitly compute. In such circumstances, we
usually estimate the value of the expectation by Monte Carlo
estimation. This is a fancy name for a very simple idea: we
just take a bunch of samples and average them.

One example is working out the expected BMI of a
randomly chosen person in the Netherlands. We don’t have
the data for everybody in the Netherlands, but we can easily
sample, say 100 people at random, and measure their
weight and height and compute their BML. If we average all
100 BMI values, the result is is a good estimate of the true
expectation.

In fact, we can prove that as our sample size goes to infinity,
the difference between the true expectation and the Monte
Carlo estimate goes to zero.

In formulas we write this as shown in the slides. Say that we
are interested in the expectation of a function f applied to a
random variable x with distribution p. We estimate this
value by drawing K samples xj, ..., xx from p. We then
compute f(xx) for each sample xxand average the results.

the St. Petersburg lottery

| offer the following game.

1flip a coin repeatedly. If tails first appears at the first flip,
you win 2 euros. If it appears at the second flip, 4 euros. At
the third flip 8 euros and so on.

As a player, how much should | be willing to pay to play the
game?

Here is a famous paradox: the st. Petersburg lottery.
Thinking about this for a bit may help to deepen your
understanding of expectations.

If you play this game a few times (I suggest without using
real money), you'll see that the amount of money you have
to pay out over a few games is relatively modest. This might
inspire you to start offering the game for real. All you need
to do is to charge the average amount a player makes per
game. That way, if a player gets lucky and wins a lot of
money, you can pay them out with the entry fees from a lot
of unlucky players.

In short, you need to work out the expected payout for the
game.

If you charge less than this, then it follows you will
eventually make a loss. That is, a player who notices you're
undercharging can just play the game repeatedly to
eventually make a gain (so long as they have sufficient
capital to cover their initial losses).

The expectation is an infinite sum, because there is an
infinite number of outcomes. But, remember, we shouldn’t
be afraid of infinite sums. The resultis 2(1/2) + 4(1/4) +
8(1/8) + ... An infinite sum in which every term is one. The
result is infinite.

Or, ifyou don't like using infinite as a number, you can say
that “the sum diverges”.

This means that you should charge people infinitely much
money. To see why this is a paradox, consider what happens
if I charge less, say a million euros. If I do that, every
rational player should then be willing to play the game.
How much would you pay to play this game? All the money
you have? Remember that in practice, there is a 50% chance
that you will only make 2 euros.

Wikipedia offers some resolutions to the paradox. For my
money, the main trick is that this kind of lottery is never as
infinite as it looks. Let’s say that I have 1 million euros to
start with. That means that if I offer the game and a run of
20 heads happens, I can’t pay out because 220 > 1 million.
The actual game I offer doesn’t continue indefinitely: it
stops if we see a run of 20 heads. The expected value is
therefore not an infinite sum of 1s, it’s a sum of twenty 1s.
This is the player’s actual expected value: 20 euros.

If I tell the player that we’ll only go to 20 heads max, they’ll
quickly work out that they should not play if [charge more
than 20 euros. If I don’t tell them, I'm essentially risking a
1-in-a-million chance of going from millionaire to bankrupt
in order to win 20 euros. The risk is very minimal, but then
so is my gain.

A related idea is the Martingale betting "system", which
tells you to double your stake every time you lose a 50%
gamble, say a red/black bet in roulette. The idea is that every
bet is either won, or paid off with the next bet. It’s a system
that emerges quite organically when a problem gambler tries
ever bigger bets to cover their previous losses. This works
fine, of course, if you have infinite money (and lifetime). The
problem is that nobody has an infinite bankroll, and even if
you did, all casinos put a cap on how much you can gamble.
Even if that is a million euros, you will eventually see 20
blacks in a row, and lose everything.

0=2/3

Bernoulli distribution

heads

tails

To finish up, we'll look at some of the most common
probability distributions we'll see throughout the course.
Most of these you should know already, but we'll
summarize them here briefly for the sake of completeness.

The simplest is probably the Bernoulli distribution. It's
any distribution with two outcomes. You can think of it as
modelling the outcome of a coin flip with a (possibly) bent
coin, but the outcome could also be true/false, guilty/
innocent or positive/negative.

Every distribution like this, with its probabilities set to
some pair of values summing to 1 is a Bernoulli
distribution. To specify which Bernoulli distribution we are
talking about we specify one of the probabilities by a
number. The other probability is then also defined, since
they must sum to one.

The numbers we use to specify which specific distribution
we are talking about in a family like the Bernoulli
distributions, are called the parameters, and often
indicated by the greek letter theta, 6. You can think of 6 as a
set or a vector of number.

In some cases, like neural network-based distributions, 6
actually represents a highly complex data structure
containing many matrices and vectors, sometimes containing
billions of numbers.

In the case of the Bernoulli distribution 6 is just a single
number between 0 and 1.

categorical distribution

1

6 =(2/15,2/15,2/15, 2/15,2/15,5/15)

If we have more than two outcomes, but still a finite
number, we can assign each a separate probability so that
they sum to one. For instance, if we want to model the
outcome of rolling a loaded die, it might look like this. This
is called a categorical distribution. Other examples are
modeling which team will win the next world cup, which
child in a classroom will score the highest on a test, or what
the hair color of a random person from Ireland is.

To specify a categorical distribution with n outcomes we
strictly need only n-1 probabilities. We can work out the n-
th probability from the knowledge that all probabilities sum
to one. However, this is usually more trouble than it's
worth, and instead we tend to represent categorical
distributions by the slightly redundant complete set of n
probabilities.

normal distribution

N(x |y, 0) =

exp {

202

LIV u)ﬂ

The normal distribution or Gaussian is probably the most
common distribution on a continuous sample space. It is
defined by this complex looking function. Don't worry
about the formula too much now, we'll dig into that later.
For now just remember that the curve it describes is the
probability density.

Its parameters are the mean 1, which tells us where the
peak is, and the variance o2 or standard deviation o, which
tells us how widely spread out the normal distribution is.

The standard normal distribution is the specific
distribution with mean 0 and variance/standard deviation
1.

The normal distribution is particularly useful for anything
that has a definite scale. Consider, for instance height:
people have all kinds of different heights, but if we get far
enough away from the average, the probability gets so low
it may as well be zero. We can say with near certainty that
there are no 4 meter tall people and no 10cm tall people. If
there were a hundred times as many people, that would still
be true.

An example of an attribute that doesn't have such a definite
scale is income. In a small population there may be
millionaires but no billionaires, but if we zoom out to the
population of a small country, we will see billionaires
appear. In a large country will we see people with fortunes
in the order of 10 billion dollars and in the whole world we
will see fortunes of 100 billion dollars. In short, the largest
grows exponentially with the population size.

In such cases, as we've seen, the normal distribution is not a
good choice. We won't discuss them in this course, but so
called fat-tailed distributions like the log-normal, Zipf or
power-law distributions may be more suitable.

multivariate normal distribution

If our sample space consists of multiple numbers, for
instance when we have a dataset with multiple features, we
can draw this as an n-dimensional Euclidean space, like the
plane shown here. A distribution over such a space can be
defined by a probability density function over it, which, in
the 2D case looks like a surface over the plane.

The multivariate normal distribution is an extension of
the normal distribution to multiple dimensions. It takes the
shape of a kind of bell over our sample space. For higher
dimensions it's harder to visualize. You can think of an
ellipsoidal region in space taking most of the probability
mass, with the probability density decaying quickly in all
directions.

Again, don't worry too much about the complicated formula
for the probability density. We'll see where that comes from
and what all the parts mean later. For now, just focus on the
shape, and how the parameters affect that shape.

The parameters are the mean p, a vector which provides
the center, and the covariance matrix X, which tells us how

much the probability decays in each direction.

covariance matrix

standard

10
01

axis-aligned variance

(

3.0
0 02

)

R

correlation

(0.95

1

0.95
1

)

negative correlation

(

1
—0.95

—0.95
1

)

Here is an illustration of the way the covariance matrix
affects the data we get from a multivariate normal
distribution. The mean is at (0, 0) in all four examples.

If the covariance is the identity matrix, we get the standard
normal distribution. This is called a spherical distribution,
because the variance along all axes is the same, and there is
no correlation between axes, giving the data roughly
spherical shape.

More precisely the lines of equal probability density are
circles in 2D and spherical surfaces in higher dimensions.

If we change the values on the diagonal, we stretch this
sphere into an ellipse, but only along the axes. There is still
no correlation: knowing the value along one axis tells us
nothing about the value along the others.

If we change the off-diagonal values to positive values we
get correlation. In this case having a high value along one
axis makes it more likely that the value along the other axis
is also high. Note that the coviarance matrix needs to be
symmetric, so the value on one side of the diagonal must be
the same as the value on the other side.

If the off-diagonal value is negative, we get anti-
correlation. A high positive value on one axis most likely
corresponds to a high negative value along the other axis.

If we have more than 2 dimensions, say n, then there are
(n”2 - n)/2 possible pairs of axes between which we can
define a correlation. any of these could be positive, negative
or 0. This corresponds exactly to the number of values
above the diagonal in an n X n matrix.

term

factor

inverse

scalar

glossary
One element of a sum. For instance, in a + b + ¢, a is the first
term.

One element of a product. For instance, in abc, a is the first
factor.

The reverse of a function. If f maps x to y, then f, its inverse
maps those same y back to x.

A number. Often used in a linear algebra context to
distinguish for vector- and matrix-valued variables.

