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In	this	(irst	lecture,	we	will	look	at	what	machine	learning	
is,	and	at	some	of	the	basic	de(initions.	We	will	also	have	a	
quick	look	at	some	simple	methods	that	you	might	use	to	do	
machine	learning,	although	we	will	save	most	of	the	details	
of	these	methods	for	later.	

We’ll	start	with	a	simple	example.	

|video|https://surfdrive.surf.nl/(iles/index.php/s/
KFdMJwW0UrlwVBw/download|		
|section|What	is	machine	learning?|
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In	the	1990s,	the	US	postal	service	processed	billions	of	
letters	each	year.	Many	of	them	had	hand-written	
addresses,	like	this	one.	To	automate	at	least	part	of	the	
process,	people	realized,	it	would	be	very	helpful	if	
computers	could	read,	if	not	the	whole	address,	then	at	
least	the	zip	code.	Even	if	they	couldn't	get	it	exactly	right	
all	the	time,	it	would	still	allow	most	mail	to	be	sent	to	the	
right	part	of	the	country	automatically.	A	small	delay	for	
rare	letters	that	were	sent	to	the	wrong	part	of	the	country	
would	be	a	small	price	to	pay.	

Reading	digits	is	pretty	easy	for	us,	almost	all	humans	can	
do	it.	The	problem	is	that	this	is	one	of	those	tasks	that	
humans	know	how	to	do	without	knowing	how	it	is	that	
they	do	it.	We	can	all	read	these	digits,	but	if	we	met	
somebody	who	couldn’t,	none	of	us	could	tell	them	exactly	
what	steps	they	should	follow	to	do	what	we	do.	We	might	
say	something	like	“a	two	is	always	a	continuous	line,	with	
no	loops,	with	a	curve	at	the	top	a	corner	in	the	bottom	left	
and	a	(lat	line	at	the	bottom”.	But	that	doesn’t	explain	how	
we	recognize	a	line,	a	corner	and	a	curve	in	the	(irst	place.	It	
also	doesn’t	explain	why	we	recognize	the	second	digit	in	
this	zip	code	as	a	two,	even	though	it	violates	our	rule.	

In	short,	even	if	we	have	some	idea	of	what	we’re	doing,	we	
can’t	make	the	process	precise	enough	to	turn	it	into	a	
computer	program.	But	if	it's	impossible	to	explain	how	to	
do	it,	how	did	we	ourselves	acquire	the	ability	to	recognize	
digits	in	the	(irst	place?	We	certainly	weren’t	born	with	it.	

image	source:	https://rafalab.github.io/dsbook/
introduction-to-machine-learning.html	

http://mlvu.github.io
https://rafalab.github.io/dsbook/introduction-to-machine-learning.html


learning We	learned,	of	course.	We	were	shown	examples	of	
different	digits	and	somebody	told	us	which	was	which,	and	
after	a	while,	we	(igured	out	the	general	idea:	what	makes	a	
3	a	3,	despite	the	many	different	ways	of	writing	it.	Nobody	
ever	told	us	any	explicit	rules	that	always	work,	and	we	
couldn't	tell	others	exactly	what	we're	doing,	but	somehow,	
from	looking	at	examples,	the	concept	of	what	makes	a	3	a	3	
ended	up	in	our	heads.	

Machine	learning	is	the	practice	of	applying	the	same	idea	
to	computers,	or	at	least	trying	to.	Instead	of	providing	the	
computer	with	a	set	of	instructions	to	follow	step	by	step,	
like	we	normally	do	in	programming,	we	provide	a	large	
number	of	examples	of	the	sort	of	thing	we	want	the	
computer	to	learn.	Then	we	try	to	(igure	out	a	program	that	
recognizes	the	regularities	in	the	examples	and	ignores	the	
irrelevant	details.	

image	source:	https://www.pbslearningmedia.org/
resource/sesame-number-of-the-day-0/song-number-
of-the-day-0-sesame-street/	
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Here	is	another	problem	that	can	be	attacked	with	machine	
learning:	playing	chess.	In	this	case,	we	don’t	necessarily	
need	machine	learning.	We	understand	chess	well	enough	
that	we	can	actually	design	a	chess	playing	program	that	
learns	nothing;	it	simply	follows	instructions,	but	that	is	
still	good	enough	to	beat	the	best	grandmaster.	In	this	
picture,	for	example,	we	see	Garry	Kasparov,	the	world	
chess	champion	in	1997,	playing	a	game	against	chess	
computer	Deep	Blue,	a	game	he	would	lose.	The	Deep	Blue	
system	contained	no	learning	parts,	it	just	followed	explicit	
instructions.	

However,	just	because	it's	possible	without	learning,	
doesn't	mean	we	can't	also	do	it	with	learning.	In	fact,	the	
current	best	chess	playing	computer	program,	AlphaChess,	
uses	a	lot	of	machine	learning.		

We	can	do	this	in	different	ways.	Some	chess	computers	
that	use	learning	look	at	databases	of	what	good	human	
players	have	done	in	different	positions	and	try	to	
generalize	that	knowledge.	This	is	a	bit	like	the	digits:	we	
select	a	large	collection	of	examples	for	the	computer,	and	
the	computer	looks	through	them.	

Other	systems	learn	in	a	more	interactive	way.	They	simply	
start	playing,	against	humans,	against	other	chess	
computers,	or	against	a	copy	of	themselves,	and	they	
remember	everything	they	do.	Then,	they	learn	from	
these	experiences	to	get	better.	In	a	sense,	they	are	
generating	their	own	examples	to	learn	from,	by	interacting	
with	the	world.



An	even	more	complex	problem	is	that	of	designing	a	self	
driving	car.	

Again,	we	wouldn’t	be	able	to	design	a	set	of	rules	that	can	
always	be	followed	to	drive	perfectly.	Many	important	
aspects	of	driving:	following	the	curve	of	the	road	or	
recognizing	pedestrians	and	traf(ic	signs,	are	simply	too	
complex	and	too	poorly	de(ined	to	just	tell	a	computer	what	
to	do	in	a	set	of	instructions	to	be	followed	like	a	recipe.	

Many	of	these	problems	can	be	isolated.	For	instance,	we	
can	collect	a	dataset	of	views	from	the	car	window,	and	
train	a	model	to	recognize	whether	a	stop	sign	is	present.	
That	doesn’t	give	us	a	self-driving	car,	but	it	solves	part	of	
the	problem.	For	basic	road	following,	we	can	observe	a	
human	driver,	and	see	how	they	manipulate	the	steering	
wheel	to	keep	the	car	straight.	

Here	too,	we	could	imagine	a	self	driving	car	that	doesn't	
learn	from	human	examples,	but	just	learns	to	drive	by	
interacting	with	the	world.	It	starts	driving,	and	whenever	
something	goes	wrong,	it	adjusts	its	program.	Obviously,	it's	
best	to	do	such	things	in	a	simulated	world,	at	least	at	(irst.		

Of	course,	even	if	we	successfully	train	all	these	separate	
modules,	we	still	need	to	make	sure	that	they	then	work	
together	when	we	integrate	them	into	a	large	system.	This	
is	very	much	still	an	open	problem,	and	it's	by	no	means	
clear	that	machine	learning	is	the	key	to	such	an	
integration.	Still,	the	individual	smaller	problems	make	
interesting	examples,	which	we'll	look	at	in	detail	later.	

image	source:	the	oatmeal,	http://theoatmeal.com/blog/
google_self_driving_car

what makes a suitable machine learning problem?

• We can’t solve it explicitly. 

• Approximate solutions are fine. 

• Limited reliability, predictability, interpretability is fine. 

• Plenty of examples available to learn from
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good 

Recommending a movie 

Clinical decision support 

Predicting driving time 

Recognising a user

bad 

Computing taxes 

Clinical decisions 

Parole decision (support) 

Unlocking phone 

Let's	zoom	out	a	little,	and	see	what	kind	of	problems	are	
suitable	for	machine	learning	approaches.		

In	general,	we	are	looking	for	settings	where	the	
requirements	are	forgiving:	it	should	be	(ine	if	the	learning	
program	occasionally	gets	it	wrong,	or	behaves	
unpredictably.	We	should	also	allow	for	limited	
interpretability:	just	like	we	can	con(idently	recognize	a	3	
without	offering	anything	to	back	up	that	con(idence,	
machine	learning	programs	usually	allow	very	little	insight	
into	why	we	should	trust	their	predictions,	even	if	they	are	
correct.	Finally,	machine	learning	works	best	when	we	have	
lots	of	examples	of	the	kind	of	thing	we	are	trying	to	learn.	

In	a	chess	game,	approximate	solutions	are	acceptable:	
human	chess	players	make	mistakes	too,	so	it's	a	domain	
where	mistakes	are	expected.	In	zip	code	recognition,	a	
mistake	may	cause	the	odd	letter	to	be	delayed,	but	that	
could	be	an	acceptable	sacri(ice,	if	we	build	the	rest	of	the	
system	to	manage	such	mistakes.	

Recommending	a	movie	is	also	a	good	use	case,	since	we	



have	no	explicit	solution,	and	approximate	solutions	are	
(ine:	we	can	simply	suggest	a	lot	of	movies	to	the	user	and	
let	them	pick.	This	is	usually	the	reason	why	approximate	
solutions	are	accepted:	we	can	embed	the	ML	module	in	an	
interface	that	gives	a	user	some	control.	In	other	words,	we	
don’t	give	the	ML	system	full	autonomy,	it	is	used	to	make	
suggestions	to	a	human	user.	

In	self-driving	cars,	the	question	is	much	more	complex:	we	
need	to	be	really	sure	that	we	don’t	place	too	much	trust	in	
an	unreliable	pedestrian-recognizing	module.	This	is	one	of	
the	reasons	why	self-driving	cars	are	not	quite	living	up	to	
the	hype	we	saw	a	few	years	ago.	Another	bad	use	case	is	
computing	your	taxes.	Not	only	are	approximate	solutions	
are	not	acceptable	in	that	case,	we	also	know	exactly	how	to	
compute	a	precise	solution	quickly	and	ef(iciently	without	
any	machine	learning.	

We've	put	parole	decisions	and	unlocking	your	phone	(for	
instance	by	face	recognition)	in	the	"bad"	column,	but	you	
should	note	that	ML	systems	do	exist	for	these	use	cases	

where do we use machine learning?

Inside other software 
Unlock your phone with your face, search with a voice command,  

In analytics, data mining, data science 
Find typical clusters of users, predict spikes in web traffic 

In science/statistics 
If any model can predict A from B, there must be some relation
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The	most	popular	use	of	machine	learning	is	inside	other	
software.	There	is	often	one	thing	that	we	can't	do	explicitly,	
inside	a	larger	system	full	of	traditional	software.	Think	of	
your	email	client	detecting	spam,	or	Net(lix	recommending	
a	movie.		

Machine	learning	algorithms	can	also	be	used	to	trawl	
though	large	amounts	of	data	to	pick	out	interesting	
patterns.	In	such	cases,	they	may	not	be	embedded	in	
software,	but	rather	used	directly	by	a	data	scientist	at	a	
company.	For	instance,	if	Net(lix	wants	to	(igure	out	why	
their	subscriptions	always	drop	in	January,	they	may	ask	
somebody	to	use	machine	learning	algorithms	to	analyze	
their	data	to	come	up	with	some	hypotheses.	Once	the	
hypotheses	have	been	generated,	the	code	will	be	
discarded.	In	this	case,	it's	not	the	software	that	is	the	end	
product,	but	the	intelligence	produced	by	the	software.	

This	is	more	commonly	called	data	mining	(or	more	
generally,	data	science),	but	the	methods	used	are	the	same	
as	those	used	in	machine	learning.	

Finally,	we	are	seeing	more	and	more	machine	learning	
methods	employed	in	scienti(ic	research.	This	might	simply	
be	another	form	of	data	science,	since	scientists	have	large	
amounts	of	data	to	sift	through	as	well,	but	we	can	also	use	
machine	learning	models	to	identify	relations	between	
variables.	If	a	machine	learning	model	can	predict	one	
variable	from	another,	there	must	be	some	relation	between	
the	two,	which	can	then	be	further	investigated,



a broad definition
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Machine learning […] provides systems 
the ability to automatically learn and 
improve from experience without being 
explicitly programmed. 

(from expertsystem.com)

Now	that	we've	seen	some	examples,	let's	see	if	we	can	(ind	
a	de(inition	of	machine	learning	that	is	broad	enough	to	
capture	all	of	this	behavior.	

Here	is	a	decent	one	that	covers	most	of	the	important	
aspects.	It	describes	a	system	(i.e.	a	computer	running	a	
program).	It	improves	its	behaviour	based	on	experience,	
and	the	resulting	behaviour	has	not	been	explicitly	
programmed.		

This	kind	of	de(inition	suggests	a	system	that	learns	and	
acts	like	a	human	being.	It	continuously	updates	its	“mind”	
while	also	constantly	making	decisions	and	taking	actions		
based	on	the	information	it	has.	This	de(inition	includes	the	
chess	program	that	learns	from	playing	games,	and	the	self-
driving	car	that	learns	by	driving	around.	

quote	source:	http://www.expertsystem.com/machine-
learning-de?inition/

the broad view: an intelligent agent

reinforcement learning: taking actions in a world based on 
delayed feedback.
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learnermodelEnvironment

state

reward

action
lecture 13

online learning: predicting and learning at the same time. 

not in this c
ourse

Such	a	continuously	updating	system	is	often	called	a	
learning	agent.	There	are	various	sub(ields	of	machine	
learning	that	deal	with	such	a	broad	view	of	machine	
learning.	

In	reinforcement	learning,	we	study	true	learning	agents.	
We	need	to	de(ine	the	agent,	the	environment,	and	a	reward	
system.	The	agent	must	learn	to	explore	the	environment,	
while	also	taking	actions	to	maximize	its	rewards.	Its	
actions	may	also	change	the	environment,	which	the	agent	
should	take	into	account.	Clearly,	this	is	a	very	complicated	
type	of	problem	to	solve.	We'll	look	at	this	in	the	very	last	
lecture.	

In	online	learning,	we	simplify	the	problem	a	little	bit.	We	
are	no	longer	taking	actions,	we	are	only	predicting.	That	is,	
for	each	input	we	need	to	predict	the	right	output,	but	what	
we	choose	to	predict	doesn’t	affect	what	we	will	see	in	the	
future.	Imagine	predicting	the	weather.	We	are	still	learning	
online,	however:	every	input	we	observe	requires	a	
prediction,	but	it	also	serves	as	an	example	to	learn	from	in	
our	future	predictions:	we	are	always	predicting	and	
learning	at	the	same	time.	We	won't	deal	explicitly	with	
online	learning	in	this	course,	but	everything	we	come	up	
with	for	reinforcement	learning	also	applies	to	online	
learning	problems.	

In	most	cases,	we	don’t	actually	need	an	agent	that	learns	as	
it	acts.	In	those	cases,	we	can	simplify	the	problem	of	
machine	learning	a	lot.	

http://expertsystem.com


offline learning

Separate learning, predicting and acting 

• Take a fixed dataset of examples (aka instances) 

• Train a model to learn from these examples 

• Test the model to see if it works, by checking its 
predictions 

• If the model works, put it into production 
i.e. use its predictions to take actions
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most of the c
ourse

This	simpli(ied	view	is	called	of?line	learning.	In	of(line	
learning	you	separate	the	acts	of		

1. learning	a	model	and		
2. putting	a	learned	model	to	use.		

You	gather	a	dataset	of	examples	beforehand,	you	train	a	
model,	test	it,	and	once	you’re	sure	it	works	well	enough,	
you	use	that	version	of	the	model	(for	instance	by	sticking	
into	a	larger	computer	program).	The	(inished	program	will	
never	learn	while	it’s	running.		

While	this	robs	the	exercise	of	some	of	its	more	exciting	
aspects,	it	still	allows	us	to	do	something	very	useful:	it	
allows	us	to	learn	programs	that	we	have	no	idea	how	to	
write	ourselves.	If	we	need	a	digit	recognizer	to	sort	our	
mail,	we	can	collect	a	bunch	of	examples,	train	one,	and	
then	put	it	to	use.	

Almost	all	of	this	course	will	focus	on	of(line	learning.
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problems 
playing chess 
driving a car 

recommending a movie 
… 

algorithms 
Linear models 

kNN 
Decision trees 

….

abstract tasks

classification 
regression 
clustering 

density estimation 
…

Now,	the	main	problem	with	machine	learning	is	that	we	
want	solutions	that	are	applicable	across	domains.	You	
don’t	want	to	dedicate	your	entire	life	to	crafting	a	perfect	
self-learning	computer	chess	plpayer,	and	then	(ind	out	that	
your	ideas	have	no	use	for	anything	else.	We	want	to	solve	
the	problem	of	machine	learning	in	general:	instead	of	
studying	each	problem	in	isolation,	we	want	solutions	that	
can	be	applied	to	many	problems.	

To	make	this	possible,	machine	learning	is	often	built	on	
abstract	tasks	like	classi<ication,	regression	or	clustering.	If	
you	have	a	practical	problem,	like	chess	playing,	you	(ind	a	
way	to	abstract	the	problem	of	playing	chess	(or	part	of	it)	
to	the	generic	task	of,	say,	classi(ication,	and	then	you	pick	
one	of	many	existing	classi(ication	methods.

abstract tasks

supervised 

Explicit examples of input 
and output. 
 
Learn to predict the 
output for an unseen 
input.
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unsupervised 

Only inputs provided.  
 
 
Find any pattern that 
explains something about 
the data.

Abstract	tasks	come	in	two	basic	(lavours:	supervised,	and	
unsupervised.	

In	supervised	tasks,	we	have	explicit	examples	of	both	
inputs	and	the	corresponding	outputs.	What	we	have	to	
learn	is	the	program	that	maps	any	input	to	the	
corresponding	output.	For	instance,	we	may	be	provided	
with	emails	and	given	a	label	spam	(advertising)	or	ham	
(genuine)	for	each.	The	task	then,	is	to	train	a	program	to	
assign	these	labels	to	new	emails.	

In	unsupervised	tasks,	there	is	no	target	value,	only	the	
data.	All	we	can	do	then	is	to	learn	some	structure	in	the	
data.	For	instance	we	can	cluster	a	dataset	of	students	to	
see	if	there	are	natural	groups,	or	we	can	analyze	a	dataset	
of	(inancial	transactions	to	see	if	we	can	isolate	the	ones	
that	look	"unusual".	In	both	cases,	we	do	this	without	
explicit	examples	of	the	sort	of	thing	we're	looking	for.



supervised learning tasks

Classification: assign a "class" to each example. 
One of a finite number of categories like ham/spam, or the 10 digits. 

Regression: assign a number to each example. 
For instance, predicting somebody's age.
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Most	of	the	course	will	focus	on	supervised	learning.	These	
are	the	two	main	supervised	abstract	tasks:	classi(ication	
and	regression.	

In	classi(ication,	the	job	is	to	assign	one	of	a	(ixed	number	of	
categories.	For	instance,	classifying	email	into	the	classes	
ham	or	spam	is	a	classi(ication	problem.	Recognizing	digits	
can	also	be	cast	as	a	classi(ication	problem,	since	there	are	
10	possible	digits	we	can	predict	for	a	given	example.	

If	the	thing	we	are	predicting	is	not	a	category,	but	a	
number,	we	call	the	task	regression.	For	instance,	if	we	want	
to	predict	a	person's	age,	we	might	cast	this	as	a	regression	
problem.
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We'll	go	into	classi(ication	and	regression	in	more	detail	in	
the	next	videos.	For	now,	here	is	a	video	that	illustrates	the	
basic	idea.	

video	source:	https://www.youtube.com/watch?
v=7BtLqqJVP9w,	https://archive.org/details/
perceptron_documentary_excerpt	

|video-slide|https://www.youtube.com/embed/
7BtLqqJVP9w|

lachine learning vs.:

artificial intelligence 

data science 

data mining 

information retrieval 

statistics 

deep learning
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I’ve	told	you	what	machine	learning	is.	Now	let’s	look	at	
what	it	isn’t.	To	(inish	up	this	video,	let’s	see	how	machine	
learning	relates	to	other	(ields	of	study:	where	they	overlap	
and	how	they	differ.	



machine learning vs. artifical intelligence

AI, but not ML: playing chess, automated reasoning, 
planning.
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AI

ML

First	up,	Arti?icial	Intelligence	(AI).	Machine	learning	is	a	
sub(ield	of	AI.	If	we	want	to	make	a	general	AI	that	can	do	
everything	we	can,	it	needs	to	be	capable	of	learning.	But	
there	are	many	other	problems	and	(ields	in	AI	that	have	
nothing	to	do	with	learning.	

Other	sub(ields,	like	natural	language	processing,	are	
greatly	helped	by	machine	learning	techniques,	but	can	also	
be	tackled	without.	In	recent	years	machine	learning	has	
taken	a	much	larger	role	in	AI	and	many	more	aspects	of	AI	
are	now	dominated	by	machine	learning	approaches.	
However,	the	two	terms	still	have	very	different	meanings.	

For	instance,	when	I	started	this	course	in	2018,	the	best	
chess	computers	used	no	learning	at	all.	Since	then,	
AlphaChess,	which	does	use	machine	learning,	has	taken	
the	crown.

machine Learning vs. data science

Data Science, but not ML: Gathering data, harmonising 
data, interpreting data.
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Data Science

ML

Similarly	all	machine	learning	is	data	science,	but	not	all	
Data	Science	is	machine	learning.	Often,	machine	learning	is	
used	as	part	of	a	larger	data	science	pipeline.		

Some	of	these	aspects	of	data	science	are	very	important	to	
know	if	you	want	to	do	machine	learning.	We'll	look	at	some	
of	them	in	lectures	3	and	5.

machine learning vs. data mining

More DM than ML: Finding common clickstreams in web 
logs. Finding fraud in transaction networks. 
More ML than DM: Spam classification, predicting stock 
prices, learning to control a robot.
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Data Mining Machine Learning

Here	is	a	more	subtle	distinction:	data	mining	and	machine	
learning.	Opinions	differ,	but	I	would	characterize	them	as	
follows.	Both	analyze	data,	but	they	do	so	with	different	
aims:	machine	learning	aims	to	produce	a	model	of	the	data,	
while	data	mining	aims	to	produce	intelligence	about	the	
data.	The	methods	are	often	the	same,	the	difference	is	in	
which	we	consider	the	end	product:	the	software	or	the	
knowledge.	

Another	distinction	is	that	machine	learning	focuses	on	
prediction:	trying	to	predict	a	target	value	for	new	data,	
whereas	data	mining	more	often	tries	to	navigate	and	
simplify	the	data	so	that	it	becomes	useful	for	users.		

If	you	have	a	dataset,	but	you	expect	never	ever	to	see	any	
new	data	from	the	same	source,	you	can	still	perform	data	
mining	on	it,	but	performing	machine	learning	on	it	is	not	
much	use	(although	your	data	mining	will	probably	use	
machine	learning	techniques).
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Information 
Retrieval Machine Learning

Information	retrieval	(building	search	engines)	may	look	
at	(irst	like	a	(ield	that	is	completely	distinct	from	ML.	But	
on	closer	inspection,	it	turns	out	that	you	can	model	IR	as	a	
kind	of	classi(ication	task:	your	instances	are	documents,	
and	your	aim	is	to	classify	them	into	relevant	or	irrelevant	
(for	a	particular	query).		

This	may	seem	a	bit	extreme,	but	this	view	has	actually	
helped	us	in	machine	learning	to	think	more	clearly	about	
problems	with	high	class-imbalance	(where	ranking	is	a	
more	appropriate	way	to	think	about	the	task	than	
classi(ication).	

machine learning vs. statistics

Stats but not ML: Analyzing research results. Experiment 
design. Courtroom evidence. 
More ML than Stats: Spam classification, movie 
recommendation.
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Statistics ML

Here	is		another	subtle	distinction.	Statistics	and	machine	
learning	both	focus	on	analyzing	data,	and	modeling	it	in	
some	way.	In	fact,	many	of	the	models	we	use	in	machine	
learning	were	invented	by	statisticians	long	before	machine	
learning	even	existed.	The	distinction	isn’t	always	clear,	but	
the	most	important	difference	is	probably	that	the	methods	
of	statistics	aim	to	get	at	the	truth,	whereas	machine	
learning	tries	to	come	up	with	something	that	works,	
regardless	of	whether	it’s	true.		

Consider	spam	classi(ication.	We	usually	model	emails	as	a	
bag	of	independently	drawn	words.	This	has	nothing	to	do	
with	the	way	emails	are	actually	written.	Still,	it	works	well	
enough	to	let	people	control	their	inbox.	The	machine	
learning	model	doesn't	re(lect	reality,	but	it	works	for	the	
task	in	hand.	

Contrast	this	with	proving	in	a	courtroom	that	a	particular	
piece	of	DNA	evidence	really	puts	a	suspect	at	the	scene	of	
the	crime.	Here,	we’re	interested	in	more	than	just	getting	a	
useful	model	that	captures	some	of	the	data,	we	need	the	
whole	truth	and	nothing	but	the	truth.	For	this,	the	model	
that	we	(it	to	the	data	needs	to	have	some	quanti(iable	
resemblance	to	the	process	that	actually	produced	the	data.	
This	is	a	dif(icult	thing	to	establish,	and	it	is	something	that	
machine	learning	doesn't	usually	bother	with.
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Deep  
Learning

ML

starting in le
cture 6

Finally,	you	may	have	heard	a	lot	in	the	news	in	recent	years	
about	deep	learning	and	wondered	whether	it	is	the	same	
as	machine	learning	or	something	different,	or	what.	Here	I	
can	be	clear.	Deep	learning	is	a	sub(ield	of	machine	learning.	
All	deep	learning	is	machine	learning	but	not	all	machine	
learning	is	deep	learning.		

We	will	discuss	deep	learning,	and	what	makes	it	so	special	
at	various	points	in	the	course.

Introduction 
Part 2: Classification

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

|video|https://surfdrive.surf.nl/(iles/index.php/s/
RetahLEBxbRDPd8/download|	
|section|Classi(ication|	
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abstract tasks

problems 
playing chess 
driving a car 

recommending a movie 
… 

algorithms 
Linear models 

kNN 
Decision trees 

….

classification 
regression 
clustering 

density estimation 
…

In	the	last	video	we	showed	this	diagram	of	how	machine	
learning	usually	works:	we	have	a	problem,	we	translate	a	
part	of	that	problem	to	an	abstract	task,	and	then	we	take	
an	existing	algorithm	for	that	standard	task	and	implement	
it.

http://mlvu.github.io


supervised learning tasks

Classification: assign a class to each example. 

Regression: assign a number to each example.
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In	this	video	we	will	look	in	detail	at	one	of	the	main	
abstract	tasks	for	supervised	learning:	classi?ication.

spam
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data
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2 0 ham

0 1 ham

0 2 spam

1 1 spam

2 1 spam

2 0 ham

1 0 ham

1 1 ham

3 1 spam

6 0 spam

‹ 
fe

at
ur

e

‹ 
la

be
l

‹ instance

model 
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This	is	the	basic	framework	of	classi(ication.	The	data	that	
we	provide	our	system	with	consists	of	examples,	called	
instances,	of	the	things	we	are	trying	to	learn	something	
about.	In	this	example,	our	instances	are	e-mails.	

We	must	then	make	a	series	of	measurements	about	each	
instance.	In	the	case	of	e-mails,	we	may	measure	how	often	
a	speci(ic	word	occurs.	The	things	we	measure	are	called	
the	features	of	the	instance.	We	can	measure	numeric	
features	(like	age	or	speed),	but	they	can	also	be	categoric	
(like	gender	or	color).	What	we	measure	is	up	to	us.	Picking	
the	right	features	is	a	big	part	of	the	art	of	building	machine	
learning	systems.	

Finally	we	have	the	target	value:	the	thing	we	are	trying	to	
learn.	In	classi(ication,	this	is	always	a	categoric	value,	or	a	
class:	one	of	a	handful	of	possible	values.	In	this	case,	is	the	
e-mail	spam	(an	unwanted	advertising	e-mail),	or	ham	(a	
genuine	e-mail).	

This	dataset	is	then	fed	to	a	learning	algorithm.	This	can	
be	anything,	but	it	has	to	produce	a	classi?ier.	A	classi(ier	is	
a	small	“machine”	that	makes	the	required	class	
predictions.	That	is,	it	takes	a	new	instance,	one	that	wasn’t	
in	the	original	dataset,	and	for	which	we	don’t	know	the	
target	class,	and	it	makes	a	guess	at	what	the	correct	class	
is..		

Note	that	the	model	in	this	example	predicts	"spam"	for	the	
instance,	even	though	it	has	seen	the	same	instance	in	its	
data	with	the	label	"ham"	(in	the	eighth	row).	This	is	
perfectly	possible:	the	job	of	the	model	is	not	to	memorize	
the	data	but	to	learn	from	it.	Often	the	model	needs	to	
discard	speci(ic	details	it	has	seen	in	order	to	do	its	job	well.	
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image source: https://rafalab.github.io/dsbook/introduction-to-machine-learning.html 

Let’s	look	at	some	examples	of	how	we	can	reduce	real-
world	problems	to	classi(ication.	We’ll	start	with	
handwriting	recognition.	Speci(ically,	reading	a	ZIP	code	
on	an	envelope.	This	involves	many	dif(icult	problems:	
aligning	the	envelope,	(inding	the	address,	(inding	the	ZIP	
code	within	the	address,	segmenting	the	address	into	digits,	
etc.		

Our	(irst	step	is	to	reduce	the	problem	to	a	simple	
classi(ication	problem:	we	will	assume	that	we	are	given	an	
image	of	a	single	digit,	and	the	task	is	to	predict	what	the	
digit	is.	This	is	a	much	simpler	problem,	but	still	a	
challenging	one.	We’ll	leave	all	the	other	problems	to	other	
people	to	solve	(either	using	traditional	approaches,	or	with	
more	machine	learning).	

The	next	step	is	to	gather	some	training	data	that	we	can	
learn	from.	

image	source:	https://rafalab.github.io/dsbook/
introduction-to-machine-learning.html	

First,	we	need	a	lot	of	pictures	of	handwritten	digits.	This	is	
often	easy	enough	with	a	little	clever	automation.	The	
second	part	is	more	challenging:	somebody	needs	to	
annotate	what	digit	each	picture	represents.	If	we	could	
automate	that	step,	we	wouldn’t	need	a	classi(ier,	so	there’s	
no	getting	away	from	the	fact	that	we	need	to	do	that	by	
hand.	

In	the	1980s,	researchers	at	NIST	(a	US	agency)	built	such	a	
dataset,	originally	for	the	purpose	of	helping	the	US	to	
evaluate	the	many	digit	recognition	systems	that	were	
becoming	available	on	the		market.	This	evolved	into	the	the	
MNIST	dataset.	It	contains	60	000	examples	of	handwritten	
digits.	This	translates	very	simply	to	classi(ication:	each	
picture	of	a	digit	is	an	instance,	and	the	target	is	one	of	ten	
classes:	0,	1,	2,	3,	4,	5,	6,	7,	8	or	9.	

MNIST	is	a	very	famous	dataset	in	machine	learning.	You	
can	see	the	details	of	the	story	of	MNIST	explained	in	this	
lecture:	https://www.youtube.com/watch?
v=oKzNUGz21JM

learner

data
.3 .2 .3 … .0 .6 2
.1 
. 

.4 .0 … .3 .0 9
.6 .4 .0 … .0 .3 5
.6 .0 .1 … .0 .4 5
.5 .0 .3 … .1 .3 6
.3 .3 .1 … .3 .1 8
.2 .0 .2 … .4 .0 2
.3 .8 .4 … .3 .0 3
.9 .6 .6 … .1 .0 4
.0 .9 .3 … .3 .1 4
.0 .6 .0 … .6 .1 0
.6 .0 .3 … .0 .2 0
.3 .6 .6 … .0 .6 3
.6 .0 .7 … .0 .7 0

28x28 pixels  = 784 features
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.3 .4 .4 … .1 .0 

8

classifier

A	simple	way	of	attacking	this	problem	is	to	make	each	
pixel	a	feature.	Here’s	what	that	looks	like.	For	each	
instance,	we	translate	each	pixel	to	a	value	between	0	
(black)	and	1	(white).	This	gives	us	instances	with	784	
features	each,	labeled	with	a	digit	from	0	to	9.	We	lose	the	
information	about	how	these	features	are	arranged	in	a	
grid,	the	whole	image	is	(lattened	into	a	long	string	of	
numbers,	but	with	a	bit	of	luck	a	good	classi(ier	can	still	
make	some	sense	out	of	it.	

We	feed	these	instances	to	the	learning	algorithm,	which	
produces	a	classi(ier.	We	then	get	a	new	example,	and	ask	
the	classi(ier	what	it	thinks.	Once	we	have	a	classi(ier	that	
does	well,	we	can	use	it	in	a	larger	system,	for	recognizing	
digits.	

The	current		best	performing	classi(ier	for	this	task	has	a	
probability	of	0.21%	of	getting	an	unseen	example	wrong.	

Note	that	we	haven’t	fully	solved	the	problem	of	character	
recognition.	We	still	need	to	cut	a	sequence	of	digits	into	
individual	digits,	feed	those	digits	to	the	classi(ier	and	

https://rafalab.github.io/dsbook/introduction-to-machine-learning.html


process	the	results.	This	is	all	the	work	we	have	to	do	to	
translate	our	real	problem	to	the	abstract	problem	of	
classi(ication.	This	is	often	the	situation:	machine	learning	
solves	part	of	the	problem	for	us,	but	there	is	still	a	lot	of	
engineering	required	to	turn	this	solution	into	a	working	
production	system.

29

Let’s	look	a	problem	that	requires	a	little	more	work	to	
abstract	into	classi(ication:	playing	chess.	The	trick	again	is	
to	make	things	easy	for	ourselves	by	only	abstracting	part	of	
the	problem.	We	won’t	solve	the	whole	thing	with	machine	
learning,	but	we’ll	learn	a	function	that’ll	be	useful	in	a	
larger	chess-playing	system.	

learner

5 5 0 0 … white

3 6 0 0 … black

4 0 0 0 … white

8 8 1 0 … black

4 1 0 0 … white

4 6 0 1 … white

2 4 0 0 … draw

4 0 0 1 … white 

4 0 0 0 … white

3 0 0 0 … white

4 6 0 0 … black

8 8 0 0 … draw

4 0 1 0 … black

0 0 0 0 … white
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? For	instance,	we	could	take	a	database	of	chess	games,	and	
label	each	position	with	which	player	ended	up	winning	the	
game	in	the	end.	The	aim	is	to	predict,	for	given	a	position,	
which	player	is	going	to	win	the	game.		

We	could	turn	such	a	classi(ier	into	a	chess	player,	by	
searching	for	positions	from	which	we	are	likely	to	win	and	
then	playing	moves	that	are	likely	to	lead	to	those	positions.	
Perhaps	you	are	familiar	with	the	minimax	algorithm:	you	
could	use	a	classi(ier	like	this	as	a	value	function	(also	
known	as	a	heuristic)	in	minimax	.	

A	dif(icult	problem	here	is	which	features	to	use.	How	do	we	
translate	different	aspects	of	a	chess	position	into	numbers	
or	categories	in	a	way	that	will	allow	us	to	predict	who	is	
going	to	win?	

One	option	is	to	report	how	much	of	each	black	and	white	
piece	is	left,	which	would	allow	at	least	some	positions	to	
be	predicted	accurately:	if	one	player	has	a	strong	material	
advantage,	they	will	probably	win.	For	more	insightful	
learning,	we	need	better	features.	Domain	expertise	can	



often	be	translated	to	good	features:	are	there	passed	
pawns,	rooks	on	an	open	(ile,	does	a	player	own	both	
bishops,	etc.	All	of	these	can	be	turned	into	features.	The	
more	of	such	features	we	can	come	up	with,	the	better	our	
algorithm	may	perform.	

Again,	we	haven’t	solved	the	whole	problem	of	learning	
how	to	play	chess,	but	we’ve	abstracted	part	of	our	problem	
into	classi(ication,	hopefully	making	our	life	a	little	easier.

Last	example,	a	self	driving	car.	How	do	we	turn	part	of	the	
problem	of		making	a	self	driving	car	into	a	classi(ication	
problem?	

image	source:	the	oatmeal,	http://theoatmeal.com/blog/
google_self_driving_car

Network Confidence
In addition to learning to produce the cor-
rect output steering direction, ALVINN can also
estimate its confidence in the steering out-
put. This ability is important because it gives
outside, typically symbolic, knowledge
sources insight into how the neural system is
performing. Because the confidence value is a
measure of ALVINN’s familiarity with the cur-
rent road, it can be used to determine if
proper driving performance is possible. In
another context, this same information can
be used as a metric to determine the exis-
tence of roads in input images. This ability
becomes especially important if tactical driv-
ing maneuvers, like those described in Tacti-
cal Driving, are to be executed.

The confidence metric that is primarily
used is called input reconstruction reliability
estimation (IRRE). IRRE is a measure of the
familiarity of the input image to the neural
network. In IRRE, the network’s internal rep-
resentation is used to reconstruct the input
pattern being presented. The more closely the
reconstructed input matches the actual input,
the more familiar the input and, hence, the
more reliable the network’s response.

IRRE utilizes an additional set of output
units to perform input reconstruction, as
depicted in figure 1. This second set of output
units is half the size of the input retina—15
rows by 16 columns. The desired activation
for each of these additional output units is
the average of the activation on four corre-
sponding input units. For example, IRRE unit
(0,0) contains the average activation of input
units (0,0), (0,1), (1,0), and (1,1). In essence,
these additional output units turn the net-
work into an autoencoder.

The network is trained using back propaga-
tion to produce both the correct steering
response on the steering output units and
reconstruct the input image as accurately as
possible on the reconstruction output. Dur-
ing testing, images are presented to the net-
work, and activation is propagated forward
through the network to produce a steering
response and a reconstructed input image.
The reliability of the steering response is esti-
mated by computing the correlation co-
efficient between the activation levels of
units in the actual input image and the
reconstructed input image. The higher the
correlation between the two images, the more
reliable the network’s steering response is
estimated to be.

Results and Comparison
The success of the ALVINN system is demon-

strated by the range of situations in which it
has successfully driven. The training on-the-
fly scheme gives ALVINN a flexibility that is
novel among autonomous navigation sys-
tems. It has allowed us to successfully train
individual networks to drive in a variety of
situations, including a single-lane dirt access
road, a single-lane paved bicycle path, a two-
lane suburban neighborhood street, and a
lined two-lane highway (figure 9). Using oth-
er sensor modalities as input, including laser
range images and laser reflectance images,
individual ALVINN networks have been trained
to follow roads in total darkness, avoid colli-
sions in obstacle-rich environments, and fol-
low alongside railroad tracks. ALVINN networks
have driven without intervention for dis-
tances as great as 90 miles. In addition, be-
cause determining the steering direction from
the input image merely involves a forward
sweep through the network, the system is
able to process 15 images a second, allowing
it to drive as fast as 55 mph.

The level of flexibility across driving situa-
tions exhibited by ALVINN would be difficult to
achieve without learning. It would require the
programmer to (1) determine what features
are important for the particular driving
domain, (2) program detectors (using statisti-
cal or symbolic techniques) for finding these
important features, and (3) develop an algo-
rithm for determining which direction to
steer from the location of the detected fea-
tures. As a result, although hand-programmed
systems have been developed to drive in some
of the individual domains that ALVINN can
handle (Kluge 1993; Crisman 1990; Turk et al.
1988; Dichmanns and Zapp 1987), none have
duplicated ALVINN’s flexibility.

ALVINN is able to learn, for each new
domain, what image features are important,
how to detect them, and how to use their
position to steer the vehicle. Analysis of the
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Figure 9. Video Images Taken on Three of the Road Types ALVINN Modules
Have Been Trained to Handle.

They are, from left to right, a single-lane dirt access road, a single-lane paved
bicycle path, and a lined two-lane highway.

ALVINN (1995)

‹ 30 x 3
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960 features

.3 … .3 right
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Here	is	an	actual	self-driving	car	system	from	1995.	They	
used	a	very	low-resolution,	black-and-white	camera	to	(ilm	
the	road,	and	observed	a	human	driver’s	behavior	to	label	
each	frame	with	an	action.	As	with	the	digit	recognition	
example,	we	simply	make	each	pixel	a	feature.		

Once	we've	trained	a	classi(ier,	we	can	hook	its	input	up	to	
the	camera	and	its	output	up	to	the	steering	wheel.	

This	very	simple	system	actually	drove	from	coast-to-coast	
autonomously	in	the	US	(albeit	with	a	human	driver	
executing	the	system’s	instructions).	It	may	not	be	safe	
enough	to	deal	with	all	situations,	but	it	can	certainly	follow	
different	types	of	road.	

NB:	The	actual	system	had	more	than	three	actions	to	allow	
for	more	gentle	steering.	You	could	also	model	this	as	
regression,	predicting	the	angle	of	the	steering	wheel	as	a	
single	number,	but	this	system	modeled	it	as	classi<ication.	

question	I	want	to	predict	based	on	the	way	that	someone	
speaks,	which	city	or	town	in	the	Netherlands	they	live	in.	



Would	this	make	a	good	classi(ication	problem?	|hide|It	
depends.	If	you	have	the	data	(short	audio	clips	of	speech),	
you	could	certainly	come	up	with	a	set	of	features	that	
could	help	you	solve	the	task.	One	issue	is	that	you	have	a	
lot	of	classes:	one	for	every	town	city	in	the	Netherlands.	
This	doesn’t	make	it	impossible—in	fact	modern	systems	
like	ChatGPT	treat	next-word	prediction	as	a	kind	of	
classi(ication	problem	with	thousands	of	possible	classes—
but	it	does	mean	that	you	need	a	lot	of	examples	for	each	
class.	The	fact	that	two	people	from	neighboring	towns	will	
speak	very	similarly	doesn’t	help	your	classi(ier,	since	it	
doesn’t	have	access	to	this	kind	of	structure	in	your	class	
space.	In	this	case,	perhaps	classi(ication	is	too	simple	an	
abstraction,	and	you	need	to	build	something	more	
customized	to	your	task.|
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This	is	what	I	meant	by	translating	problems	into	abstract	
tasks.	By	translating	all	these	problems	into	classi(ication	
problems,	we	can	now	apply	any	classi?ication	algorithm	
and	see	how	well	it	does.		

So	how	do	we	(ill	in	the	other	half	of	this	picture?	Once	we	
have	a	classi(ication	task,	with	features	selected	and	a	set	of	
good	examples,	how	do	we	actually	produce	a	classi(ier?	

We’ll	look	at	three	simple	examples:	a	linear	classi?ier,	a	
decision	Tree	classi?ier	and	a	nearest	neighbors	
classi?ier.	We’ll	only	explain	them	brie(ly	to	give	you	a	
sense	of	how	these	problems	might	be	solved.	Don’t	worry	
if	you	don’t	totally	get	it	yet.	All	methods	will	be	discussed	
in	more	detail	in	later	lectures.	
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1.88 4.70 male
1.90 4.95 female
2.17 5.70 male
1.90 3.32 female
1.92 5.70 female
2.23 5.00 male
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2.08 3.05 female
1.93 5.30 female
1.88 5.55 male
1.64 5.70 female
1.78 3.82 male 34
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image source: https://allisonhorst.github.io/palmerpenguins/ 

We'll	use	this	dataset	to	illustrate	each	algorithm.	Its	
instances	are	penguins,	the	two	features	are	the	(lipper	
length	(in	dm)	and	the	body	mass	(in	kg).	The	class	is	their	
biological	sex,	restricted	to	male	or	female.	Are	these	two	
features	enough	to	guess	a	penguin's	sex?	

data	source:	https://allisonhorst.github.io/
palmerpenguins/,	https://github.com/mcnakhaee/
palmerpenguins	(python	package)	

image	source:	https://allisonhorst.github.io/
palmerpenguins/

https://allisonhorst.github.io/palmerpenguins/


feature space
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Since	we	have	only	two	features,	we	can	easily	plot	our	
dataset.	

We	call	this	space,	where	every	feature	is	an	axis	and	every	
instance	is	a	point,	the	feature	space.	If	we	had	3	features,	
it	would	be	a	3D	space.	For	higher	numbers	of	features,	we	
may	have	dif(iculty	visualizing	the	feature	space,	but	that	
shouldn’t	stop	the	classi(ier:	any	classi(ication	method	we	
come	up	with	should,	in	principle,	work	on	an	arbitrary	
number	of	features.

example 1: linear classifier
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?

2.0, 4.75

Here	is	a	simple	idea	for	a	classi(ier:	draw	a	line.	We	just	
draw	a	line	somewhere	through	our	space,	and	call	
everything	above	the	line	male,	and	below	it	female.	If	we	
draw	a	good	line,	we	may	get	most	of	the	examples	right.	

This	is	the	line	returned	by	one	algorithm	for	(itting	such	
lines.	As	you	can	see	many	examples	end	up	misclassi(ied,	
but	some	points	are	on	the	correct	side	of	the	line.	Our	
classi(ier	might	just	do	a	little	better	than	one	that	would	
simply	guess	at	random.	

Once	we	have	a	line	we	are	happy	with,	then	if	we	see	a	new	
penguin,	all	we	need	to	do	is	measure	them,	and	see	
whether	they	end	up	above	or	below	the	line.	

hyperplanes
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1 feature 2 features 3 features 4+ features

?

An	important	thing	to	note	is	that	“drawing	a	line”	is	a	
technique	that	only	works	in	two	dimensions	(i.e.	if	we	have	
two	features).	Our	methods	need	to	work,	at	least	in	
principle,	for	whatever	number	of	features	we	decide	to	
use.	The	more	generic	version	of	the	idea	to	“draw	a	line”	is	
to	cut	the	feature	space	in	two	using	a	line-like	shape.	

In	1D,	the	equivalent	structure	is	a	point.	Anything	above	
the	point	we	guess	is	male,	anything	below	it,	female.	

In	3D,	we	can	cut	the	feature	space	in	two	with	a	plane.	

We've	drawn	only	a	segment	of	the	plane	here,	but	you	should	
imagine	it	extending	in<initely	in	all	directions.	

In	four	or	more	dimensions,	the	shape	that	cuts	the	space	in	
two	is	called	a	hyperplane.	We	can	no	longer	draw	it	
intuitively,	but	luckily	the	mathematics	are	very	simple.	
We’ll	see	how	to	de(ine	this	in	the	next	lecture.



the two spaces of machine learning
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Let's	stay	in	two	dimensions	for	now.	Which	line	should	we	
choose?	Some	lines	separate	the	classes	pretty	well,	and	
some	not	at	all.	

We	can	visualise	this	problem	in	the	feature	space.	In	the	
feature	space	(or	instance	space),	each	instance	is	a	point,	
and	our	current	classi(ier	is	a	line.		

The	simplest	way	to	de(ine	a	line	in	two	dimensions	is	with	
three	numbers:	one	multiplier	for	each	feature	(a	and	b)	
and	a	value	that	is	added	independent	of	the	features	(c).	
This	means	that	there	is	a	3-dimensional	space,	with	axes	a,	
b	and	c	where	every	point	is	a	possible	line	in	our	feature	
space.	We	call	this	the	model	space.	It	is	simply	the	space	of	
all	models	available	to	us,	given	the	assumptions	we	have	
made.	In	this	case,	the	assumption	is	that	the	model	is	a	
line,	and	the	model	space	becomes	a	3-dimensional	
Euclidean	space.	

It's	also	possible	to	de<ine	a	line	in	just	two	numbers.	This	is	
more	compact,	but	the	approach	shown	here,	while	slightly	
redundant,	generalizes	more	easily	to	larger	numbers	of	
features.	

Our	job	now,	is	to	search	the	model	space	for	a	model	that	
(its	the	data	well.	In	order	to	do	that,	we	need	to	de(ine	
what	it	means	to	(it	the	data	well.	This	is	done	by	the	loss	
function.

loss function
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lossdata(model) = performance of model on the data 
(the lower the better) 

for classification:  e.g. the number of misclassified examples

A	loss	function	simply	tells	us	how	much	we	like	a	given	
model	for	the	current	data.	The	lower	the	better.	

Note	that	the	loss	function	has	the	model	as	it	argument	
and	the	data	as	a	constant	(as	opposed	to	the	model	itself,	
which	has	the	data	as	its	argument).	

The	best	loss	function	to	use	for	classi(ication	is	a	complex	
question.	We’ll	come	back	to	that	later.	For	now,	we	can	just	
use	the	number	examples	that	the	model	classi(ies	
incorrectly.	The	lower	this	is,	the	better.



the two spaces of machine learning
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Once	we	have	a	loss	function,	we	can	colour	our	model	
space	with	the	loss	of	each	model	(for	our	current	data).	The	
brighter,	the	better.		

All	we	need	to	do	now	is	(ind	the	brightest	point,	which	
corresponds	to	the	best	model.	More	on	that	next	lecture.		

In	this	case	we	can	simply	see	where	the	brightest	point	is,	
but	remember	that	the	model	space	is	usually	high-
dimensional.

linear separability
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The	problem	with	this	particular	classi(ication	task	is	that	it	
just	isn't	possible	to	separate	the	two	classes	very	well	with	
a	single	line.	This	is	because	we	are	actually	looking	at	three	
different	species	of	penguins.	Within	each	species	cluster,	
the	classes	can	actually	be	separated	much	easier.	But	if	the	
species	data	is	not	available,	we'll	need	to	look	into	non-
linear	methods	of	classi(ication.

example 2: decision tree classifier
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f > 1.9?

b > 4.5? b > 5.3?

male malefemale female

yes no

yes no yes no

Here	is	one	such	approach:	a	decision	tree.	This	classi(ier	
consists	of	a	tree,	which	studies	one	feature	in	isolation	at	
every	node.	In	this	case,	it	moves	left	if	the	feature	is	lower	
than	some	threshold	value,	and	right	if	the	feature	is	higher.	

We	won't	go	into	the	training	algorithm	in	detail.	Often,	
decision	trees	are	“grown”	by	adding	nodes	from	the	root	
until	a	particular	criterion	is	reached.	We’ll	discuss	how	to	
train	decision	trees	in	detail	in	week	5.	The	algorithm	is	
pretty	simple,	but	all	we	want	to	show	you	here	is	that	there	
are	other	ways	to	"carve	up"	your	feature	space,	beyond	
drawing	a	line.	

Note	that	the	model	space	for	decision	trees	is	a	little	more	
abstract	than	that	for	linear	classi(iers.	We	can’t	just	pick	n	
numbers	to	represent	a	model,	we	have	to	think	about	the	
space	of	all	possible	trees,	labeled	with	inequalities	on	the	
features.	In	such	cases,	it	may	be	better	to	forget	about	the	
model	space,	and	to	come	up	with	a	training	algorithm	
using	a	different	perspective.	

The	shape	that	the	classi(ier	draws	in	feature	space	to	



segment	the	two	classes	is	called	the	decision	boundary.
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decision trees: 

lecture 10

If	we	run	an	actual	decision	tree	learning	algorithm	on	this	
data,	it	comes	up	with	a	much	more	complex	tree,	
segmenting	the	feature	space	into	many	small	boxes,	called	
segments.	

In	lecture	10,	we’ll	see	how	this	learning	algorithm	actually	
works.		

example 3: k-Nearest Neighbours
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?

Finally,	here	is	an	example	of	a	lazy	classi(ier.	k-Nearest	
neighbours.	It	doesn’t	do	any	learning.	It	just	remembers	
the	data.		

For	a	new	point	(indicated	by	the	question	mark),	it	just	
looks	at	the	k	points	that	are	closest	(k=7	in	this	picture),	
and	assigns	the	class	that	is	most	frequent	in	that	set	
(female	in	this	case).	

k	is	what	we	call	a	hyperparameter:	you	have	to	choose	it	
yourself	before	you	use	the	algorithm.	We’ll	discuss	how	to	
choose	hyperparameters	in	lecture	4.



k-Nearest Neighbours
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Here’s	what	the	decision	boundary	looks	like	for	k=7.	The	
point	from	the	previous	slide	is	indicated	in	white.	

Note	that	the	distance	in	the	vertical	direction	counts	a	little	
stronger,	since	the	units	are	bigger.	This	means	that	the	
classi<ication	may	not	be	what	you'd	expect	based	on	the	
visual	distance	in	this	image.	To	<ix	this,	we	should	normalize	
the	data,	which	we	will	learn	about	in	lecture	5.

variations

• Features:  usually numerical or categorical. 

• Binary classification: two classes 

• Multiclass classification: more than two classes 

• Multilabel classification: none, some or all classes may be 
true 

• Class probabilities/scores: the classifier reports a 
probability or score for each class.  
Helpful property for a classifier to have
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A	few		variations	are	possible	on	this	basic	scheme.	In	these	
examples	we've	only	seen	numeric	features,	that	is	features	
whose	value	is	a	number,	but	it's	also	possible	to	have	
categoric(al)	features:	features	whose	value	is	one	of	a	
small	number	of	categories.	For	instance,	the	species	
feature	in	the	penguin	dataset	has	three	distinct	possible	
values.	

Some	models	can	handle	only	numeric	features,	in	which	
case,	any	categoric	features	have	to	be	translated	to	
numeric	ones	(we’ll	see	how	to	do	that	in	lecture	5).	

Binary	classi?ication	(a	task	with	two	classes)	is	probably	
the	simplest	and	most	well-studied	type	of	classi(ication.	If	
you	have	more	than	two	classes,	some	classi(iers,	like	
decision	trees	and	kNN,	can	deal	with	that	without	a	
problem.	For	others,	like	linear	classi(ication,	you’ll	need	to	
(ind	clever	way	to	turn	a	binary	classi(ier	into	a	multiclass	
classi(ier.	

Multilabel	classi?ication	is	a	much	more	complex	task.	
Here,	none,	one	or	more	of	the	classes	can	be	true	for	a	
given	instance.	One	example	is	predicting	which	genres	
apply	to	a	given	movie.	We	won’t	go	into	it	in	this	course,	
but	it’s	an	active	subject	of	research.	

Instead	of	a	single	verdict,	it	can	often	be	helpful	if	a	
classi(ier	assigns	a	score	to	each	class.	If	we	want	a	single	
class,	we	pick	the	one	with	the	highest	score,	but	we	can	
also	check	what	the	second	most	likely	class	is.	We	can	also,	
sometimes,	look	at	the	magnitude	of	the	score	to	see	how	
sure	the	classi(ier	is	of	its	prediction.	This	is	often	
important	if	the	consequences	of	of	a	wrong	classi(ication	
are	very	serious	(i.e.	deciding	whether	to	operate	on	
someone,	or	whether	to	investigate	someone	for	criminal	
activity).



machine learning: the basic recipe

Abstract (part of ) your problem to a standard task. 
Classification, Regression, Clustering, Density estimation, Generative Modeling, Online learning, 
Reinforcement Learning, Structured Output Learning 

Choose your instances and their features.  
For supervised learning, choose a target.  

Choose your model class. 
Linear models, Decision Trees, kNN,  

Search for a good model. 
Usually, a model comes with its own search method. Sometimes multiple options are available.
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To	summarize:	this	is	the	basic	recipe	for	doing	machine	
learning.	We	take	a	problem,	we	translate	the	problem,	or	
part	of	the	problem,	to	an	abstract	task,	like	classi(ication.	
We	choose	our	instances	and	our	features.	We	choose	a	
model	class,	and	then	we	search	the	model	space	for	a	
model	that	solves	our	problem	well.	

The	basic	recipe	doesn’t	always	(it	every	situation,	and	we’ll	
look	at	those	cases	too.	But	this	is	always	a	good	place	to	
start,	especially	when	you're	new	to	machine	learning.

in code (cf. worksheet 2)

# choose a model: decision trees 
from sklearn.tree import DecisionTreeClassifier 

x_train = … # matrix of features 
y_train = … # target class labels 

tree = DecisionTreeClassifier() 
tree.fit(x_train, y_train) # search for model 

# classify some new data 
x_new, y_new = … # features and labels 
y_predicted = tree.predict() 
# see how well we do 
print(accuracy_score(y_predicted, y_test))
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Here’s	what	the	basic	recipe	looks	like	in	code	(using	the	
sklearn	library	used	in	the	worksheets).	Note	that	the	
actual	machine	learning	happens	in	just	two	lines	of	code.		

All	you	need	to	do	is	decide	your	features,	and	decide	your	
target	values	(classes	in	this	case).	Once	you’ve	done	that,	
you’re	doing	machine	learning	in	two	lines	of	code.	You	can	
then	test	how	well	your	model	does	(more	about	that	in	
week	two)	and	keep	trying	different	models	until	you	get	
the	performance	you’re	happy	with.	

That’s	all	we’ll	say	about	classi(ication	in	this	lecture.	In	the	
next	video,	we'll	look	at	regression,	and	some	other	abstract	
tasks.	

image	source:	https://twitter.com/archillinks/status/
1022889384494940160
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abstract tasks

supervised 

• classification 

• regression 

unsupervised 

• clustering 

• density estimation 

• generative modeling
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We’ve	looked	at	classi(ication,	as	our	(irst	example	of	an	
abstract	task.	In	this	video.	We’ll	see	some	others.	First	up:	
regression.

regression
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Regression	works	exactly	the	same	as	classi(ication,	except	
we’re	predicting	a	number	instead	of	a	class.	That	is,	the	
model	we’re	trying	to	learn	is	a	function	from	the	feature	
space	to	ℝ.	

To	make	things	a	little	more	precise,	let's	introduce	some	
notation	for	the	different	parts	of	the	task.	We	represent	the	
features	of	a	particular	instance	i	by	the	vector	xi.	The	
corresponding	true	label	(which	is	given	in	our	data)	we	
call	ti.	The	model	we	represent	by	a	function	f,	and	its	
prediction	for	instance	i	we	represent	as	f(xi).	This.	means	
that,	broadly,	our	task	is	to	get	f(xi)	as	close	as	we	can	to	ti.	

http://mlvu.github.io
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image source: https://allisonhorst.github.io/palmerpenguins/ 

To	illustrate	some	basic	approaches	to	this	problem,	we	will	
use	the	same	dataset	as	before,	but	this	time	we	will	make	
the	(lipper	length	the	sole	feature,	and	we	will	try	to	predict	
the	body	mass.	In	general,	penguins	with	large	(lippers	
should	be	tall,	so	we'd	expect	them	to	have	higher	body	
mass.	So	a	reasonable	guess	should	be	possible.	

data	source:	https://allisonhorst.github.io/
palmerpenguins/,	https://github.com/mcnakhaee/
palmerpenguins	(python	package)	

image	source:	https://allisonhorst.github.io/
palmerpenguins/	
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Here’s	what	our	data	looks	like.	Note	that	though	it	looks	
the	same	as	in	the	classi(ication	example,	this	time	we’re	
plotting	both	the	targets	and	the	feature	space	in	the	same	
(igure.	

We	can	use	a	linear	model	again.	But	note	how	differently	
we’re	using	the	model.	Previously,	we	wanted	to	segment	
the	feature	space	into	two	classes.	Now	we’re	trying	to	
model	the	relation	between	the	feature(s)	and	the	target.	
The	model	has	the	same	shape,	but	we’re	using	it	very	
differently.	

The	line	I’ve	drawn	here	isn’t	very	good.	It	predicts	much	
too	high	a	body	mass	for	this	(lipper	length.	To	determine	
how	good	a	model	is,	we	must	again	choose	a	loss	function.

loss function for regression

aka the mean-squared-errors (MSE) loss.
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Recall	that	the	loss	function	maps	a	model	to	a	number	
that	expresses	how	well	it	(its	the	data	(the	smaller	the	loss,	
the	better).		

The	mean-squared	error	loss	is	a	common	choice	for	
regression.	We	simply	take	the	difference	between	the	
model	prediction	and	the	target	value	from	the	data,	for	
each	instance.	This	is	called	a	residual.	We	square,	and	then	
sum	all	residuals	we	get,	giving	us	a	single	number.	The	
lower	that	number	is,	the	better	the	model	(its	our	data.	

You	can	think	of	the	residuals	as	rubber	bands,	pulling	the	
regression	line	closer	to	the	points.

https://allisonhorst.github.io/palmerpenguins/


linear regression
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This	is	the	line	with	the	lowest	MSE	loss	for	this	data.	It	
doesn't	predict	all	instances	in	the	data	perfectly,	but	if	we	
group	the	penguins	into	small	clusters	with	the	same	
(lipper	length	(i.e.	small	vertical	slices	in	this	image),	we	can	
see	that	the	line	tends	to	predict	the	average	body	mass	for	
each	group.	

Regression tree
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We	can	also	use	the	decision	tree	principle	to	perform	
regression,	giving	us	a	regression	tree.		

We	simply	segment	the	feature	space	into	blocks,	using	a	
tree	as	before,	and	instead	of	assigning	each	a	class,	we	
assign	each	a	number.	This	model	covers	the	data	much	
better	than	the	linear	regression	does,	for	many	points,	it	
predicts	exactly	the	right	value.	Does	this	make	it	a	better	
model?	Do	we	really	expect	that	it's	possible	to	predict	body	
mass	in	such	detail,	from	just	one	physical	measurement?	
We'll	look	at	this	question	in	the	last	section	of	this	lecture.

kNN regression
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For	the	sake	of	completeness,	here	is	what	the	regression	
equivalent	of	the	kNN	classi(ier	looks	like:	kNN	regression.	
Its	prediction	for	any	given	point	is	the	average	of	the	k	
nearest	points	in	the	data	(k=7	here).	

This	hopefully	gives	you	some	idea	of	the	different	ways	
there	are	to	build	a	regression	model.	In	the	next	lecture	
we'll	look	in	detail	at	how	linear	regression	is	done,	and	in	
later	lectures,	we'll	start	looking	at	different	nonlinear	
methods	in	detail.
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Next	up	are	the	unsupervised	tasks.	In	classi(ication	and	
regression	each	instance	comes	with	a	label:	an	example	of	
the	sort	of	output	we	want	our	model	to	predict	for	each	
input.	

In	unsupervised	tasks,	we	have	only	the	inputs.	The	task	for	
the	model	is	just	to	(ind	any	useful	structure	in	the	data.	
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In	the	case	of	clustering,	we	ask	the	learner	to	split	the	
instances	into	a	number	of	clusters.	The	number	of	clusters	
is	usually	given	beforehand	by	the	user.	

This	looks	a	lot	like	classi(ication,	but	note	that	there	are	no	
example	classes	provided	by	the	data.	

61
image source: https://allisonhorst.github.io/palmerpenguins/

Here's	an	example	from	the	penguin	dataset.	If	we	plot	the	
bill	length	and	bill	depth,	we	see	that	the	three	species	
separate	pretty	clearly	in	this	feature	space.	If	we	remove	
the	information	that	there	are	separate	clusters,	can	we	
recover	it	from	these	two	features	alone?	Note	that	this	is	
not	classi(ication,	because	we	are	not	giving	our	learner	
labels.	We're	not	telling	it	the	species	of	any	instance	in	our	
dataset.	It	has	to	(igure	out	a	clustering	purely	from	the	
natural	separation	of	the	data.	The	only	hint	we'll	give	is	the	
number	of	clusters	we	expect	to	(ind.	

image	source:	https://allisonhorst.github.io/
palmerpenguins/

https://allisonhorst.github.io/palmerpenguins/


k-means
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We'll	show	one	quick	example	of	a	simple	clustering	
algorithm,	just	to	give	you	an	impression	of	how	something	
like	this	might	work.	

This	algorithm	is	called	k-means	(not	to	be	confused	with	
kNN).	In	the	example	we	will	separate	the	dataset	into	three	
clusters.		

We	start	by	choosing	three	random	points	in	the	feature	
space	(the	red,	green	and	blue	points),	called	the	“means”.	
Each	of	these	represents	one	of	our	clusters.
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We	then	assign	each	point	the	cluster	corresponding	to	the	
mean	it	is	closest	to.		

Since	the	means	were	randomly	chosen,	this	does	not	yet	
correspond	to	a	very	meaningful	clustering	of	the	data.
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Next,	we	re-compute	the	means.	Each	new	mean	is	the	
mean	of	all	the	points	that	now	belong	to	its	cluster.	That	is,	
the	new	red	mean	is	the	mean	of	all	the	points	we	colored	
red	in	the	previous	slide..	

Taking	the	mean	of	a	series	of	points	work	just	the	same	as	
taking	the	mean	of	single	numbers,	you	sum	up	all	the	
coordinates	and	then	divide	by	the	number	of	terms	in	the	
sum.
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Then,	we	repeat	the	procedure,	we	re-assign	each	point	to	
the	mean	they	are	now	closest	to.	Highlighted	here	are	the	
points	that	have	changed	from	one	cluster	to	another.	For	
instance	the	highlighted	red	points	were	all	blue	before,	
because	they	were	closest	to	the	blue	mean,	but	now	that	
we've	recomputed	the	means	and	the	blue	mean	has	moved	
over	to	the	left,	they	are	closer	to	the	red	mean.

66

We	keep	iterating	this	process,	re-assigning	the	clusters	and	
re-computing	the	means,	until	the	means	stop	moving	from	
one	iteration	to	the	next.	
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Here's	the	clustering	we	end	up	with.	We	won't	know	what	
the	clusters	mean	of	course,	without	investigating	further,	
but	in	this	case	they	correspond	pretty	closely	to	the	
species	of	the	penguin,	although	there	are	some	differences	
between	the	species	and	the	clustering.	

It	may	seem	a	little	magical	to	you	that	this	algorithm	works	
at	all.	We	won't	try	to	give	you	any	intuition	here;	just	take	
this	as	an	example	of	how	clustering	might	work	in	practice.	

In	a	later	lecture,	which	is	now	optional,	you	can	see	another	
algorithm	called	expectation	maximization,	which	is	very	
similar	to	k-means	and	there	we	will	try	to	provide	some	
intuition	for	why	this	sort	of	approach	works.	
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That's	clustering	dealt	with.	Next	up,	density	estimation.
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In	density	estimation,	we	want	to	learn	how	likely	new	
data	is.	Is	a	2	m	tall	16	year	old	more	or	less	likely	than	a	1.5	
m	tall	80	year	old?	We	predict	a	number	for	each	instance,	
and	that	number	expresses	how	likely	the	model	thinks	the	
given	instance	is.	

In	some	ways,	this	is	a	bit	like	an	unsupervised	form	of	
regression:	we	don't	have	any	labels,	and	the	model	
produces	a	number.		

Note	however,	that	here,	the	number	has	a	strict	
interpretation.	The	higher	the	number	the	more	likely	the	
instance.	In	the	strictest	form	of	density	estimation,	the	
number	that	the	model	produces	should	also	behave	as	a	
probability	or	probability	density.	This	means	that	it	can't	be	
a	negative	number,	and	all	numbers	the	model	produces	
over	the	whole	feature	space	should	sum	or	integrate	to	
one.	

density estimation
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That	may	sound	abstract,	but	density	estimation	is	
probably	the	machine	learning	task	that	most	people	
reading	this	have	already	done	before.		

Density	estimation	is	the	task	of	modelling	the	probability	
distribution	behind	your	data.	Most	of	you	will	have	(it	a	
distribution	to	a	dataset	at	some	point.	

Here	is	an	example:	the	(inal	grades	from	2017.	If	you	know	
a	bit	of	statistics,	you	can	probably	see	sort	of	a	normal	
distribution	in	this.	Once	you’ve	(itted	a	normal	
distribution,	you	can	give	a	density	estimate	for	any	grade.		

Even	if	that	sounds	unfamiliar,	you	may	have	calculated	the	
mean	and	standard	deviation	of	some	data	before,	which	is	
essentially	<itting	a	normal	distribution	to	your	data.	

If	we	look	closer	at	this	data,	however,	we	see	that	there	are	
really	three	peaks.	these	could	be	explained	by	noise,	but	we	
could	also	(it	a	mixture	of	three	normal	distributions	to	this	
data,	to	explain	the	peaks.	This	is	a	much	more	dif(icult	
model	to	(it.	We'll	investigate	in	a	few	weeks.	For	now,	the	



lesson	is	that	for	simple	models	like	a	normal	distribution,	
density	estimation	is	so	easy	it’s	not	usually	seen	as	
machine	learning,	but	as	the	models	get	more	complex,	the	
task	gets	more	complex	also.

Generative modelling (sampling)

71see also: thispersondoesnotexist.com

With	highly	complex	data,	it’s	often	easier	to	sample	from	a	
probability	distribution	than	it	is	to	get	a	probability	
(density)	estimate.	Building	a	model	from	which	you	can	
sample	new	examples	is	called	generative	modelling.		

These	people	don’t	exist.	These	pictures	were	sampled	from	
a	model	trained	on	a	large	dataset	of	images	of	faces.	Note	
that	this	is	not	a	3d	model,	or	a	generator	that	started	with	
a	basic	face	and	(illed	in	the	details:	all	the	model	saw	was	a	
large	collection	of	pictures.	This	is	a	typical	example	of	the	
power	of	deep	learning,	which	we	will	discuss	in	the	third	
week.	

This	model	couldn't	tell	you	the	probability	density	of	a	
given	face,	but	it	can	quickly	generate	new,	realistic	faces.	

image	source:	https://arxiv.org/abs/1812.04948	

try	it	yourself:	thispersondoesnotexist.com

semi-supervised learning

XL: Small set of labeled data  
XU: Large set of unlabeled data. 

for instance, self-training: 
 
train classifier C on XL 
loop: 
    label XU with C 
    retrain C on XU + XL
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In	many	cases,	unlabeled	data	is	very	cheaply	available,	
while	labeled	data	is	expensive	to	acquire.	In	such	cases,	
semi-supervised	learning	can	be	useful:	this	involves	
learning	from	a	small	labeled	set	and	a	large	amount	of	
unlabeled	data.	

A	very	simple	example	is	self-training:	we	train	a	classi(ier	
on	the	labeled	data	and	use	it	to	"complete"	the	dataset.	
Then,	we	train	on	the	full	data	and	repeat	the	process.	From	
this	example,	it’s	slightly	mysterious	why	the	unlabeled	
data	should	provide	any	bene(it.	For	now,	we’ll	just	say	that	
the	classi(ier	trained	on	the	whole	data	can	better	
understand	the	basic	structure	of	the	instances,	and	then	
attach	the	label	based	on	that	deeper	understanding	of	the	
structure.	

Slides	like	these	with	a	grey	header	provide	secondary	
information.	They	can	still	contain	exam	material,	but	if	you	
<ind	the	amount	of	information	in	a	lecture	overwhelming,	
you	can	skip	these	on	the	<irst	pass.

http://thispersondoesnotexist.com


self-supervised learning
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the cat sat ? the mat

the cat sat on the mat

model

Recently	people	have	been	referring	to	a	family	of	methods	
as	self-supervised	learning.	It	refers,	generally,	to	
different	ways	in	which	a	large	unlabeled	dataset	can	be	
used	to	train	a	model	in	such	a	way	that	no	or	little	
annotation	is	required.		

One	example	is	in	the	domain	of	natural	language.	For	this,	
we	need	a	sequential	model.	These	are	models	we	will	learn	
about	later.	For	now,	all	you	need	to	know	is	that	they	
consume	sequences,	like	sentences,	and	they	produce	such	
sequences	as	well.	This	means	that	we	can	feed	such	a	
model	sentences	with	one	or	more	of	the	words	masked	
out,	and	teach	it	to	reconstruct	those	words.	To	do	this,	all	
you	need	is	a	large	number	of	sentences	and	we	have	
petabytes	of	those	freely	available	on	the	internet.	

The	unmasking	task	by	itself	may	not	be	very	useful,	but	a	
model	that	has	learned	to	do	this	well,	has	likely	learned	a	
lot	about	the	structure	of	sentences,	which	means	it	can	
then	be	used	to	build	on	for	other,	more	useful	tasks	
(possibly	using	a	small	amount	of	labeled	data).	

Semi-supervised	learning	and	self-supervised	learning	have	
a	lot	in	common,	and	it’s	not	quite	clear	where	one	begins	
and	the	other	ends.	In	general,	self-supervised	learning	
refers	to	deep	learning	models,	and	to	clever	training	
schemes	using	unlabeled	data.	We’ll	see	some	more	
examples	when	we	start	talking	about	deep	learning.

summary
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So,	this	is	the	picture	we	have	built	up	so	far	of	the	various	
abstract	tasks	of	machine	learning.	We	will	spend	most	of	
our	time	in	the	supervised	learning	category,	but	the	
techniques	we	will	develop	will	translate	very	naturally	to	
other	categories.	

question	Think	back	to	the	problem	of	playing	chess.	If	we	
want	to	solve	this	problem,	were	do	we	end	up	in	the	tree?	|
hide|It	depends	on	how	much	of	the	problem	we	want	to	
solve.	If	we	want	a	system	that	learns	the	whole	activity	of	
playing	chess	on	its	own,	by	interacting	with	other	chess	
players,	then	reinforcement	learning	is	probably	the	best	
option.	However,	if	we	are	happy	to	solve	only	part	of	the	
problem	by	learning,	then	we	can	use	supervised	learning	
like	classi(ication,	as	illustrated	in	an	earlier	slide.|
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Reinforcement 
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Q learning, Policy 
gradients, AlphaGo 

Review 
Open problems

week 6 
Sequences 

Markov models, 
Word2Vec, RNNs 

Matrix models 
Recommender 
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PCA revisited

week 5 
Deep Learning 2 

Generative models: 
GANs, VAEs 
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Boosting, Bagging

week 8 
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Method 2 
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Neural nets, SVMs 
 

week 2 
Method 1 

Comparing 
methods 

Probability 1 
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Bayes, Entropy, 
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week 1 
Introduction 
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Linear Models 1 
Hyperplanes, 
Random Search, 
Gradient descent 
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Deep Learning 1 

SGD 
Backpropagation 
CNNs 

Probability 2 
Expectation 
Maximization 

pick a topic!

Here	is	the	basic	outline	of	the	course,	and	the	main	
subjects	we'll	be	discussing.

summary

abstracting your problem: instances, features, target. 

supervised learning: classification, regression. 

• linear models, tree models, NN models 

unsupervised learning: clustering, density estimation, 
generative modeling. 

loss function: maps a choice of model to a loss for the 
current data (the lower the better).
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Introduction 
Part 4: Social impact 1

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

Throughout	the	course,	we’ll	occasionally	stop	and	look	at	
the	impact	that	this	kind	of	technology	has	on	society.	This	
is	rapidly	becoming	more	important	as	machine	learning	is	
being	rolled	out	at	national	and	international	scales.	

Sometimes	we’ll	do	this	as	part	of	the	regular	lectures,	and	
sometimes,	we’ll	create	a	separate	video	to	focus	on	some	
important	aspects.	In	this	video	we’ll	look	at	some	of	the	
questions	it’s	important	to	ask	of	machine	learning	systems	
and	machine	learning	research.	

|video|https://surfdrive.surf.nl/(iles/index.php/s/
xl6IXEGldW3pXza/download|	
|section|Social	impact	1|	

http://mlvu.github.io


social impact
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In	the	(irst	video,	we	saw	one	of	the	earliest	examples	of	
machine	learning:	a	model	being	used	to	classify	the	sex	or	
gender	of	a	person	by	their	photograph.		

This	may	seem	like	a	harmless	example,	and	indeed	for	a	
long	time	the	exercise	was	pretty	academic.	Machine	
learning	simply	didn’t	work	very	well	yet,	and	we	needed	
dif(icult	tasks	that	were	easy	to	evaluate.	Gender	
classi(ication	is	a	great	example:	it's	simple	binary	
classi(ication,	it's	perfectly	balanced,	and	we	know	that	in	
principle	it	can	be	solved,	because	we	ourselves	can	do	it.	

In	short,	it	was	a	good	benchmark	with	which	to	study	our	
models.	Since	the	models	being	developed	didn't	perform	
well	enough	to	be	used	anywhere	anyway,	the	social	impact	
was	a	non-issue.

social impact
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However,	now	that	we	have	actually	“solved”	the	task	(that	
is,	we	have	machine	learning	systems	that	can	do	it	as	well	
as	humans	can),	we	need	to	look	at	what	the	impact	is	when	
we	actually	start	using	such	systems	in	the	real	world.	Sex	
or	gender	detection	may	seem	harmless	at	(irst	sight.	After	
all,	it’s	something	we	all	do	subconsciously	hundreds	of	
times	every	day.	But	actually,	building	automated	systems	
for	it	is	highly	controversial.	So	controversial	in	fact,	that	
Google	has	decideed	to	disable	the	option	in	its	Cloud	vision	
API.	

This	is	a	lucrative	product	for	Google,	and	a	reasonable	
guess	of	a	subject’s	gender	is	likely	to	be	a	commonly	
requested	feature.	If	Google	removes	such	a	feature	from	
their	product,	they	must	have	a	compelling	reason.	

In	this	video,	we	will	look	at	this	example	in	detail,	and	
consider	the	different	reasons	that	people	offer	why	we	
shouldn’t	build	such	systems,	even	though	we	can.	

disclaimers

I try to keep these videos objective, but my biases will 
bleed through. 
You will not be graded on your opinion. Only on your knowledge of the material and your 
ability to reason about it coherently and academically. 

Highlighting an action taken by a government is not a 
criticism of a country or its people. 
We cover cases from the Netherlands, the United states and China. We only do so when 
necessary.   

Evidence is a complicated subject in social matters. 
We will carefully reference in the lectures notes using direct evidence, eyewitness accounts 
and journalistic references.
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Before	we	start,	some	quick	disclaimers	that	will	hold	for	all	
social	impact	material	in	the	course.	

The	question	of	social	impact	is	dif(icult	to	divorce	entirely	
from	one’s	personal	values.	I	am	a	secular,	left-wing	
progressive	on	most	issues,	which	will	no	doubt	come	
through	in	these	videos.	I	have	done	my	best	to	present	the	
discussion	rather	than	the	conclusions,	and	to	present	
mostly	facts	that	are	dif(icult	to	dismiss	if	you	believe	in	
basic	academic	investigation.	You	are	entirely	free	to	form	
your	own	opinion,	of	course,	and	we	will	not	test	your	
position	on	these	questions,	only	your	knowledge	of	them.	

We	will	deal	with	various	real-world	use	case.	Since	these	
are	matters	of	social	impact,	it's	often	necessary	for	us	to	
delve	in	to	actions	taken	and	systems	built	in	or	by	different	
countries.	If	you	are	from	one	of	the	countries	we	discuss,	it	
may	be	dif(icult	to	hear	what	we	have	to	say.	The	(irst	thing	
to	note	is	that	we	carefully	consider	whether	such	topics	
are	necessary	to	include	at	all.	If	not,	we	will	choose	a	
different	example.	



Second,	please	understand	that	highlighting	one	action	of	a	
country's	government	is	not	intended	as	a	criticism	of	
that	country,	its	culture,	or	its	people.	If	you	feel	that	
anything	we	discuss	puts	you	in	the	spotlight	or	makes	you	
feel	like	you	have	to	defend	yourself,	please	know	that	that	
is	not	our	intention.	You	also	do	not	have	to	agree	with	what	
is	said	in	these	videos,	and	you	should	not	take	my	word	as	
gospel,	just	because	I	am	a	teacher.	

If	your	are	not	from	one	of	these	countries,	remember	that	
expatriate	students	often	have	a	dif<icult	time	feeling	
welcome	already,	and	discussing	subjects	like	these	can	make	
that	substantially	worse.	Please	do	your	best	to	ensure	that	
students	do	not	feel	that	these	issues	are	held	against	them	
personally,	or	that	they	have	to	agree	with	any	position	in	
order	to	be	accepted.	

Finally,	note	that	establishing	fact	in	social	science	is	a	
complicated	business.	As	scientists	and	mathematicians,	we	
are	used	to	providing	evidence	through	proof	or	through	
controlled	experimentation.	In	social	matters,	such	rigorous	

social impact dossier: mlvu.github.io/social-impact
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These	references	can	be	found	in	the	lecture	notes	online.	
Sometimes	simply	alongside	the	slides,	but	for	cases	where	
a	more	extensive	treatment	is	necessary,	we've	added	a	
social	impact	dossier	on	the	website.	This	will	allow	us	to	
dig	a	little	deeper	into	the	references	required	to	
substantiate	some	of	the	claims	we	make.	

If	you’re	upset	about	anything	we	say	in	the	social	impact	
parts	of	the	lectures,		or	you	think	we’ve	made	a	mistake,	
please	have	a	look	at	this	resource.	It	contains	a	detailed	
explanation	of	our	methods,	and	extensive	references	to	
back	up	any	claim	we	make	that	might	be	controversial.

inclusion policy

The subject needs to be relevant to machine learning. 

The subject needs to show some particular aspect more 
clearly than other cases. 

There needs to be clear evidence both of how the subject 
is used, and of what the impact is or could be. 

The relevance of the issue can be substantiated by third 
parties.
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One	particularly	important	aspect	of	the	social	impact	
dossier	is	our	inclusion	policy.	In	other	words,	the	rules	
that	we	follow	to	decide	whether	a	particular	subject	is	
worth	discussing	in	the	course.	

This	is	what	stops	us	from	arbitrarily	discussing	whatever	
political	topics	we’re	personally	most	worked	up	about.	If	
any	particular	topic	seems	arbitrarily	chosen,	or	its	
inclusion	politically	motivated,	check	if	we	followed	these	
four	rules.	If	not,	you	may	take	us	to	task.	

The	social	impact	dossier	explicitly	tests	some	of	the	more	
controversial	topics	against	these	rules.	

For	a	more	detailed	explanation	of	the	policy	and	how	we	
apply	it,	see:	https://mlvu.github.io/social-impact/
#slide-003	



“Given that a person’s gender cannot be inferred by 
appearance, we have decided to remove these labels in order 
to align with the artificial intelligence principles at Google, 
specifically Principle #2: avoid creating or reinforcing 
unfair bias. After today, a non-gendered label such as 
‘person’ will be returned by Cloud Vision API.”

83quote source: https://venturebeat.com/2020/02/20/google-cloud-ai-removes-gender-labels-from-cloud-vision-api-to-avoid-bias/

First,	let’s	see	what	Google	offered	as	an	explanation	for	
removing	the	feature.	Their	argument	centers	on	the	
impossibility	of	inferring	gender	from	physical	attributes.	

But	is	this	the	whole	story?	We	cannot	perfectly	infer	a	
traf(ic	sign	or	a	digit	from	an	image,	but	we	can	still	make	a	
pretty	good	guess.	In	fact	these	days,	guessing	a	person’s	
sex	or	gender	can	be	done	with	pretty	high	accuracy	
compared	to	most	machine	learning	tasks.		

So	the	fact	that	it	can’t	be	done	perfectly	surely	can’t	be	the	
whole	story:	that	is	true	for	almost	all	machine	learning	
applications,	and	for	any	label	returned	by	the	Cloud	Vision	
API.	What	makes	gender	special?	Why	should	sex	or	gender	
only	be	used	if	it	can	be	perfectly	inferred?	Or	should	it	
perhaps	not	even	be	used	then?	

To	get	to	the	real	reason	that	such	classi(ication	tasks	are	
controversial,	we	need	to	look	more	carefully	at	the	
problem.		

quote	source:	https://venturebeat.com/2020/02/20/
google-cloud-ai-removes-gender-labels-from-cloud-
vision-api-to-avoid-bias/

sensitive attributes

As features or as targets. Examples: 

• Sexual orientation 

• Race, ethnic identity, cultural identity 

• Gender and/or sex 
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The	(irst	part	of	the	problem	is	that	gender	and	sex	are	
examples	of	what	we’ll	call	sensitive	attributes:	features	
or	targets	associated	with	instances	in	the	data,	that	require	
careful	consideration.	These	are	some	examples	of	sensitive	
attributes,	but	many	more	exist.

https://venturebeat.com/2020/02/20/google-cloud-ai-removes-gender-labels-from-cloud-vision-api-to-avoid-bias/


What makes an attribute sensitive?

Can it be used for harm? 

Can mischaracterization be offensive? 

Is it commonly used to discriminate? 
Explicitly, as in apartheid regimes, or implicitly, through structural inequality. 

85

To	decide	whether	or	not	an	attribute	is	(potentially)	
sensitive,	and	if	so,	how	it	should	be	treated,	we	can	ask	
ourselves	several	questions.	In	this	video,	we’ll	focus	on	
these	three.	

Can it be used for harm intentionally?
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The	(irst,	and	perhaps	most	obvious	question	to	ask	
yourself,	is	can	a	model	be	used	for	harm	intentionally?	

This	may	seem	like	a	vacuous	question:	apart	from	the	most	
sadistic	individuals,	nobody	causes	harm	intentionally,	and	
certainly	we	don't	expect	large	companies	or	countries	to	
characterize	their	own	actions	as	causing	harm	"on	
purpose".	

What	we	do	see,	however,	is	systems	that	cause	a	particular	
effect	on	purpose.	There	is	then	debate	over	whether	that	
effect	is	harmful	or	not,	and	whether	the	harm	is	a	
necessary	evil,	but	nobody	is	doubting	that	the	system	is	
functioning	as	intended.		

Here	is	one	example.	In	China,	in	the	Xinjiang	region,	there	
exists	a	mass	internment	program	for	people	of	Uyghur	
ethnicity.	Large	numbers	of	people	are	being	incarcerated,	
under	conditions	that	violate	human	rights.	This	by	itself	
has	nothing	to	do	with	machine	learning,	but	one	aspect	of	
this	issue	is	a	large	scale	surveillance	program,	which	
includes	the	use	of	face	recognition.		

For	references,	see	the	social	impact	dossier.	
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Race Classification from Face: A Survey
Siyao Fu, Member, IEEE, Haibo He, Senior Memeber, IEEE, and Zeng-Guang Hou, Senior Member, IEEE

Abstract—Faces convey a wealth of social signals, including race, expression, identity, age and gender, all of which have attracted increasing
attention from multi-disciplinary research, such as psychology, neuroscience, computer science, to name a few. Derived from rapid advances
in computer vision and machine intelligence, computationally intelligent race analysis via face has been particularly prevalent recently because
of its explosively emerging real-world applications, such as security and defense, surveillance, human computer interface (HCI). These studies
raise an important problem: How implicit, non-declarative racial category can be conceptually modeled and quantitatively inferred from the face?
Nevertheless, race classification is challenging due to its ambiguity and complexity depending on context and criteria. To address this issue, recently,
significant efforts have been reported toward race detection and categorization in the community. This survey provides a comprehensive and critical
review of the state-of-the-art advances in face-race perception, principles, algorithms, and applications. We first discuss race perception problem
formulation and motivation, while highlighting the conceptual potentials of racial face processing. Next, taxonomy of feature representational models,
algorithms, performance and racial databases are presented with systematic discussions within the unified learning scenario. Finally, in order to
stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important cross-cutting themes
and research directions for the issue of learning race from face.

Index Terms—Face recognition, race classification, image categorization, data clustering, face databases, machine learning.

F

1 INTRODUCTION

FACE explicitly provides the most direct and quickest
way for evaluating implicit critical social information.

For instance, face could convey a wide range of semantic
information, such as race1, gender, age, expressions, and
identity, to support decision making process at different levels.
Behavior research in psychology also shows that encountering
a new individual, or facing a stimulus of human face normally
activates three ”primitive” conscious neural evaluations: race,
gender, and age, which have consequential effects for the
perceiver and perceived [1], [2], [3], [4], [5], [6] (see Fig. 1).
Among which, race is arguably the most prominent and dom-
inant personal trait, which can be demonstrated empirically
by its omnirelevance with a series of social cognitive and
perceptual tasks (attitude, biased view, stereotype, emotion,
belief, etc.). Furthermore, it yields deep insights into how to
conceptualize culture and socialization in relation to individ-
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with the the University of Rhode Island. (E-mail: fu@ele.uri.edu)
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• Zeng-Guang Hou is with the State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China. (Email:hou@compsys.ia.ac.cn)

1. In general English the term “race” and “ethnicity” are often used as
though they were synonymous. However, they are related to biological
and sociological factors respectively. Generally, race refers to a person’s
physical appearance, while ethnicity is more viewed as a culture concept,
relating to nationality, rituals or cultural heritages. For example, detecting an
Eastern Asian from Caucasian crowds is race recognition task, while visually
differentiating a German and a French certainty belongs to ethnic category
and thus requires extra ethnographically discriminative cues including dress,
manner, gait, dialect, among others. Therefore, considering the soft biometric
characteristics of race, we prefer to use “race” as more suitable category
terminology in this article. Nevertheless, for some of the existing papers in
literature which have already used the term “ethnicity” but were indeed
addressing related “race” issues, we have also cited and discussed those
papers as well, in order to provide a comprehensive and complete survey
on this topic.

Fig. 1: Illustration of face-race perception. The quick glimpse of the
picture will activate three “primitive” conscious evaluations of a
person: a young white female, although this figure was a computer-
generated “artificial” face with a mix of several races. (Photo source:
The New Face of America, TIME Magazine, November 18, 1993.)

ual appearance traits, including social categorization [7], [8],
[9], association [2] and communication [10]. Therefore, the
estimation of racial variance by descriptive approaches for
practical purposes is indeed indispensable in both social and
computer science. However, while race demarcation drives
the intrinsically genetic variation structure of essential facial
regions to gather more explicit appearance information, the
core question emerges as the computational mechanism un-
derlying this extraordinary complexity. This raises the follow-
ing fundamental multi-disciplinary conundrum: How does a
computer model and categorize a racial face?

To answer this fundamental question, numerous research
consortium and scholars have developed intensive investiga-

Against	this	background,	It’s	quite	common	to	see	research	
emerging	from	institutions	focusing	on	the	problem	of	
ethnicity	classi?ication,	sometimes	with	Uighur	ethnicity	
explicitly	used	as	a	class.	While	it	is	a	separate	question	
whether	ethinicity	classi(ication	technology	is	being	used	in	
the	existing	Xinjiang	surveillance	systems,	it	is	clear	from	
this	research	that	it	is	at	least	being	researched,	so	if	we	are	
concerned	about	its	use,	this	is	the	time	consider	the	
application	of	the	technology	we	are	developing.	

The	reason	we	include	this	example	here	is	that	this	is	a	
rare	case	of	a	technology	having	a	largely	intended	effect.	
The	details	of	the	larger	Xinjiang	situation	are	hotly	
debated,	but	nobody	denies	that	a	large	surveillance	
program	is	a	part	of	it,	and	that	this	makes	it	easier	to	
incarcerate	people	of	Uyghur	ethnicity.		

There	is	a	large	body	of	direct	evidence	showing	that	
explicit,	automatic	ethnicity	detection	is	part	of	the	
technology	being	used	in	production	systems.	See	the	
lecture	notes	for	details.	

Different	parties	have	different	views	on	the	Xinjiang	
program	as	a	whole,	and	whether	it	is	harmful.	The	Chinese	
government	characterizes	it	as	necessary	for	national	
security,	with	several	other	countries	signing	declarations	of	
support.	Many	other	countries,	however,	have	of<icially	
characterized	the	situation	as	at	least	"severe	human	rights	
abuse",	and	at	worst	"genocide".		

For	references	for	these	claims,	see	the	social	impact	
dossier.	

Can harm result indirectly?

88source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

more in  
Social impact 3

Can it cause harm unintentionally? This	aspect	of	the	Xinjiang	case	makes	it	very	unusual.	It's	
much	more	common	that	designers	try	to	avoid	using	
ethnicity,	race	or	other	sensitive	attributes,	and	that	
information	(inds	its	way	into	the	system	anyway.	In	such	
cases	the	effects	that	are	considered	harmful	are	not	
intended.	

In	this	article,	the	organization	ProPublica	broke	the	news	
that	a	system	called	COMPAS,	used	nation-wide	in	the	
United	States	to	aid	parole	decisions	was	considerably	more	
likely	to	deny	black	people	parole	than	white	people,	even	
when	all	other	factors	were	accounted	for.	

This	was	not	an	explicit	design	choice	of	the	makers	of	the	
system	(a	company	called	NorthPointe).	In	fact,	they	
explicitly	excluded	race	as	a	feature.	However,	even	if	we	
exclude	sensitive	attributes	as	features,	we	often	can	still	
infer	them	from	other	features.	For	instance,	we	may	
include	a	feature	like	a	subject's	postcode.	This	is	usually	
strongly	correlated	with	race,	and	so	the	system	can	still	
make	the	classi(ication	it	would	have	made	if	race	had	been	

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


available.	

Contrast	this	with	the	previous	situation.	As	before,	the	
makers	of	the	system	deny	the	allegations	of	causing	harm.	
Here,	however,	there	is	agreement	on	whether	classifying	
by	race	is	harmful.	Both	parties,	ProPublica	and	
Northpointe,	presumably	agree	that	a	system	would	cause	
harm	if	it	disproportionally	denied	black	people	parole.	
What	they	disagree	on	is	whether	this	system	does	that.	
The	effect	that	ProPublica	alleges	(and	provides	credible	
evidence	for)	in	unintentional.	

The	question	of	how	this	disparity	in	predictions	exactly	
comes	about	is	subtle,	and	important	to	look	at	carefully.	
We'll	do	so	in	the	third	social	impact	video.	

source:	https://www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-sentencing	

For	references,	see	the	social	impact	dossier.

training data bias

89image source: https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html

A	system	like	COMPAS,	that	disproportionally	denies	black	
people	parole	is	said	to	have	a	bias.	This	kind	of	bias	can	
come	from	different	places.	

One	important	source	of	bias	is	the	distribution	of	the	
training	data.	Where	we	get	our	data	has	a	tremendous	
impact	on	what	the	model	learns.	Since	machine	learning	
often	requires	large	amounts	of	data,	we	usually	can’t	afford	
to	control	the	gathering	of	data	very	carefully:	unlike	
studies	in	life	sciences,	medicine	and	so	on,	we	rarely	make	
sure	that	all	variables	are	carefully	controlled.		

The	result	is	that	systems	have	unexpected	biases.	This	is	a	
picture	of	Joy	Buolamwini.	As	a	PhD	student,	she	worked	on	
existing	face	recognition	systems.	She	found	that	if	she	
tested	them	on	her	own	face,	they	would	not	recognize	her,	
and	she	needed	to	wear	a	light-colored	mask	to	be	
recognized	at	all.	

One	aspect	of	this	problem	is	the	bias	in	the	data	that	face	
recognition	systems	are	trained	on.	If,	for	instance,	such	
data	is	gathered	carelessly,	we	end	up	inheriting	whatever	
biases	our	source	has.	If	white	people	are	overrepresented,	
then	we	end	up	training	a	system	that	works	less	well	on	
non-white	people.	

image	source:	https://www.nytimes.com/2018/02/09/
technology/facial-recognition-race-arti?icial-
intelligence.html

https://www.nytimes.com/2018/02/09/technology/facial-recognition-race-artificial-intelligence.html
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Here	is	a	more	recent	example,	a	lot	closer	to	home.	

During	the	COVID	pandemic,	the	Vrije	Universiteit	used	the	
software	Proctorio	to	allow	exams	to	be	taken	at	home.	
Student	Robin	Pocornie	(inds	that	the	software	doesn't	
recognize	her	face	unless	she	shines	a	bright	light	directly	
on	to	it.	Before	she	(igures	out	this	hack,	she's	nearly	missed	
the	opportunity	to	start	her	exam	on	time	[1].		

This	is	anecdotal	evidence,	of	course,	but	it	quickly	becomes	
clear	that	many	black	students	worldwide	suffer	the	same	
problems.	Not	only	can	they	not	log,	in	they	are	frequently	
marked	for	suspicious	behaviour,	or	logged	out,	because	the	
software	thinks	they	have	left	their	desk.	

This	is	a	perfect	example	of	exactly	how	these	biases	
translate	directly	into	harmful	consequences	(and	we	have	
our	own	university	to	thank	for	it).	

Eventually,	a	US	researcher	looked	into	the	issue,	and	found	
some	evidence	that	Proctorio	uses	the	OpenCV	library,	
which	is	known	to	have	these	issues	[2].	

There	is	no	structural,	peer-reviewed	research	on	this	issue	in	
Proctorio,	but	at	this	point	the	evidence	is	suf<icient	that	I	
would	put	the	burden	of	proof	on	them	to	show	that	they	
don't	have	such	a	bias.		

In	2023,	Pocornie’s	case	was	heard	before	the	Dutch	court	of	
human	rights.	Under	their	standard	of	evidence,	it	was	not	
found	that	she	experienced	worse	problems	than	fellow	non-
black	students,	and	that	the	issues	may	have	been	due	to	the	
wearing	of	glasses	or	a	poor	internet	connection.	[3]	This	
may,	however,	simply	be	down	to	the	dif<iculty	of	showing	
that	a	software	is	biased	two	years	after	the	fact	(as	the	court	
acknowledges).	The	decision	was	based	on	a	thord-party	
audit	of	the	software,	seemingly	organized	by	Proctorio,	to	
which	the	VU	did	not	have	access.	[4]	

[1]	De	antispieksoftware	herkende	haar	niet	als	mens	
omdat	ze	zwart	is,	maar	bij	de	VU	vond	ze	geen	gehoor,	
Fleur	Damen,	Volkskrant,	15	July	2022		

[2]	Students	of	color	are	getting	?lagged	to	their	
teachers	because	testing	software	can’t	see	them,	
Mitchell	Clark,	the	Verge,	8	April	2021	

[3]	Studente	Robin	teleurgesteld	over	uitspraak	dat	ze	
niet	gediscrimineerd	is	door	anti-spieksoftware:	'Feiten	
blijven	zoals	ze	zijn’,	Leonie	van	Noort,	EenVandaag	17	
October	2023	

[4]	VU	bij	College	voor	de	Rechten	van	de	Mens	vanwege	
klacht	over	antispieksoftware,	Emma	Sprangers,	
AdValvas,	13	October	2023
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The	problem	is	compounded	by	the	way	technologies	build	
on	one	another.	On	the	left	is	one	example:	the	Shirley	card.	
Such	images	(named	after	one	of	the	models	on	the	(irst	
one)	were	used	by	lab	technicians	to	develop	color	
photographs.	This	image	was	used	as	a	reference	to	
calibrate	photo	printers	in	small	labs.	This	shows	that	white	
skin	was,	for	a	long	time,	the	main	target	in	developing	
photographic	technology.		

Eventually,	other	test	cards	were	developed,	but	not	before	
color	(ilm	and	development	had	been	focused	on	white	skin	
for	decades.	Since	digital	photography	was	largely	
developed	to	mimic	(ilm,	it’s	quite	possible	that	some	of	
these	biases	are	still	present	in	modern	day	technology.	
Certainly	most	photographers	will	tell	you	that	capturing	
black	skin	well	is	a	skill	in	itself	[1].	

A	more	recent	example	is	the	PULSE	system	[2].	This	is	a	
rather	ingenious	method	for	generating	reasonable	high-
resolution	versions	of	low	resolution	photographs.	
Interestingly,	the	method	doesn’t	require	any	training	data	
of	its	own:	it	relies	on	an	existing	generator	network	called	
StyleGAN	(the	same	one	that	generated	the	non-existent	
people	in	the	previous	video).	Unfortunately,	StyleGAN	
turned	out	to	be	biased,	most	likely	a	result	of	the	data	it	
used.	The	result	was	that	that	images	of	non-white	people	
were	upsampled	to	white	people.	

Interestingly,	a	large	part	of	StyleGAN's	success	was	a	special	
training	dataset	that	they	created,	called	FFHQ.	This	data	
was	explicitly	designed	to	include	a	greater	variety	of	faces	
and	people	than	the	datasets	that	were	then	standard	for	this	
sort	of	task.	This	shows	that	even	if	you're	aware	of	the	
problem,	and	you	put	in	the	effort	to	minimize	it,	you	can	still	
end	up	with	problems	like	these.	

[1]	https://www.anothermag.com/art-photography/
12799/antwaun-sargent-joshua-kissi-in-conversation-
just-pictures-exhibition-st-louis	

[2]	https://github.com/adamian98/pulse

amplifying bias
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source: h"ps://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html

Finally,	how	you	choose	to	use	the	predictions	of	your	
model	can	amplify	bias,	even	if	the	predictions	themselves	
are	in	some	sense	correct.	

Shown	here	is	Google’s	machine	translation	system.	A	
sentence	which	is	gender-neutral	in	English,	like	“My	friend	
is	a	doctor”	cannot	be	translated	in	a	gender-neutral	way	
into	Spanish.	In	the	earlier	versions	of	Google	Translate,	a	
gender	was	chosen	(implicitly),	mostly	dictated	by	the	
statistics	of	the	dataset.	Thus,	since	the	dataset	contained	
more	examples	of	male	doctors	than	female	doctors,	the	
system	ends	up	picking	the	translation	with	the	male	suf(ix.	

You	may	argue	that	these	statistics	are	in	a	sense	re(lective	
of	biases	that	exist	in	society,	so	that	it	is	indeed	more	likely	
that	this	sentence	should	be	translated	for	a	male.			

However,	that	doesn’t	mean	that	we	are	certain	that	the	
user	wants	the	sentence	translated	in	this	way.	We	might	
build	a	model	that	predicts	that	this	sentence	should	be	
translated	with	a	male	gender	with	70%	probability.	Let’s	
assume	for	the	sake	of	argument	that	that	probability	is	

https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html


entirely	correct.		

That	prediction	may	be	entirely	correct,	but	that	doesn’t	tell	
us	anything	about	what	the	correct	action	is.	If	we	always	
pick	the	gender	with	the	highest	probability,	we’re	actually	
amplifying	the	bias	in	the	data:	there	may	be	70%	male	
doctors	in	the	dataset,	but	there	will	be	100%	male	doctors	
in	translations	produced	by	the	system.	

The	solution	(in	this	case)	was	not	to	reduce	the	
uncertainty	by	guessing	more	accurately,	but	to	detect	it,	
and	communicate	it	to	the	user.	In	this	case,	by	showing	the	
two	possible	translations.	The	lesson	here	is	that	even	if	
your	predictions	are	sound,	designing	the	correct	action	is	
still	a	dif(icult	challenge.	A	challenge	that	often	has	more	to	
do	with	human-computer	interaction,	than	with	machine	
learning.	

source:	https://ai.googleblog.com/2020/04/a-scalable-
approach-to-reducing-gender.html

Are you predicting what you think you’re predicting?

93source: https://www.laphamsquarterly.org/intoxication/miscellany/have-you-ever-used-derbisol

It’s	also	important	to	note	that	the	target	variable	may	not	
always	be	saying	what	you	think	it’s	saying.		

This	is	a	common	problem	with	self-reporting.	If	you	ask	
respondents	for	some	value	you’re	interested	in,	rather	
than	testing	it	directly,	you	often	end	up	with	inaccurate	
results.	Either	because	people	are	lying	to	you,	or	because	
they	simply	don’t	have	an	accurate	idea	of	what	you’re	
interested	in.		

This	example	shows	a	common	trick	to	avoid	such	self	
reporting	problems:	if	you	ask	people	if	they've	ever	used	a	
recreational	drug	that	doesn't	exist,	you'll	(ind	that	many	
people	say	yes.	This	tells	you	something	about	how	reliable	
the	answers	are	when	you	ask	the	same	question	for	a	drug	
that	does	exist.	

Now,	imagine	a	survey	where	measures	like	this	aren't	
taken,	and	we	trust	the	students	at	face	value	when	we	ask	
about	their	drug	use.	If	we	then	train	a	classi(ier	to	predict	
drug	use	from	a	set	of	features	like	extroversion,	social	
background,	or	education	level,	we	may	think	we’ve	found	a	
link	between	drug	use	and	these	features,	when	actually	
what	we’ve	found	is	a	predictor	for	how	willing	people	are	
to	lie	on	a	questionnaire.		

In	short,	just	because	a	column	in	your	data	table	is	labeled	
"drug	use",	that	doesn't	mean	you	should	blindly	take	it	to	
actually	represent	drug	use	in	the	subjects.	

source:	https://www.laphamsquarterly.org/
intoxication/miscellany/have-you-ever-used-derbisol

https://www.laphamsquarterly.org/intoxication/miscellany/have-you-ever-used-derbisol


What are you predicting from?
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Persistence: the weather forecasting tactic of predicting 
today’s weather as tomorrow’s.

source: http://www.randalolson.com/2014/06/21/we-can-only-forecast-the-weather-a-few-days-into-the-future/

Another	question	is	what	features	you	are	looking	at	for	
your	predictions.	What	are	you	predicting	from?	

For	example,	one	very	effective	method	for	predicting	the	
weather	is	simply	to	look	at	the	weather	today	and	to	
predict	that	tomorrow's	weather	will	be	the	same.	This	is	
called	the	persistence	model	in	weather	forecasting.	This	is	
surprisingly	effective,	and	you	need	a	very	sophisticated	
model	to	do	any	better.	

Nevertheless,	for	many	use	cases,	this	is	an	entirely	
unsuitable	prediction.	In	short	accuracy	isn’t	all	that	
matters.	A	ship’s	captain,	for	instance,	will	be	interested	in	
the	probability	of	a	storm.	For	this	particular	rare	event	the	
persistence	model	works	terribly,	even	though	it	works	well	
on	average.	The	captain	will	be	much	more	interested	in	a	
model	that	looks	at	relevant	features	to	warn	them	of	even	
a	small	probability	of	a	storm	than	they	will	be	in	a	model	
that	simply	predicts	sunshine	tomorrow	if	there	was	
sunshine	today.		

Part	of	the	issue	is	that	the	captain	is	looking	for	
predictions	from	informative	features	like	mounting	or	
falling	air	pressure.	These	features	have	a	more	direct	
causal	relation	to	the	prediction.	The	relation	between	
today's	weather	and	tomorrow's	is	much	more	
correlational:	today's	weather	doesn't	cause	tomorrow's	
weather,	they	are	merely	similar	because	they	are	usually	
caused	by	the	same	phenomena.	

source:	http://www.randalolson.com/2014/06/21/we-
can-only-forecast-the-weather-a-few-days-into-the-
future/

Can predictions be offensive, hurtful or harmful?

95source: theawkwardyeti.com

Next,	it’s	important	to	ask	whether	predicting	a	particular	
attribute	can	be	offensive	or	hurtful.	Regardless	of	
whether	you're	guessing	accurately,	does	the	very	act	of	
guessing	cause	hurt,	offense	or	harm?	

This	is	a	more	nebulous	question	than	the	others.	Whether	
or	not	something	causes	offense	is	highly	subjective.	
Causing	offense	is	not	illegal,	and	indeed	it	has	often	been	
instrumental	in	improving	society.	Many	people	feel	that	
being	offended	is	too	often	used	as	a	shorthand	to	shut	
down	meaningful	conversation.	Perhaps	it’s	better	to	
consider	the	questions	of	whether	your	predictions	are	
hurtful.	While	a	single	hurtful	experience	may	be	easy	
enough	to	shrug	off,	encountering	enough	of	them	on	a	
daily	basis	can	cross	over	into	causing	harm.	Since	a	single	
machine	learning	model	can	now	be	rolled	out	to	millions	of	
people,	affecting	each	many	times	a	day,		one	decision	by	a	
machine	learning	engineer	can	have	a	major	negative	
impact.	

Thus,	when	you	build	a	product	that	is	meant	to	behave	

http://www.randalolson.com/2014/06/21/we-can-only-forecast-the-weather-a-few-days-into-the-future/
http://theawkwardyeti.com


intelligently,	it’s	worth	thinking	about	whether	you	want	its	
automated	behavior	to	be	offensive.		

As	a	simple	example,	imagine	if	we	spoke	at	a	party	and	I	
guessed	your	sexuality,	and	told	you	I	was	doing	so	based	
on	the	shape	of	your	nose.	You	might	be	offended	
(regardless	of	whether	my	guess	was	right	or	wrong).	Even	
if,	for	the	sake	of	argument,	there	is	a	broad	correlation	
between	nose	shape	and	sexuality	that	I	could	use	in	my	
defense,	it	would	probably	still	feel	to	you	like	I	was	taking	a	
deep	and	complex	aspect	of	your	identity,	and	reducing	it	to	
a	simple	thing,	to	be	guessed	at.	

It’s	not	easy	to	pin	down	quite	exactly	where	the	offense	
comes	from.	My	best	guess	is	that	it’s	not	so	much	the	
method	of	guessing	that	I	chose	to	employ,	but	the	fact	that	
I	felt	it	necessary	to	do	so	at	all.	I	could	have	asked	and	been	
certain,	or	I	could	simply	have	left	it.	Since	the	attribute	is	a	
sensitive	one,	it	deserves	a	sensitive	course	of	action.	In	
short,	there’s	a	difference	between	being	able	to	make	a	
crude	guess,	and	choosing	to	do	so.	

are you implying/concluding a causal relation?
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Finally,	it's	important	to	consider	causality.	Even	if	you	can	
predict	someone's	job	from	their	gender,	someone's	
sexuality	from	a	pro(ile	picture	or	someone's	criminal	
future	from	their	race,	that's	just	a	correlation.	It	doesn't	
mean	that	one	aspect	causes	the	other.	It	could	be	that	A	
causes	B,	B	causes	A,	or	that	A	and	B	are	both	caused	by	a	
third	factor.	

It's	important	to	realize	that	of?line	machine	learning	will	
never	tell	you	what	the	causal	relation	is.	Working	out	
the	causal	structures	in	all	these	examples	is	extremely	
complex,	and	we'll	devote	more	time	to	it	in	future	social	
impact	videos.	For	now,	we	will	just	caution	you	that	even	if	
you're	smart	enough	not	to	conclude	a	causal	link,	
publishing	your	results	can	still	be	seen	to	imply	such	a	
causal	link.		

The	slide	shows	an	example	we'll	look	at	in	more	detail	
later:	a	research	paper	that	showed	that	a	classi(ier	can	
guess	whether	you're	gay	or	straight	from	a	pro(ile	picture.	

Publicising	such	results	will	suggest	to	many	people	that	
there	is	a	connection	between	the	face	somebody	is	born	
with,	and	their	sexuality.	As	we	will	see	when	we	look	at	the	
details,	that	is	absolutely	not	a	conclusion	that	can	be	
drawn	from	this	research,	and	the	authors	could	have	done	
a	lot	more	to	remove	that	implication.	

Put	simply,	machine	learning	produces	crude	and	shallow	
guesswork	at	the	best	of	times,	and	we	should	be	very	
careful	never	to	imply	otherwise.



Should we include sensitive attributes in data at all?

To study bias, we need these attributes to be annotated. 

If we remove them they may be inferred from other 
features. 
Postcode, shopping habits, profile picture. 

Directly using a sensitive attributes may be preferable to 
indirectly doing so  

There are valid use cases 
Race and sex affect medicine. Often requires a causal link.
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If	you	agree	that	certain	attributes	are	sensitive,	you	may	
ask	whether	we	should	include	them	in	our	data	at	all?	

This	all	depends	on	context.	In	some	cases,	we	may	want	to	
study	whether	racial	or	gender	bias	exists.	In	such	cases,	we	
need	the	data	to	be	carefully	annotated	with	the	sensitive	
attributes.		

Removing	sensitive	attributes	also	doesn’t	mean	that	we	
cannot	discriminate	on	them.	As	we	saw,	other	features	may	
be	correlated	with	the	sensitive	attributes,	so	that	
algorithms	can	still	infer	the	sensitive	attribute,	and	then	
produce	a	biased	or	problematic	result	based	on	that.	In	
such	cases,	it	may	be	preferable	to	include	the	sensitive	
feature	explicitly	and	with	the	user’s	consent	so	that	we	
have	more	control	over	how	it	is	used,	or	so	that	we	can	at	
least	explain	the	system's	behavior	better.	

Finally,	there	are	often	valid	use	cases	where	we	can	use	
sensitive	attributes	in	a	responsible	way.	For	instance,	
medical	results	are	highly	dependent	on	sex	and	race	(and	
sometimes	even	sexuality).	In	conditions	that	are	dif(icult	to	
diagnose,	like	Parkinson’s,	these	may	be	crucial	factors	to	
consider.

Should we stop using them as targets?

What is input and what is target is not always clearly 
separated. 
Embeddings, clustering, semi-supervised learning, link prediction 

Showing that sensitive attributes can be inferred, may 
serve as a warning to those who are vulnerable. 
Building a proof-of-concept in a controlled setting is sometimes the best way to warn the 
world that something can be built.
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So,	if	we	cannot	just	decree	that	they	should	never	be	used	
as	features,	can	we	perhaps	agree	that	they	should	never	be	
used	as	targets?		

Unfortunately,	this	is	also	not	an	easy	call.	Many	algorithms	
work	without	explicit	targets.	Often,	these	learn	
representations	that	can	be	used	to	predict	all	information	
in	the	data	including	the	sensitive	attributes.		

Also,	in	some	situations,	building	a	system	that	explicitly	
does	what	we	consider	harmful,	may	be	an	effective	way	to	
warn	people	of	which	dangers	exist.
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More in social
  

impact 2
source: https://www.economist.com/graphic-detail/2013/12/13/grim-to-be-gay

For	example,	in	the	next	video	we’ll	look	at	a	classi(ier	that	
was	built	to	predict	a	person’s	sexuality	from	pro(ile	
pictures	on	a	dating	site.	The	authors’	stated	intent	was	
exactly	this:	to	warn	people	that	they	may	be	exposing	
sensitive	information	purely	by	putting	their	image	online.	

In	eight	countries	in	the	world,	homosexual	acts	carry	the	
death	penalty.	

In	most,	this	is	not	enforced,	and	prison	sentences	are	
common	instead.	The	image	in	the	slide	is	from	2013	[1],	so	
some	of	the	details	may	have	changed.	For	an	up	to	date	
overview	of	worldwide	legislation,	see	[2].	

If	facial	features	are	correlated	to	some	extent	with	sexual	
orientation,	and	law	enforcement	in	these	countries	is	
incentivised	to	(ind	as	many	non-heterosexual	people	as	
possible,	then	it	can	be	important	for	gay	people	people	to	
know	that	just	by	putting	a	photograph	online,	they	may	be	
exposing	themselves	to	a	higher	degree	of	scrutiny.	

[1]	https://www.economist.com/graphic-detail/
2013/12/13/grim-to-be-gay	

[2]	https://en.wikipedia.org/wiki/
LGBT_rights_by_country_or_territory#Northern_Africa	

sensitive attributes

use with extreme care 

• consider communication over prediction 

do not: 

• imply causality 

• overrepresent what your predictions mean
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Again,	you	may	think	of	these	issues	what	you	will.	In	many	
cases,	these	problems	do	not	exist	by	themselves:	you'll	
need	to	weigh	them	against	whatever	bene(its	will	come	
from	automating	some	process.	We	can't	make	that	choice	
for	you,	and	it's	a	choice	everybody	will	make	differently.

https://www.economist.com/graphic-detail/2013/12/13/grim-to-be-gay


social impact

101

So,	let’s	return	to	our	gender	classi(ier,	and	ask	some	of	
these	questions.	Are	sex	and	gender	a	sensitive	attributes	
and	if	so,	what	should	we	do	about	gender	classi(ication?	

We've	already	seen,	in	the	translation	example,	that	data	
bias	is	an	important	problem	when	dealing	with	gender	in	
data.	Even	if	genders	are	carefully	represented	in	your	data,	
they	may	be	associated	in	a	biased	way,	such	as	associating	
doctors	with	men	and	nurses	with	women.	As	we	saw,	even	
if	these	biases	are	an	accurate	re(lection	of	the	state	of	
society,	we	may	still	be	in	danger	of	amplifying	them.	

Still,	that	does	not	in	itself	preclude	us	from	using	sex	or	
gender	as	a	target	attribute	for	classi(ication.	To	understand	
the	controversy,	we	need	to	look	at	different	questions.

Can mischaracterization be offensive?

Sex 
• Physical characteristics at 

birth 
• About 0.02% of people 

outside the male/female 
classification (intersex)
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Gender 
• Pyschological identity 
• About 0.4% percent outside the 

male/female classification (e.g. 
non-binary)

Transgender 
• Gender dysphoria: psychological distress due to difference between 

sex assigned at birth and gender.  
• About 0.6% openly transgender people in US. 
• Cis-gender: matching sex and gender

not a perf
ect distinction

In	discussing	these	matters,	it	is	helpful	to	make	a	
distinction	between	the	type	of	body	a	person	is	born	with,	
and	their	psychological	gender	identity.	The	(irst	is	usually	
referred	to	as	sex,	and	the	second	as	gender.	These	are	not	
perfect	distinctions,	and	it’s	often	not	clear	whether	we	are	
talking	about	sex	differences	or	gender	differences.	But	they	
serve	to	illustrate	the	basic	problem.	

People	whose	sex	and	gender	do	not	match,	transgender	
people,	can	suffer	considerable	mental	health	problems	
when	living	according	to	their	original	sex	rather	than	their	
gender,	leading	to	extremely	high	rates	of	attempted	suicide	
(40%	vs	a	4.6%	national	average)[1].	It	is	well-accepted	in	
the	psychological	community	that	living	with	gender	
dysphoria,	as	this	sex-gender	mismatch	is	known,	is	
extremely	distressing	and	that	in	adults,	the	best	course	of	
action	is	to	conform	to	the	gender	rather	than	the	sex.	

There	is	of	course	heated	discussion	at	the	moment	about	
what	the	impact	should	be	on	various	aspects	of	society.	For	
our	purposes,	it	is	not	necessary	to	discuss	or	endorse	any	
speci(ic	claims.	We	have	a	large	number	of	students,	with	no	
doubt	a	variety	of	views	on	the	matter.	You'll	have	to	make	
up	your	own	mind.	However,	what	is	undeniably	true	is	that	
people	with	gender	dysphoria	exist,	and	that	it	causes	them	
considerable	and	real	psychological	distress,	in	particular	
for	those	living	according	to	their	sex	rather	than	their	
gender.	This	is	scienti(ic	fact,	and	it	implies	that	for	these	
people,	gender	should	be	considered	a	sensitive	attribute.		

A	proportion	of	0.6%	may	not	sound	like	much,	but	bear	in	
mind	that	if	your	system	is	used	by	a	million	people,	this	
means	this	means	that	6000	people	are	negatively	affected.	
Note	also	that	this	is	the	number	of	people	who	are	openly	
transgender.	Since	there	is	a	high	stigma	attached	to	being	
transgender,	the	total	number	will	likely	be	much	higher.	

Sometimes	the	phrase	transgender	is	used	to	cover	both	
people	whose	sex	and	gender	differ	and	people	who	do	not	
identify	as	either	male	or	female.	For	our	current	purposes,	it	
is	helpful	to	keep	these	categories	distinct.	

[1]	The	report	of	the	2015	U.S.	Transgender	survey,	NCTE	
2015,	https://transequality.org/sites/default/?iles/
docs/usts/USTS-Full-Report-Dec17.pdf	



Can it be used for harm?

Mostly considered minor offences, but often conflated 
with homosexuality. 
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Criminalisation 

In recording cases of criminalisation against trans communities, we are in some ways 
experimenting with the form, and offer one method of how to report such information. We owe a 
great deal to organisations such as Human Rights Watch who have for many years recorded these 
instances of discrimination against our communities, as well as Human Dignity Trust’s thorough 
report, Injustice Exposed, in 2019. It is in the area of criminalisation that verification from trans 
communities and activists is especially crucial – without these it would simply not be possible to 
track the vast majority of cases of trans people who are targeted arbitrarily under a range of laws, 
such as public nuisance, indecency, good manners and morality, drug related offences, vagrancy, 
loitering, beggary, impersonation, sex work related offences, and consensual same-sex activity. In 
only a handful of countries are trans persons explicitly criminalised, either through a piece of 
legislation or religious law or edict (which often have the force of law) and are easily classified as 
so-called “cross-dressing” laws. This is the case in the following thirteen countries: Brunei, the 
Gambia, Indonesia, Jordan, Kuwait, Lebanon, Malawi, Malaysia, Nigeria, Oman, South Sudan, 
Tonga, and the United Arab Emirates. Meanwhile, although Iran’s Islamic Penal Code is slightly 
more vaguely worded in this respect, its impact is no less severe on people who transgress gender 
norms in their gender expressions.  

We are at a turning point in trans organising and advocacy, and I hope that the snapshot this report 
provides encourages cross-regional, cross-border and, most importantly, cross-movement 
mobilisation. There is an undeniable commonality in the obstacles our communities face, which 
means that there could and should also be a way to strategise collectively. As this report is being 
finalised, we find ourselves in the middle of a global pandemic where, all over the world, trans 
movements are facing new challenges to survival and holding the line on our rights.  

 

A practical note on using this report 

Legal gender recognition 

This report distinguishes between “sex/gender marker change” and “name change” processes, laws 
and policies. Although the authors recognise that trans and gender diverse people often do seek 
name change as part of their social transition or self-affirmation process, the distinction is made 
because the processes are often entirely separate, sometimes involving different pieces of 
legislation or policies. It is in the interests of precision that this distinction is in place throughout 
the report.  

When referring to legislation, court decisions or policies, we have kept faithful to the language of 
those documents, as we feel it is important to refer to them accurately, as well as to provide insight 
into the thinking behind their formulation. Most obviously, when a reference is made to “sex” or 
“gender” in the legislation or policy, it remains as “sex” or “gender” in this report. A judge or policy 
document may use language that clearly reflects reliance on pathologising definitions, without 
explicitly revealing their source, which could be by design or omission. In these instances, having 
the information in the original wording is an entry point for advocates who seek to effect change by 
first arguing against pathologisation. The reader will see that name or gender marker change 
processes are often described as having “prohibitive” requirements—by that we mean that any or 
all of the above-described conditions exist which are contrary to a self-determination approach to 
gender recognition, identity and expression.  

Where information is available, we also include Bills which are being considered before 
Parliaments, pending Court cases, committee recommendations being considered by governments, 
and consultations on gender recognition, progressive or otherwise. Our aim in this regard is to point 

source: ILGA World: Zhan Chiamet al. Trans Legal Mapping Report 2019: Recognition before the law (Geneva: ILGA World, 2020).

The	next	question	we	should	ask,	is	whether	predicting	sex	
or	gender,	or	a	difference	between	the	two,	can	cause	harm,	
whether	intentionally	or	not.	

Behaving	in	a	way	that	doesn't	conform	to	gender	norms	is	
illegal	in	13	countries	(as	of	2020).	These	are	usually	
considered	minor	offences,	so	at	face	value,	the	risk	of	
intentional	harm	is	less	than	it	is	for	sexuality	classi(ication.	
However	gender	identity	is	often	con(lated	with	
homosexuality.	That	is,	while	cross-dressing	itself	only	
carries	a	minor	penalty,	it	may	be	unfairly	taken	to	imply	
homosexuality,	which	carries	very	severe	penalties,	
including	death.		

This	means	that	the	potential	harm	in	predicting	sex	and	
gender	may	be	similar	to	the	harm	in	predicting	sexuality.	

source:	ILGA	World:	Zhan	Chiamet	al.	Trans	Legal	
Mapping	Report	2019:	Recognition	before	the	law	
(Geneva:	ILGA	World,	2020).

Can it be used to counter harm?

Inferring sex for medical applications 

Countering bias, to increase representation 

Studying bias in historical data 

Studying the correlations that other ML algorithms make 
implicitly
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On	the	other	hand,	could	predicting	sex	or	gender	be	used	
to	counter	harm,	or	for	harmless	and	bene(icial	purposes?		

In	many	medical	applications,	sex	plays	an	important	part.	
This	doesn't	automatically	make	it	acceptable	to	guess	a	
person's	sex;	remember,	we	can	always	ask.	However,	in	
some	speci(ic	settings,	there	may	be	no	certain	way	to	
ascertain	sex	due	to	privacy	problems,	and	a	guess	may	still	
be	helpful.	Still,	if	an	attribute	is	suf(iciently	sensitive	to	be	
protected	by	privacy	law,	we	should	be	even	more	careful	
about	guessing	it.		

In	other	cases,	we	may	be	aware	of	a	harmful	
underrepresentation	in	our	data.	For	instance,	many	early	
face	detection	datasets	used	computer	vision	researchers	
themselves	as	models,	and	that	profession	had	a	large	
gender	imbalance	at	the	time.	In	such	cases,	the	best	course	
of	action,	is	of	course	to	get	better	data,	but	if	that	is	not	
feasible,	it	may	be	possible	to	resample	the	data,	to	at	least	
alleviate	the	problem	of	data	bias,	if	we	can't	solve	it	fully.	At	
the	very	least,	an	effective	"sex	or	gender"	predictor	should	

Can mischaracterization be offensive, harmful or hurtful?

Difficult to understand with no experience of gender 
dysphoria 

Pay attention to the features: 

Physical features predict biological sex.  
They are highly correlated with gender, due to a high majority of cisgendered people. 

Other features (dress, grooming) may predict gender over 
sex. 

How are your predictions used? 

Targeting ads, Policing 

What are you implying about causality and accuracy?
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If	you’ve	never	had	any	experience	of	gender	dysphoria,	it	
can	be	dif(icult	to	understand	how	intense	it	can	be	and	
how	harmful	it	can	be	if	your	gender	is	regularly	treated	
lightly.	The	best	we	can	do	as	system	builders	is	to	consider	
the	evidence	(remember	the	attempted	suicide	rates)	and	
to	listen	to	our	users.	

Where	we	cannot	escape	simply	asking	users	for	their	
gender	when	that	is	apposite,	or	doing	without,	and	where	
we	have	a	good	reason	to	predict	it,	we	should	consider	
carefully	which	features	we	use:	do	they	predict	gender	or	
sex,	or	a	mixture	of	both?	One	may	be	correlated	with	the	
other	(because	a	large	majority	of	people	are	cis-gendered),	
but	carelessly	using	your	predictions	may	be	seen	as	
implying	causal	links	that	aren’t	there.



machine learning is shallow (even deep learning)

Classification is a simplistic abstraction 
male/female, race vs. ethnicity, gay/straight, sex vs. gender 

Models pick up on surface features first 
Even if deeper features are available 

Interpretability and responsibility is hard 
We don’t know what models look at or how to make them look elsewhere 

95% percent accuracy is not as impressive as it sounds 
That’s 1 mistake in 20 attempts
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The	problem	is	not	solved,	and	it	may	never	be.	It’s	a	social	
problem	more	than	a	computer	science	one.	The	important	
thing	to	remember,	is	that	machine	learning	systems	are	
now	deployed	at	scale,	to	millions	of	users.	Machine	
learning	is	no	longer	just	an	academic	exercise,	and	the	
decisions	we	make	have	consequences.	That	means	we	have	
a	responsibility	to	consider	those	decisions	carefully.	In	
particular,	we	should	always	keep	in	mind	how	shallow	
machine	learning	is	in	its	thinking	(even	if	we	use	deep	
learning).	

Classi(ication	is	a	particularly	strong	example.	In	research,	
we	like	classi(ication	as	an	abstract	task,	because	it’s	a	
setting	in	which	our	models	are	easy	to	evaluate	and	to	
train.	But	that	should	not	blind	us	to	the	fact	that,	usually,	
constraining	a	phenomenon	like	gender	or	sexuality	to	a	
small	set	of	categories	blinds	us	to	the	complexities	of	the	
thing	we	are	actually	trying	to	predict.	

Imagine	a	classi(ier	that	predicts	the	genre	of	a	movie	as	
either	romance,	action	or	comedy.	In	a	research	setting,	this	
is	a	very	nice,	simple	way	to	test	our	models,	and	to	see	
what	they	can	do.	It	doesn't	matter	that	this	is	a	poor	
representation	of	what	genre	actually	is,	because	it	still	
allows	us	to	compare	models	against	one	another.	But	if	we	
then	move	to	a	domain	where	we	are	actually	interested	in	
saying	something	about	movies,	this	categorization	is	
woefully	inadequate.	It’s	(ine	when	we’re	investigating	our	
models,	but	it’s	terrible	to	actually	use	in	production	
settings.		

Here	the	problem	isn't	crucial:	nobody	will	get	hurt	when	a	
movie's	genre	is	poorly	represented.	But	when	it	comes	to	
sensitive	attributes,	we	have	a	responsibility	to	
acknowledge	that	the	categorizations	used	in	classi(ication	
are	very	shallow	abstractions	of	the	real	world.	And	we	
should	acknowledge	this	long	before	our	models	make	it	
out	of	the	laboratory.

social impact
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So,	this	hopefully	explains	to	some	extent	the	reasons	
Google	may	have	had	to	make	the	choice	that	it	did.	

This	is	a	dif(icult	subject	to	explain	precisely;	however	you	
look	at	it,	it	boils	down	to	treating	people	with	respect.	
What	consists	of	respectful	treatment,	and	how	much	of	
that	people	should	be	able	to	demand,	is	highly	subjective.	
There	are	plenty	of	competitors	to	the	Cloud	Vision	API	that	
offer	gender	classi(ication,	so	Google	is	likely	sacri(icing	
some	customers	who	are	looking	for	the	feature,	and	
gaining	others	who	value	their	stance.	

You	are	free,	of	course,	to	disagree	with	Google's	decision.	
Perhaps	you	disagree	that	gender	classi(ication	is	a	
sensitive	matter.	Perhaps	you	agree,	but	you	value	the	right	
of	Google's	customers	to	make	the	decision	for	themselves	
more.	In	any	case,	we	have	hopefully	convinced	you	that	it's	
at	least	important	to	ask	yourself	the	questions	enumerated	
in	this	video.	What	answers	you	come	up	with,	and	how	you	
weigh	the	different	concerns	is	up	to	you.	

If	nothing	else,	these	issues	show	how	far	we've	come	in	



machine	learning:	our	classi(iers	are	no	longer	fed	images	
by	hand,	and	stumped	by	a	judge’s	wig	or	a	Beatle	hairdo,	
and	they	are	certainly	no	longer	con(ined	to	the	laboratory.	
They	are	out	there,	making	billions	of	predictions	every	
hour	in	internationally	deployed	software	systems.	So,	if	we	
are	the	ones	pushing	them	to	production,	we	are	the	ones	
responsible	for	the	consequences.	

question	Can	you	think	of	a	concrete	situation	in	which	it	is	
legitimate	to	use	machine	learning	to	determine	a	sensitive	
attribute	for	a	person?	|hide|For	any	such	situation,	I	think	
there	are	two	main	questions	to	ask:	(a)	what	is	the	clear,	
undeniable	bene(it	of	knowing	the	sensitive	attribute,	and	
(b)	why	can’t	you	ask	directly?	If	the	bene(it	is	making	more	
money,	and	the	reason	you	can’t	ask	is	because	it’s	too	much	
work,	you	haven’t	come	up	with	a	very	convincing	case.	A	
(inal	question	you	should	ask,	is	how	do	we	mitigate	an	
incorrect	classi(ication.	One	example	is	testing	gender-
balance	in	a	certain	population,	say	students.	If	you	are	not	
allowed,	by	law,	to	ask	what	sex	or	gender	people	are,	but	
you	do	have	pro(ile	pictures,	then	a	gender-classi(ier	might	

Introduction 
Part 5: Generalization

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

In	this	last	video,	we’ll	look	a	little	deeper	into	the	problem	
that	is	at	the	heart	of	what	we	are	actually	trying	to	achieve	
in	machine	learning.	You	may	think	the	aim	of	machine	
learning	is	to	(ind	a	model	that	(its	the	training	data	as	
precisely	as	possible.	You	would	be	mistaken.	The	aim	is	to	
(ind	a	model	that	generalizes.	

|video|https://surfdrive.surf.nl/(iles/index.php/s/
4o04CxLVE5qSJRG/download|	
|section|Generalization|	

overfitting
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To	explain,	consider	our	tree-based	solutions	to	the	
classi(ication	and	regression	problems.	Both	cover	most	of	
the	data	pretty	well.	Almost	every	red	and	blue	dot	is	
perfectly	classi(ied	and	the	regression	line	hits	a	lot	of	the	
data	points	exactly.	Both	models	make	much	closer	(its	than	
their	linear	counterparts.		

Look	at	the	regression	model	on	the	right.	Imagine	you	see	
a	new	penguin,	and	you	are	given	their	(lipper	length.	
Would	it	make	sense	to	use	this	model	to	predict	their	body	
mass?

http://mlvu.github.io


overfitting
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Let's	zoom	in	on	one	of	the	spikes:	here,	the	model	seems	to	
be	convinced	that	penguins	with	a	(lipper	length	of	exactly	
218	mm	have	a	much	higher	body	mass	than	those	with	
(lipper	lengths	of	217	mm	or	219	mm.	This	isn’t	true,	of	
course.	There's	nothing	special	about	having	(lippers	of	
exactly	218	mm	long.	It	just	happens	to	be	the	case	that	in	
this	area,	there	was	only	one	penguin	in	the	data	and	they	
had	a	slightly	higher	body	mass.	The	model	is	(itting	details	
of	the	dataset	that	are	random	noise.	We	call	this	
over?itting.	

When	a	model	over(its,	we	sometimes	say	that	it	is	
memorizing	the	data,	when	it	should	be	generalizing.

Never judge your model’s 
performance  

on the training data
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This	is	the	most	important	rule	in	machine	learning.	Out	of	
the	three	regression	models	we	showed,	the	regression	tree	
had	the	lowest	loss	on	the	training	data,	but	it’s	actually	
the	worst	model	(for	this	particular	dataset,	it	may	be	
great	for	others).	This	means	that	if	we	look	at	how	well	the	
model	does	on	the	training	data	to	pick	the	one	we	prefer,	
we'd	end	up	with	the	worst	one.		

It	means	nothing	how	many	of	the	training	instances	the	
model	gets	right.	What	we	actually	want	is	a	model	that	
does	well	on	new	data;	data	that	it	hasn’t	been	trained	on.

split your test and training data

• Choose your model based on the training data. 

• The aim is not to minimise the loss on the 
training data, but to minimise the loss on your 
test data.  

• You don’t get to see the test data until you’ve 
chosen your model.
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test datatraining data

The	simplest	way	to	check	this	is	to	withhold	data.	You	
keep	some	data	hidden	from	the	model,	and	then	check	
how	well	a	particular	model	does	on	this	part	of	the	data.	
The	data	you	show	your	model	is	called	training	data,	the	
data	you	withhold	is	called	test	data.	



overfitting
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<- training data

<- test data

Now	we	see	that	the	regression	tree	is	a	terrible	model.	The	
training	data	may	show	a	spike	in	body	mass	at	a	(lipper	
length	of	218mm,	but	the	test	data	will	just	follow	the	linear	
pattern.	The	next	penguin	we	see	with	(lippers	of	218	mm,	
is	likely	to	have	a	much	lower	body	mass	than	the	one	we	
saw	in	the	training	data.

pattern vs. noise
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pattern
noise

The	task	is	not	to	(it	the	training	data	as	well	as	possible.	It	
is	to	(it	the	pattern	in	the	training	data	and	discard	the	
noise.	

What	is	noise	and	what	is	pattern?	Ultimately,	the	pattern	is	
whatever	is	still	there	when	we	look	at	the	test	data,	and	the	
noise	is	what	has	disappeared.	How	can	we	tell	which	is	
which	before	looking	at	the	test	data?	There	doesn't	seem	to	
be	a	de(initive	answer.	Every	model	does	this	differently,	
and	we	can	only	try	things	and	see	if	they	work.		

Fundamentally,	machine	learning	is	an	empirical	science,	
not	a	theoretical	one.	This	is	not	to	say	that	we	don’t	use	
theory	to	build	our	models	and	to	help	us	guess	what	might	
work.	But	ultimately,	the	proof	that	something	works	is	
empirical,	not	theoretical:	we	try	it	and	see.		

question	The	idea	of	a	test/train	split	requires	that	the	
data	are	“independent,	identically	distributed”	(i.i.d.).	That	
is,	each	instance	is	sampled	independently	from	the	next,	
and	they	come	from	the	exact	same	source.	Can	you	come	
up	with	a	dataset	for	which	this	isn’t	the	case,	and	can	you	
think	what	would	go	wrong?	|hide|One	example	is	a	dataset	
with	chess	positions	labeled	by	who	won	the	game,	as	we	
saw	before.	If	we	gather	up	this	dataset	by	taking	all	the	
positions	from	a	game	and	adding	them	all	to	the	data,	you	
may	end	up	with	a	situation	where	one	position	is	in	the	
training	data,	and	the	position	one	move	later	is	in	the	test	
data.	This	is	a	dependency	between	the	two	instances.	The	
problem	is	that	a	model	can	remember	that	the	position	it	
saw	in	the	training	data	was	won	by	black,	and	then	notice	
that	the	position	in	the	test	data	is	almost	the	same.	This	
means	it’ll	do	well	on	the	test	data,	but	it	won’t	be	nearly	as	
good	at	predicting	who	will	win	from	a	random	position	in	
a	game	that	wasn’t	part	of	the	training	data.	One	solution	is	
to	choose	only	one	position	from	each	game	in	your	
database.	This	would	make	it	properly	i.i.d,	but	you’d	be	
throwing	away	a	lot	of	data.	Another	option	is	to	make	the	
split	at	the	level	of	the	games:	all	the	positions	from	one	
game	either	go	into	the	training	set	or	into	the	test	set.	This	
way	you	still	have	a	slight	violation	of	the	i.i.d.	principle,	but	
there	is	no	link	between	your	test	and	training	data	that	will	
falsely	in(late	your	performance.|



the problem of induction

Image source: By Bandan - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29332424

The	problem	of	how	we	learn	(and	how	we	can	make	
machines	that	learn)	is	an	instance	of	the	problem	of	
induction.	It	was	(irst	posed	as	a	problem	by	18th	century	
philosopher	David	Hume	(pictured).	

Inductive	reasoning	is	essentially	a	philosophical	name	for	
learning.	We	observe	something	happening	a	number	of	
times,	so	we	infer	that	it’ll	probably	happen	again	the	next	
time.	We’re	not	absolutely	certain,	and	it	doesn’t	follow	
logically,	but	we’re	sure	enough	to	use	that	knowledge	to	
our	advantage.	

This	is	very	different	from	the	deductive	reasoning	which	
philosophers	have	studied	since	antiquity.	

deductive reasoning 

All men are mortal 
Socrates is a man 

therefore Socrates is mortal
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inductive reasoning 

The sun has risen in the east 
every day of my life 

so it will do so again 
tomorrow

fuzzy 
ambiguous 
experimental 
unknown rules

discrete 
unambiguous 
provable 
known rules 
 

For	deductive	reasoning,	we	know	the	rules,	and	we	
understand	them	perfectly.	For	inductive	reasoning	the	
rules	are	not	so	clear.	For	instance,	whenever	I	visit	a	
funeral,	I’m	never	the	person	being	buried.	Therefore,	the	
more	funerals	I	visit,	the	more	certain	I	should	be	that	next	
time	it	won’t	be	my	funeral.	Clearly	this	is	not	the	case	
(usually	the	opposite	is	true).	

Deduction	is	rule-following.	It’s	what	computers	do	best.	In	
order	to	make	computers	do	something	like	inductive	
reasoning,	and	in	order	to	fully	understand	how	we	do	it,	
we	need	to	reduce	it	to	rules.	But	Hume	argued	that	
inductive	reasoning	can	not	be	proved	to	work	by	deductive	
methods.	

So,	if	inductive	reasoning	doesn’t	follow	as	a	special	case	of	
deductive	reasoning,	and	inductive	reasoning	applies	
sometimes	and	it	doesn’t	at	other	times…	how	do	we	do	it?	
Why	is	the	funeral	example	obviously	wrong,	and	the	sun	
example	obviously	right?	If	inductive	reasoning	cannot	be	
reduced	to	deductive	reasoning,	do	we	have	any	hope	of	
reducing	it	to	a	computer	program?	

In	many	ways,	the	problem	of	induction	is	still	unsolved.	We	
can	teach	computers	to	learn	pretty	well	these	days,	but	we	
still	don’t	fully	understand	what	all	the	rules	are.	



finish the sequence
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Induction	and	machine	learning	are	a	bit	like	(inish-the-
sequence	puzzles,	that	are	often	part	of	IQ	tests.		

Some	people	get	frustrated	by	puzzles	like	these,	because	
the	rules	are	not	spelled	out.	We	are	supposed	to	infer	the	
rules	of	this	particular	sequence	and	then	apply	those	rules	
to	(ind	the	missing	element.	Likewise,	in	machine	learning,	
we	are	supposed	to	infer	the	pattern	from	the	training	set	
and	apply	it	to	the	test	set.	

Obviously,	the	correct	solution	is	the	one	that	(its	the	test	
set	as	well,	but	we	have	to	decide	before	we	see	the	test	
set.	

In	this	case,	there	are	two	ways	to	solve	the	puzzle.	Reading	
from	top	to	bottom	each	column	contains	a	pattern	that	is	
rotated	by	three	slices	each	step.	Reading	from	left	to	right,	
the	two	slices	in	the	pattern	are	pushed	one	slice	further	
apart	each	step.	In	this	case,	both	patterns	lead	to	the	same	
solution.	But	what	if	they	didn’t?	Which	solution	are	we	
supposed	to	prefer?	What	if	we	come	up	with	a	highly	
convoluted	reason	for	preferring	some	other	answer,	why	
would	that	obviously	be	wrong?	

The	truth	is,	that	while	we	have	some	general	principles	for	
which	solutions	we	tend	to	prefer,	there	is	no	general	
theory	of	learning	that	is	always	obviously	correct.	
Ultimately,	the	solution	to	puzzles	like	these	are	appeals	to	
intuition,	and	so	is	the	solution	to	a	machine	learning	
problem.	This	is	what	makes	machine	learning	so	dif(icult,	
and	what	makes	it	so	interesting.	

source:	https://iqpro.org/	

Simplicity, Occams razor:  

All else being equal, prefer the simpler solution. 

Coming up: 

• Minimum Description Length 

• Regularization 

• Implicit regularization
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general principles That	isn’t	to	say	we	don’t	have	a	general	idea	of	what	makes	
one	solution	better	than	another.	There	are	always	
exceptions,	but	in	general,	preferring	simple	solutions	over	
complex	ones	seems	to	lead	to	good	learning	performance.	
Intuitively,	this	certainly	seems	to	apply	to	the	penguin	
regression	problem:	the	linear	(it	is	the	simpler	one,	and	all	
the	extra	complexity	of	the	regression	tree	is	just	noise.	On	
the	other	hand,	in	the	classi(ication	example	the	linear	
model	was	too	simple,	and	the	tree-based	model	was	closer	
to	the	mark.	

Even	if	we	decide	that	we	should	generally	prefer	simplicity,	
we	still	need	to	know	where	to	draw	the	line.	We	have	to	
make	precise	how	we	de(ine	the	simplicity	of	a	given	model	
exactly,	and	if	the	simple	and	complex	solutions	aren’t	
equally	good,	how	much	simplicity	we	should	sacri(ice	for	a	
better	solution.	

In	later	lectures	we’ll	look	at	some	ways	in	which	this	
intuition	is	made	more	precise,	so	we	can	answer	some	of	
these	questions.



summary

Machine learning 
What is it, when do we use it? 

Abstract tasks 
Classification, regression, clustering, density estimation, generative modeling 

Social impact 

Generalization 
Just fitting the training data perfectly is not enough. 
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mlcourse@peterbloem.nl

HAPPY LEARNING!
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