Linear Models and Search

Linear regression

|section|Linear regression|
|video|https://surfdrive.surf.nl/files/index.php/s/
WEFvDwItABNZVm60/download|

the basic recipe

Abstract your problem to a standard task.
Classification, Regression, Clustering, Density estimation, Generative Modeling, Online
learning, Reinforcement Learning, Structured Output Learning

Choose your instances and their features.

For supervised learning, choose a target.

Choose your model class.
Linear models

Search for a good model.

Choose a loss function, choose a search method to minimise the loss.

Here is the "basic recipe” for machine learning we saw in
the last lecture. In this lecture, we'll have a look at linear
models, both for regression and classification. We'll see
how to define a linear model, how to formulate a loss
function and how to search for a model that minimizes that
loss function.

Most of the lecture will be focused on search methods. The
linear models themselves aren’t that strong, but because
they’re pretty simple, we can use them to explain various
search methods that we can also apply to more complex
models as the course progresses. Specifically, the method of
gradient descent, which we'll introduce here, will be the
search method used for almost all approaches we will
discuss.

regression
data 2 [?

3 o 1.1

2 o 4.5

o 1 123

o 2 5.1

1 1 9.1

2 1 1.2

2 o 5.2

1 o 6.1

1 1 1.9

3 1 1.8 1 -8

6 o 3.2

o 1 0.1

;

We'll start with regression. Here’s how we explained
regression in the last lecture.

http://mlvu.github.io

This is is the example data we used to illustrate regression:
flipper body . predicting the body mass of a penguin from its flipper
feabure » length mass < targ® length.
(dm) (kg)
data source: https://allisonhorst.github.io/
i 1.93 3.65 . .
ey AT ; Avies 188 a0 palmerpenguins/, https://github.com/mcnakhaee/
1.90 4.95 palmerpenguins (python package)
2.7 5.70
1.90 3.32 image source: https://allisonhorst.github.io/
1.92 5.70 palmerpenguins/
2.23 5.00
2,05 3.45
2,08 3.05
1.93 5.30
100 EER
As we saw, the linear regression model is simply a linear
6.0 1
- function that maps the feature(s) to the target value. In the
551 . e case of one feature, such a function looks like a line. The
5.0 1 . only decision we have to make is which line fits the data
ES flipper body b
@ 845 length mass est.
2 £ (dm) (kg)
T geoy
= 1.93 3.65
3.5 . 1.88 4.70
L. 1.90 4.95
3.0 1 247 5.70
1.90 332
17 18 19 20 21 22 2 1.92 5.70
flipper length (dm) 223 5.00
2,05 3.45
feature space 2.08 3.05

example data

To simplify things we'll use this very simple data set in the
rest of this lecture. There is one input feature x, one output
value t (for target) and we have six instances.

We will assume that all our features are numeric. In a later
lecture we will see how best to convert categoric features to
numeric ones. We will develop linear regression for an
arbitrary number of features m, but we will keep visualizing
what we're doing on this one-feature dataset.

https://allisonhorst.github.io/palmerpenguins/

X,Y,Z scalar(ie. asingle number)
X,Y,Z vector(acolumn of numbers)

X’ Yv7 7 matrix@ rectangular grid of numbers)

Xi scalarelement of a vector x

Xij scalar element of a matrix X

Throughout the course, we will use the following notation:
lowercase non-bold for scalars, lowercase bold for vectors
and uppercase bold for matrices.

When we’re indexing individual elements of vectors and
matrices, these are scalars, so they are non-bold.

multiple features

X:X1,X2,X3,...

T=1t1,t,t3,...
X1 Xi Instance i in the data
X2
X = . X,]- Feature j (of some instance)

X-'L)' Feature j of instance i

As we saw in the last lecture, an instance in machine
learning is described by m features (with m fixed for a given
dataset). We will represent this as a vector for each
instance, with each element of the vector representing a
feature.

This can be a little confusing, since we sometimes want to
index the instance within the dataset and sometimes the
features of a given instance. Pay attention to whether the
letter we're indexing is bold or non-bold: a bold letter x
with a subscript i refers to the i-th instance in the data
(containinig all features). A non-bold letter x with an index i
refers to the i-th scalar feature of some instance x.

In the rare cases where we need to refer to both the index of
the instance, and the index of the feature within the
instance, we will usually use an uppercase X. This makes
sense if you imagine the data as a big matrix X, with the
instances as rows, and the features as columns.

We’ll occasionally deviate from this notation when doing so
makes things clearer, but we’ll point it out when that
happens.

defining a model: one feature If we have one feature (as in this example) a standard linear

regression model has two parameters (the numbers that
fob(Xx) =wx; +b determine which line we fit through our data): w the
weight and b, the bias. The the weight is also sometimes

1 feature xi:

called the slope and the bias is also sometimes called the
intercept.

b determines where the line crosses the vertical axis. That
is, what value f takes when x = 0.

w determines how much the line rises if we move one step
to the right (i.e. increase x by 1)

For the line drawn here, we have b=3 and w=0.5.

Note that this isn’t a very good fit for the data. Our job is to
find better numbers w and b.

w
b

weight (also known as a coefficient)

1 feature xi: fop(x) =wx; +b

2 features x1, X2: fWth,b (x) =wixy +woxa + b

a 2D linear function Here’s what that looks like. The thick orange lines together
indicate a plane (which rises in the x2 direction, and
declines in the x1 direction). The parameter b describes
how high above the origin this plane lies (what the value of
fis if both features are 0). The value w1 indicates how much

fx1, X2) = wixi + waxa+ b

fincreases if we take a step of 1 along the x1 axis, and the
value w; indicates how much f increases if we take a step of
size 1 along the x2 axis.

fup(X) =wWixg +Wwoxg +wsxs+...+b

=w'x+b
W1 X1
with w = C landx =
WTL XT‘L

For an arbitrary number of features, the pattern continues
as you'd expect. We summarize the w’s in a vector w with
the same number of elements as x.

We call the w’s the weights, and b the bias. The weights and
the bias are the parameters of the model. We need to choose
these to fit the model to our data.

The operation of multiplying elements of w by the
corresponding elements of x and summing them is the dot
product of w and x.

dot product

w X or WX

WTX: E WiXi
i

= |lwl| [Ix]| cos o

The dot product of two vectors is simply the sum of the
products of their elements. If we place the features into a
vector and the weights, then a linear function is simply their
dot product (plus the b parameter).

The transpose (superscript T) notation arises from the fact
that if we make one vector a row vector and one a column
vector, and matrix-multiply them, the result is the dot
product (try it).

The dot product also has a geometric interpretation: the dot
product is equal to the lengths of the two vectors,
multiplied by the cosine of the angle between them. We
won't give you a proof, but we'll occasionally make use of
this form of the dot product, so make sure you remember
this.

The proof that the two definitions are equivalent is given in
the preliminaries lecture.

The dot product will come back a lot in the rest of the
course. We don't have time to discuss it in depth, but if your
memory is hazy, we strongly recommend that you take a
minute to go back to your linear algebra book and look up
the various interpretations of what the dot product means.

predicti h blood pressure To build some intuition for the meaning of the weights w,

let’s look at an example. Imagine we are trying to predict
the risk of high blood pressure based on these three
features. We’ll assume that the features are expressed in
some number that measures these properties.

instances patients

features: job stress, healthy diet, age

dot product Here’s what the dot product expresses. For some features,

like job stress, we want to learn a positive weight (since
more job stress should contribute to higher risk of high
blood pressure). For others, we want to learn a negative

weights w e weight (the healthier your diet, the lower your risk of high
H how predictive dietis blood pressure). Finally, we can control the magnitude of
how predictive age is

the weights to control their relative importance: if age and
patientx [[| [w'x=x3w; +xows +xzw5) &) . p) g
job stress both contribute positively, but age is the bigger

age

risk factor, we make both weights positive, but we make the
weight for age bigger.

has stressful job
has healthy diet

But which model fits our data best? So, that's our model defined in detail. But we still don't

know which model to choose for a given dataset. Given
) . some data, which values should we choose for the

two more ingredients:

. loss function parameters w and b?
- search method (next video)
In order to answer this question, we need two more

ingredients. First, we need a loss function, which tells us
how well a particular choice of model does (for the given
data) and second, we need a way to search the space of all
models for a particular model that results in a low loss (a
model for which the loss function returns a low value).

mean squared error loss

lossx 1(p) = %Z (fp(x) — 15)°
j

lossx 1(w,b) = % Z (w'x;+b— tj)2

Here is a common loss function for regression: the mean-
squared error (MSE) loss. We saw this briefly already in
the previous lecture.

Note that the loss function takes a model as its argument.
The model maps the data to the output, the loss function
maps a model to a loss value. The data is a constant in the
loss function.

The main thing a regression loss should do is to compare
the model predictions to the actual values in our dataset,
and return a large value if they are all very different, and a
small value if they are all very close together. The difference
between the prediction and the actual value is called the
residual. We've drawn these here as green bars.

The MSE loss takes the residual for each instance in our
data, squares them, and returns the average. One reason for
the squaring step is to ensure that negative and positive
residuals don’t cancel out (giving us a small loss even
though we have big residuals). But that's not the only
reason.

The squares also ensure that big errors affect the loss more
heavily than small errors. You can visualise this as shown
here: the mean squared error is the mean of the areas of the
green squares (it’s also called sum-of-squares loss).

When we search for a well-fitting model, the search will try
to reduce the big squares much more than the small
squares.

If we think of the residuals as rubber bands, pulling on the
regression line to pull it closer to the points, the rubber
band on the bottom left pulls much harder than all the
other ones. Therefore, any search algorithm trying to
minimize this loss will be much more interested in moving
the left of the line down than in moving the right of the line
up.

It's not guaranteed that this is a good thing. Sometimes this
behavior is desirable and sometimes it isn't. For now, this is
just a simple loss function to get us started.

In later lectures, we will say more about when this kind of
loss is appropriate and when it isn't. We will also see that
this loss function follows from the assumption that our
data contains noise coming from a normal distribution.

visualization stolen from https://
machinelearningflashcards.com/

slight variations

You may see slightly different versions of the MSE loss:
sometimes we take the average of the squares, sometimes
just the sum. Sometimes we multiply by 1/2 to make the
derivative simpler. In practice, the differences don’t mean
much because we're not interested in the absolute value,
just in how the loss changes from model to another.

We will switch between these based on what is most useful
in a given context.

Linear Models and Search

Searching for a good model

|section|Searching for a good model|
|video|https://surfdrive.surf.nl/files/index.php/s/
wOMpuP3y06K5hc3/download|

model space

y b [}
~
[]
w
feature space model space

aka instance space aka hypothesis space

Remember the two most important spaces of machine
learning: the feature space and the model space. The loss
function maps every point in the model space to a loss
value.

In a single-feature regression problem plotted like this, the
feature space is just the horizontal axis.

http://mlvu.github.io

o)

feature space

w S
logarithm of loss

|
-
N)

-

As we saw in the previous lecture, we can plot the loss for
every point in our model space. This is called the loss
surface or sometimes the loss landscape. If you imagine a
2D model space, you can think of the loss surface as a
landscape of rolling hills (or sometimes of jagged cliffs).

Here is what that actually looks like for the two parameters
of the one-feature linear regression. Note that this is
specific to the data we saw earlier. For a different dataset,
we get a different loss landscape.

To minimize the loss, we need to search this space to find
the brightest point in this picture. Or, the lowest point in the
loss landscape. Remember that, normally, we may have
hundreds of parameters so it isn’t as easy as it looks. Any
method we come up with, needs to work in any number of
dimensions.

We've plotted the logarithm of the loss as a trick to make this
image visually easier to understand (it maps the values that
are easy to tell apart to the values we care about). The
logarithm is a monotonic function so log(loss(w, b)) has its
minimum at the same place as loss(w, b).

p = argmin lossx 1(p)
P

in our example: p = {wi, wa,..., Wy, b}

The mathematical name for this sort of search is
optimization. That is, we are trying to find the input (p, the
model parameters) for which a particular function (the
loss) is at its optimum (a maximum or minimum, in this
case a minimum). Failing that, we’d like to find as low a
value as possible.

We’ll start by looking at some very simple approaches.

machine learning vs. optimization

optimization: find the minimum, or the best possible
approximation

machine learning: find the lowest loss that generalizes

Minimize the loss on the test data, seeing only the training
data.

We often frame machine learning as an optimization
problem, and we use many techniques from optimization,
but it’s important to recognize that there is a difference
between optimization and machine learning.

Optimization is concerned with finding the absolute
minimum (or maximum) of a function. The lower the better,
with no ifs or buts. In machine learning, if we have a very
expressive model class (like the regression tree from the
last lecture), the model that actually minimizes the loss on
the training data is the one that overfits. In such cases,
we're not looking to minimize the loss on the training data,
since that would mean overfitting, we’re looking to
minimize the loss on the test data. Of course, we don’t get to
see the test data, so we use the training data as a stand in,
and try to control against overfitting as best we can.

In the case of underpowered models like the linear model,
this distinction isn’t too important, since they’re very
unlikely to overfit. Here, the model that minimizes the loss
on the training data is likely the model that minimizes the
loss on the test data as well. For now, we'll just try some
simple optimization algorithms to find the absolute
minimum of the loss, and worry about overfitting later.

random search

start with a random point p in the model space
loop:

pick a random point p’ close to p

if loss(p’) < loss(p):

p<-p

Let’s start with a very simple example: random search. We
simply make a small step to a nearby point. If the loss goes
up, we move back to our previous point. If it goes down we
stay in the new point. Then we repeat the process.

We usually stop the loop when the loss gets to a pre-defined
level, or we just run it for a fixed number of iterations, and
we see how well we've done.

analogy: hiker in a snowstorm

A common analogy is a hiker in a snowstorm. Imagine you're
hiking in the mountains, and you're caught in a snowstorm.
You can’t see a thing, and you’d like to get down to your
hotel in the valley, or failing that, you’d like to get to as low
a point as possible.

You take a step in a random direction. If you're moving up,
you step back to where you came from, if you're moving
down, you repeat the process with a new random direction.
This is, in effect, what random search is doing. More
importantly, it's how blind random search is to the larger
structure of the landscape. It can only see what's right in
front of it.

image source: https://www.wbur.org/hereandnow/
2016/12/19/rescue-algonquin-mountain

To implement the random search we need to define how to
pick a point “close to” another in model space.

One simple option is to choose the next point by sampling
uniformly among all points with some pre-chosen distance
r from the current point.

Put more formally: we pick from the hypersphere (or circle, in
2D) with radius r, centered on p.

Here is random search in action. The transparent red
offshoots are steps that turned out to be worse than the
current point (steps that went uphill). The algorithm starts
on the left, and slowly (with a bit of a detour) stumbles in
the direction of the low loss region.

As we can see, it doesn't exactly make a beeline for the
lowest point, but it gets there eventually.

Here is what it looks like in feature space. The first model
(bottom-most line) is entirely wrong, and the search slowly
51 moves, step by step, towards a reasonable fit on the data.

Every blue line in this image corresponds to a red dot in the
model space (inset).

~104

~154

1 2 3 4 5 6
X

enough here is that our problem is convex. A surface (like
our loss landscape) is convex if a line drawn between any
two points on the surface lies entirely above the surface.
One of the implications of convexity is that any point that
looks like a minimum locally (because all nearby points are
higher), it must be the global minimum: it’s lower than any

los,
S .
‘Ur/:;Ce other point on the surface.

global minimum > This means that so long as we know we’re moving down (to

model space a point with lower loss), we can be sure we’re moving
towards the global minimum: the best of all possible

Kl models.

Let’s look at what happens if the loss surface isn’t convex:
what if the loss surface has multiple local minima? These

local global min

global minimum are points that are lower than all nearby points, but if we
move far enough away from them, we can find a point that
is even lower.

Here’s a loss surface with a more complex structure. The

loss.

logarithm of loss

two purple diamonds are the lowest point in their
respective neighborhoods, but the red disc is the lowest
point globally.

This loss surface isn't based on actual data. It's just some
local minima function that illustrates the idea.

Here we see random search on our more complex loss
surface. As you can see, it heads quickly for one of the local
minima, and then gets stuck there. No matter how many
more iterations we give it, it will never escape.

Note that changing the step size will not help us here. Once
the search is stuck, it stays stuck.

simulated annealing

pick a random point p in the model space
loop:
pick a random point p’ close to p
if loss(p’) < loss(p):
p<-p
else:

with probability q: p <- p”

There are a few tricks that can help us to escape local
minima. Here’s a popular one, called simulated annealing:
if the next point chosen isn’t better than the current one, we
still pick it, but only with some small probability. In other
words, we allow the algorithm to occasionally travel uphill.

This means that whenever it gets stuck in a local minimum,
it still has some probability of escaping, and finding the
global minimum.

The name "simulated annealing" is a bit of a historical
accident, so don't read too much in to it. It comes from the
fact that this algorithm can be used to simulate the cooling of
a material like metal. The carefully controlled cooling of a
material to promote the growth of particular kinds of
crystals is called annealing. In physical terms this is like
looking for the minimum in an energy landscape, which is
mathematically similar to our loss landscape.

Here is a run of simulated annealing on our non-convex
problem. We see that it still hits the local minimum first, but
after a while it manages to jump out, and to find the global
minimum.

Of course, with this algorithm, there is always the
possibility that it will jump out of the global minimum again
and move to a worse minimum. That shouldn’t worry us,
however, so long as we remember the best model we’'ve
observed over the entire run. Then we can just let
simulated annealing jump around the model space driven
partly by random noise, and partly by the loss surface.

Note: in many situations, the local minima are fine. We do
not always need an algorithm that is guaranteed to find
the global minimum.

All this talk about global minima may suggest that the local
minima are always terrible. Remember, however that if we
have a complex model, the global minimum will probably
overfit. In such cases, we may actually be more interested in
finding a good local minimum.

In short, we want to think carefully about whether our
algorithm can escape bad local minima, but that doesn't
mean that local minima are always bad solutions.

variations on random search

Fixed radius Random uniform Normal

The fixed step size we used so far is just one way to sample
the next point. To allow the algorithm to occasionally make
smaller steps, you can sample p’ so that it is at most some
distance away from p, instead of exactly. Another approach
is to sample the distance from a Normal distribution. That
way, most points will be close to the original p, but every
point in the model space can theoretically be reached in one
step.

Here is what random search looks when the steps are
sampled from a normal distribution. Note that the “failed”
steps all have different sizes.

discrete model spaces The space of linear models is continuous: between every

two models, there is always another model, no matter how
() close they are together. *

The alternative is a discrete model space. For instance, the
space of all trees is discrete. If our model takes the form of a
tree (like the decision tree we saw in the last lecture), then
: A we don't always have another model "in between" any two
given models. In this case, some search algorithms no
longer work, but random search and simulated annealing

can still be used.
) You just need to define which models are “close” to each

other. In this slide, we've decided that two trees are close if

can turn one into the other by adding or removing a single
node.

Random search and simulated annealing can now be used
to search this space to find the tree model that gives the
best performance.

In practice, we usually use a different method to search for
decision trees and regression trees, which we will introduce in
a later lecture. The point here is just that if you are searching
a discrete space, random search and simulated annealing still
work.

* Strictly speaking, this is not a complete definition of a
continuous space, but it's the property that matters for us.

Another thing you can do is just to run random search a

couple of times independently (one after the other, or in
parallel). If you're lucky one of these runs may start you off
close enough to the global minimum.

For simulated annealing, doing multiple runs makes less
sense. We can show that there’s not much difference
between 10 runs of 100 iterations and one run of 1000. The
only reason to do multiple runs of simulated annealing is
because it’s easier to parallelize over multiple cores or
machines.

population methods

evolutionary algorithms

- genetic algorithms

- evolutionary strategies
particle swarm optimization

ant colony optimization

To make parallel search even more useful, we can introduce
some form of communication or synchronization between
the searches happening in parallel. If we see the parallel
searches as a population of agents that occasionally
“communicate” in some way, we can guide the search a lot
more. Here are some examples of such population
methods. we won't go into this too deeply. We will only
take a (very) brief look at evolutionary algorithms.

Often, there are specific variants for discrete and for
continuous model spaces.

evolutionary algorithms

Start with a population of k models.
loop:
rank the population by loss
remove the half with the worst loss

“breed” a new population of k models

Here is a basic outline of an evolutionary method (although
many other variations exist). We start with a population of
models, we remove the half with the worst loss, and pair up
the remainder to breed a new population.

In order to instantiate this, we need to define what it means
to “breed” a population of new models from an existing
population. A common approach is to select to random
parents and to somehow average their models. This is easy
to do in a continuous model space: we can literally average
the two parent models to create a child.

In a discrete model space, it’s more difficult, and it depends
more on the specifics of the model space. In such case,
designing the breeding process (sometimes called the
crossover operator) is usually the most difficult part of
designing an effective evolutionary algorithm.

Here’s what a very basic evolutionary search looks like on
our non-convex loss surface. We start with a population of
50 models, and compute the loss for each. We kill the worst
50% (the red dots) and keep the best 50% (the green dots).

We then create a new population (the blue crosses), by
randomly pairing up parents from the green population,
and taking the point halfway between the two parents, with
a little noise added. Finally, we take the blue crosses as the
new population and repeat the process.

Here are five iterations of the algorithm. Note that in the
intermediate stages, the population covers both the local
and the global minima.

Population methods are very powerful, but computing the
loss for so many different models is often expensive. They
can also come with a lot of different parameters to control
the search, each of which you will need to carefully tune.

population methods

Powerful
Easy to parallelise
Slow/expensive for complex models

Difficult to tune

To escape local minima:
- add randomness, add multiple models
To converge faster:

- combine known good models (population methods)

black box optimization All these search methods are instances of black box

optimization.
random search, simulated annealing: Black box optimization refers to those methods that only
. very simple require us to be able to compute the loss function. We don’t

need to know anything about the internals of the model.
’ Vr:\igzlly need to compute the loss function for each These are usually very simple starting points. Often, there is
some knowledge about your model that you can add to

* can require many iterations improve the search, but sometimes the black box approach

- also works for discrete model spaces (like tree models) is good enough. If nothing else, they serve as a good starting
point and point of comparison for the more sophisticated

approaches.

In the next video we’ll look at a way to improve the search
by opening up the black box for continuous models:
gradient descent.

|section|Gradient descent]|
|video|https://surfdrive.surf.nl/files/index.php/s/
0WVzpZvce6RqV14/download)|

Linear Models and Search

Gradient descent

branching search As a stepping stone to what we’ll discuss in this video, let’s

take the random search from the previous video, and add a
little more inspection of the local neighborhood before
taking a step. Instead of taking one random step, we’ll look
at k random steps and move in the direction of the one that
gives us the lowest loss.

pick a random point p in the model space
loop:
pick k random points {pi} close to p

" <- argming, loss(pi)
P Mg 0SSP In the hiker analogy, you can think of this algorithm as the
ifloss(p’) <loss(p): case where the hiker taps his foot on the ground in a couple
p<-p of random directions, and then moves in the direction with

the strongest downward slope.

http://mlvu.github.io

k=2 k=5 k=15

Here's what that looks like for a few values of k.

As you can see, the more samples we take, the more directly
we head for the region of low loss. The more closely we
inspect our local neighbourhood, to determine in which
direction the function decreases quickest, the faster we
converge.

The lesson here is that the better we know in which
direction the loss decreases, the faster our search
converges. In this case we pay a steep price: we have to
evaluate our function 15 times to work out a better
direction.

gradient descent

However, if our model space is continuous, and if our loss
function is smooth, we don’t need to take multiple samples
to guess the direction of fastest descent: we can simply
derive it, using calculus. This is the basis of the gradient
descent algorithm.

image source: http://charlesfranzen.com/posts/multiple-
regression-in-python-gradient-descent/

gradient descen tline

Using calculus, we can find the
direction in which the loss drops most
quickly.

We also find how quickly it drops.

This direction is the opposite of the
gradient.

An n-dimensional version of the derivative.

Gradient descent takes small steps in
this direction in order to find the
minimum of a function.

The idea of gradient descent is relatively simple, but it's
easy to get blinded by the mathematical notation. Here are
the main ideas to keep in mind.

0-5**0

g~

P

Before we dig in to the gradient descent algorithm, let’s
review some basic principles from calculus. First up, slope.
The slope of a linear function is simply how much it moves
up if we move one step to the right. In the case of f(x) in this
picture, the slope is negative, because the line moves down.

In our 1D regression model, the parameter w was the slope.
In this case, however we will investigate the slope of a linear
function approximation the loss landscape, not of the model
(be sure not to confuse these two).

tangent line, derivative

g(x) =slope-x +c¢
g(x) =f'(p)x+c

model space

The tangent line of a function at particular point p is the
line that just touches the function at x without crossing it.
The tangent line is a kind of approximation to our
function. So long as we stay close to p, the function f(x) and
the tangent line g(x) behave very similarly.

This is where the derivative f’(x) comes in. The derivative
of a function gives us the slope of the tangent line. Since
the slope tells us how quickly a function rises, and the
tangent line is an approximation to f(x) at p, the slope of the
tangent line tells us how quickly f(x) rises around the point
p.

Traditionally, we find the minimum of a function by setting
the derivative equal to 0 and solving for x. This gives us the
point where the tangent line has slope 0, and is therefore
horizontal.

For complex models, it may not be possible to solve for x in
this way. However, we can still use the derivative to search
for the minimum. Looking at the example in the slide, we
note that the tangent line moves down (i.e. the slope is
negative). This tells us that we should move to the right to
follow the function downward. As we take small steps to the
right, the derivative stays negative, but gets smaller and
smaller as we close in on the minimum. This suggests that
the magnitude of the slope lets us know how big the steps
are that we should take. That is, if the slope of the tangent
line is big, the function is dropping quickly, and we can take
a big step. If the slope of the tangent line is small, the
function is dropping more slowly, and we might be getting
closer to the minimum.

This assumes that a function doesn’t suddenly change from
dropping very steeply to flattening out. That’s not always
true, but it’s a reasonable hypothesis to start from. As we will
see later, gradient descent can always correct if the
assumption s wrong.

The first thing we need to do, is to extend this idea to
functions of multiple inputs.

generalize it for loss functions with multiple inputs (i.e. for
models with multiple parameters). We do this by
generalizing the tangent line to a tangent (hyper)plane. The
derivative then becomes a gradient vector that describes
the way this hyperplane is angled.

Once we have this hyperplane, we can use it to work out in
which direction the function grows and shrinks the
quickest. As in the one-dimensional case, the tangent
hyperplane is a local approximation of the function.
Zoomed out like this, the hyperplane and the function look

El nothing alike, but if we zoom in close enough on the point
where they touch, they behave almost exactly the same.

This is useful, because in a hyperplane it's very easy to see
in which direction it goes down the quickest. Much easier
than it is for a complicated beast like our loss function itself.
Since the hyperplane approximates the loss function, this is
also the direction in which the loss decreases the quickest.
At least, so long as we don't move away too far from the
neighborhood where the hyperplane is a good
approximation of the loss function.

a 2D linear function Remember, that this is how we express a linear function in

n dimensions: we assign each dimension a slope, and add a
single bias (¢).

f(x1, x2) = axq + bxa+ ¢

In this image, the two weights of the linear function (a and
b) are just one slope per dimension. If we move one step in
the direction of x1, we move up by a, and if we move one
step in the direction of xz, we move up by b.

‘} This is the same picture we saw earlier for the linear

function, but we're using it in a different way. Earlier, it

\ represented a model with two features and three parameters.

Here, it will serve as a linear approximation for a loss surface

for a model with two parameters. That is, the plane x1, X2 is
our model space, not our feature space, and the hyperplane is
not a single model, but a stand-in for our loss function.

of of
Vf(XaU) = <aa a)

tangent hyperplane:

g(x) = Vf(p)'x+c

We are now ready to show haw the gradient can be worked
out. Any function from n inputs to one output has n
variables for which we can take the derivative. These are
called partial derivatives: they work the same way as
regular derivatives, except that you when you take the
derivative with respect to one variable x, you treat the other
variables (y) as constants.

One thing that is sometimes a little confusing is that the
gradient of a function f(+) is often written as another
function V£(-). This Vf(-) tells us not what the gradient is at
a specific point but for all points. This is the same with the
derivative: at a particular point, the derivative is some
numerical value, but over all points, the derivative of f(x) is
another function f’(x). If we take the gradient to be a
function like this, then the tangent hyperplane of f(x) at
point p is the function g(x) = Vf(p)™ + c.

It is on this linear function, g(x) that we want to work out
the direction of steepest ascent. The answer will be that the
gradient Vf(p) points exactly in that direction.

The gradient is sometimes defined as a row vector, and
sometimes as a column vector. In machine learning contexts,
the latter usually makes most sense.

the direction of steepest ascent

gx)=w'x+b
= [[wl| [[x]| cos &
lIx|| =1
— ||wl| cos o

To make this clear, we will write w = Vf{(p), so that g(x)
looks like a plain old linear function. All we want to show is
that w is the direction in which this function grows the
quickest.

Since g(x) is linear, many details don’t matter: we can set
the bias b to zero, since that just translates the hyperplane
up or down. Next, It doesn’t matter how big a step we take
in any direction, so we’ll take a step of size 1. Finally, it
doesn’t matter where we start from, so we will just start
from the origin. So the question becomes: for which input x
of magnitude 1 (which unit vector) does g(x) provide the
biggest output?

To see the answer, we need to use the geometric definition
of the dot product. Since we required that ||x]||= 1, this
disappears from the equation, and we only need to
maximize the quantity ||w|| cos(a) (where only a depends
on our choice of x, and w is the gradient we computed).
cos(a) is maximal when a is zero: that is, when x and w are
pointing in the same direction.

In short: w, the gradient, is the direction of steepest
ascent. This means that -w is the direction of steepest
descent.

summary

The tangent hyperplane of a function f approximates the
function f locally.

The gradient, VT, gives the slope of this tangent hyperplane.

The vector expressing the slope of a hyperplane is also the
direction of steepest ascent on that hyperplane

The opposite vector is the direction of steepest descent.
The direction we want to move in.

Conclusion: to move to a lower point of f, we can compute
the gradient and take a small step in the opposite direction.

gradient descent

pick a random point p in the model space
loop:

p + p-nVloss(p)

we usually set n somewhere between 0.0001 and 0.1

Here is the gradient descent algorithm. Starting from
some candidate p, we simply compute the gradient at p,
subtract it from the current choice, and iterate this process:

+ We subtract, because the gradient points uphill. Since the
gradient is the direction of steepest ascent, the negative
gradient is the direction of steepest descent.

Since the gradient is only a local approximation to our
loss function, the bigger our step, the more we go wrong
because the approximation is incorrect. Usually, we scale
down the step size indicated by the gradient by
multiplying it by a value 1 (eta), called the learning rate.
This value is chosen by trial and error, and remains
constant throughout the search (at least in the simplest
version of the algorithm).

Note again a potential point of confusion: we have two
linear functions here. One is the model, whose parameters
are indicated by w and b. The other is the tangent
hyperplane to the loss function, whose slope is indicated by
Vloss(p) here. These are different functions on different

spaces.

We can iterate for a fixed number of iterations, until the loss
gets low enough, or until the gradient gets close enough to
the zero vector, which implies we've reached a local
minimum.

gradient descent: outline

Using calculus, we can find the
direction in which the loss drops most
quickly.

We also find how quickly it drops.

This direction is the opposite of the
gradient.

Itis an n-dimensional version of the derivative.

Gradient descent takes small steps in
this direction in order to find the
minimum of a function.

Like a marble rolling down a hill

Let’s go back to our example problem, and see how we can
apply gradient descent here.

~

Unlike random search, it's not enough to just compute the
loss for a given model, we need the gradient of the loss.
We'll start by working this out.

N w S w o
logarithm of loss

-

o

1
loss(w,b) = o Z(wxi +b—t;)?
1

oloss(w,b)
ow

0loss(w,b)
ob

Vloss(w, b) =

Here is our loss function again. The gradient is just a vector
of all the partial derivatives we can take for it: one for the
parameter w and one for the parameter b.

To simplify the notation we’ve let x; refer to the only feature
of instance i.

dloss(w,b) 0L Y (wx;+b—1t;)?

ow ow
1 Z (wxi +b—1;)?
n n ow

o(wxi +b—1) ow

l Z o(wxy+b— t‘l)2 o(wxi +b—t;)
=0 i

2
== Z(wx-1 +b—ti)xy
na

dloss(w,b) 0% > i (wxi +b —t)?
ob B ob

2
= — Z(wxi +b 7ti)
n i

Here are the derivations of the two partial derivatives:

« first we use the sum rule, moving the derivative inside the
sum symbol

+ then we use the chain rule, to split the function into the
composition of computing the residual and squaring,
computing the derivative of each with respect to its

argument.

The second homework exercise, and the formula sheet both
provide a list of the most common rules for derivatives.

On your first pass through the slides, it's ok to take my word
for it that these are the derivatives and to skip the derivation.
However, there are a lot more derivations like these coming
up, so you should work through every step before moving on
to the next lecture, or you'll struggle in the later parts of the

course.

gradient descent for our example

pick a random point (w, b) in the model space

loop:

w w 2T v bt
 - (b) _“< Y (wxi+b—t;))

_—

@ @
v v gradient
3 3
(2] (2]
rd
v
<

C’-U‘re“é

Here's what we've just worked out. Gradient descent, but
specific to this particular model. We start with some initial
guess, compute the gradient of the loss with the two
functions we've just worked out, and we subtract that
vector (times some scalar 1) from our current guess.

Hopefully, repeating this process a number of times in small
steps will directly follow the loss surface down to a (local)

minimum.

Here is the result on our dataset. Note how the iteration
converges directly to the minimum. Note also that we have
no rejections anymore. The algorithm is fully deterministic:
it computes the optimal step, and takes it. There is no trial

and error.

Note also that the gradient gives us a direction and a step
size. As we get closer to the minimum, the function flattens
out and the magnitude of the gradient decreases. The effect
is that as we approach the minimum, the algorithm
automatically takes smaller and smaller steps, preventing

us from overshooting the optimum.

Here is what it looks like in feature space.

playground.tensorflow.org (bit.ly/2MnehJp) Here is a very helpful little browser app that we’ll return to
a few times during the course. It contains a few things that
5 ° N 460,000 that we haven't discussed yet, but if you remove all hidden
layers, and set the target to regression, you'll get a linear
classifier of the kind that we've been discussing. Click the
DATA FEATURES 0 HIDDEN LAYERS OUTPUT

following link to see a version with only the currently
relevant features: playground.tensorflow.com We will

enable different additional features as we discuss them in

the course.

REGENERATE

The output for the data is indicated by the color of the
points, the output of the model is indicated by the colouring

of the plane.

Note that the page calls this model a neural network (which
we won't discuss for a few more weeks). Linear models are
just a very simple neural network.

http://playground.tensorflow.org
https://bit.ly/2MnehJp
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=&seed=0.55125&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=regression&initZero=false&hideText=false&activation_hide=true&problem_hide=true®ularization_hide=true&batchSize_hide=true®ularizationRate_hide=true&percTrainData_hide=true&numHiddenLayers_hide=true&discretize_hide=true

If our function is non-convex, gradient descent doesn’t help
us with the problem of local minima. As we see here, it
heads straight for the nearest minimum and stays there. To
make the algorithm more robust against this type of thing,
we need to add a little randomness back in, preferably
without destroying the behaviour of moving so cleanly to a
minimum once one is found.

We can also try multiple runs from different starts. Later we
will see stochastic gradient descent, which computes the
gradient only over subsets of the data (making the
algorithm more efficient, and adding a little randomness at
the same time).

3
2
1
0
1
2
3
-3 -2 -1 0 1 2 3
w
3
2
1
0
1
2
3
-3 -2 -1 0 1 2 3
w

Here is a run with a more fortunate starting point.

The point of convergence seems a little off in these images.
The partial derivatives for this function are very complex (I
used Wolfram Alpha to find them), so most likely, the

implementation has some numerical instability.

learning rate: 0.1

5 2 a1 o0 1 o2 3

learning rate: 0.01

S o2 o1 o0 1 o2 3 =

learning rate: 0.05

10 12 o3

learning rate: 0.005

Here, we see the effect of the learning rate. If we set if too
high, the gradient descent jumps out of the first minimum it
finds. A little lower and it stays in the neighborhood of the
first minimum, but it sort of bounces from side to side, only
very slowly moving towards the actual minimum.

At 0.01, we find a sweet spot where it finds the local
minimum pretty quickly. At 0.005 we see the same behavior,
but we need to wait much longer, because the step sizes are
so small.

The best value of the learning rate is different for each
dataset and each model. You'll usually have to find it by trial
and error. We'll talk a little more about how this looks in
practice in the next lecture.

gradient descent

only works for continuous model spaces
... with smooth loss functions

... for which we can work out the gradient
does not escape local minima

very fast, low memory

very accurate

backbone of 99% of modern machine learning.

but actually...

alOSS(W’ b)
Ol085\W, B)
ow
dloss(w,b) .
ob =
i olution
there’s an awa\.‘jh.caL sol

(for this model

It’s worth saying that for linear regression, although it
makes a nice, simple illustration, none of this searching is
actually necessary. For linear regression, we can set the
derivatives equal to zero and solve explicitly for w and for b.
This would give us the optimal solution directly without
searching.

However, this trick requires more advanced linear algebra to
work out than we want to introduce here. You should learn
about this in most linear algebra courses, where the problem
is called ordinary least squares, and is solved by computing
the pseudo-inverse of the data matrix. We won't go down this
route in this course because it'll stop working very quickly
once we start looking at more complicated models.

|section|Gradient Descent and Classification|
|video|https://surfdrive.surf.nl/files/index.php/s/
xpcq]FUDWMy4E3N/download|

Linear Models and Search

Gradient descent and classification

The first question we need to answer is how do we define a
linear classifier: that is, a classifier whose decision
boundary is always a line (or hyperplane) in feature space.

6.0
5.5
5.0
4.5
4.0
3.5
3.0

4

To define a linear decision boundary, we take the same

WX+ b> 0 weight vector w, and a bias b.

The way we define the decision boundary is a little different
than the way we defined the regression line. Here, we say
wix+b<0 that if wTx + b is larger than 0, we call X one class, if itis
smaller than 0, we call it the other (we’ll stick to binary

wix+b=0

classification for now).

Note that we are drawing a line again, but in a different

space: in the regression example we draw a line in the
4
combined feature and output space (a function from the

feature to the output). Here, we have two features, and we

are drawing a line in only the feature space.

7 18 19 20 21 22 23 2
: - functional form we used for the linear regression: some
7 18 19 20 21 22 23 2
x

http://mlvu.github.io

1D linear classifier

y
0 X

wx+b>0

The actual hyperplane this function y = wx + b defines can
be thought of as lying above and below the feature space.

Here it is visualized for the case of one feature. We are
defining a linear function from the feature to some output y.
Wherever this line lies above the feature space (i.e. is
positive), we classify things as the blue/disc class, and
wherever the line lies below the feature space (i.e. is
negative) we classify them as the red/diamond class.

Here itis in 2D: wTx + b describes a plane that intersects
the feature space. The line of intersection is our decision
boundary.

X2

wix+b=0

This also shows us another interpretation of w. Since it is
the direction of steepest ascent on this hyperplane, it is the
vector perpendicular to the decision boundary, pointing
to the class we assigned to the case where wTx + b is larger
than O (the blue class in this case).

We never want to "ascend” this plane like we do with the
hyperplane approximating the loss landscape, but it's useful
for our geometric intuition to know where w points, relative
to our decision boundary. We will use this fact at different
points in the future.

example data

1] @

2

*

x

100 125 150 175 200 225 250 275 3.00

Here is a simple classification dataset, which we’ll use to
illustrate the principle.

what loss function do we use?

nr. of misclassified examples (error)?

This gives us a model space, but how do we decide the
quality of any particular model? What is our loss function
for classification?

The thing we are usually trying to minimize is the error:
the number of misclassified examples. Sometimes we are
looking for something else, but in the simplest classification
problems, this is what we are ultimately interested in: a
classifier that makes as few mistakes as possible. So let's
start there: can we use the error as a loss function?

3.0

2.5

2.0

1.5

1.0

0.5

0.0

error

This is what our loss surface looks like for the error
function on our simple dataset. Note that it consists almost
entirely of flat regions. This is because changing a model a
tiny bit will usually not change the number of misclassified
examples. And if it does, the loss function will suddenly
jump a lot.

In these flat regions, random search would have to do a
random walk, stumbling around until it finds a ridge by
accident.

Gradient descent would fare even worse: the gradient is
zero everywhere in this picture, except exactly on the
ridges, where it is undefined. Gradient descent would either
crash, or simply never move.

Note that our model now has three parameters wi, wz and b,
so the loss surface is a function on a 3d space (a 4d
"surface”). In order to plot it in two dimensions, we have fixed

wa=1.

loss function

evaluation function

This is an important lesson about loss functions. They serve
two purposes:

1. To express what quantity we want to maximize in our
search for a good model.

2. To provide a smooth loss surface, so that we can find a
path from a bad model to a good one.

For this reason, it’s common not to use the error as a loss
function, even when it’s the thing we’re actually interested
in minimizing. Instead, we’ll replace it by a loss function
that has its minimum at (roughly) the same model, but that
provides a smooth, differentiable loss surface.

After we have trained a model we can still evaluate it with
the function we're actually interested in (that is, we can still
count how many mistakes it makes). We'll discuss
evaluation in-depth in the next lecture.

classification losses

Least squares loss (this video)
Log loss / Cross entropy (Lecture 5, Probability)

SVM loss (Lecture 6, Linear Models 2)

In this course, we will investigate three common loss
functions for classification. The first, least-squares loss, is
just an application of MSE loss to classification, we will
discuss that in the remainder of the lecture. It's not usually
that good, but it gives you an idea of what a classification
loss might look like.

The others require a bit more background, so we’ll save
them for later.

least-squares loss

Loss for instances in pos class @ Loss for instances in neg class ¢

loss(w,b) = Z (wixi +b—1)2+ Z (w'xi +b+1)2

i€pos i€neg

,1T

The least squares classifier essentially turns the
classification problem into a regression problem: it assigns
points in one class the numeric value +1 and points in the
other class the value -1. We then use a basic MSE loss that
we saw before the break to train a regression model to
predict these numeric values.

Performing gradient descent with this loss function will
result in a line that minimizes the green residuals.
Hopefully the points are far enough apart that the decision
boundary (the single point where the orange line crosses
the x axis) separates the two classes.

As you can see, we always get very big residuals whatever
we do. That is because the points simply do not lie on a
single line, so the linear model is not appropriate. Still, with
a little luck, the best fitting line will be positive for the +1
class and negative for the -1 class. If so the classifier will
make the right predictions, even if the model is way off as a
regression model for the numeric labels we introduced.

o

With this loss function, we note that our loss surface is
perfectly smooth. If we overlay the error loss, we see that
the minima of the two losses coincide pretty well (for this
dataset at least).

And gradient descent has no problem finding a solution.

Note, however that the optimum under this loss function may
not always perfectly separate the classes, even if they are
linearly separable. It does in our case, but this result is not
guaranteed.

3.00 4

2,754

T
1.25

T
1.75

"
2.00
x1

T
2.25

T T
2,50 275 3.00

Here is the result in feature space, with the final decision
boundary in orange.

playground.tensorflow.org (bit.ly/2Me1fxU)

O ° d 000,000 00001

DATA FEATURES 0 HIDDEN LAYERS OUTPUT

REGENERATE

The tensorflow playground also allows us to play around
with linear classifiers. Note that only for one of the two
datasets, the linear decision boundary is appropriate.

Here is a link with the relevant features enabled.

This example actually uses a logarithmic loss, rather than a
least squares loss, but it should still be intructive to play
around with it. We'll discuss the logarithmic loss in the first
probability lecture.

micourse@peterbloem.nl

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.0001®ularizationRate=0&noise=30&networkShape=&seed=0.88534&showTestData=false&discretize=true&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&problem_hide=true®ularization_hide=true&batchSize_hide=true®ularizationRate_hide=true&percTrainData_hide=true&numHiddenLayers_hide=true&discretize_hide=true&dataset_hide=false
http://playground.tensorflow.org
https://bit.ly/2Me1fxU
mailto:mlcourse@peterbloem.nl

