Model Evaluation

Experiments

|section|Experiments|
|video|https://surfdrive.surf.nl/files/index.php/s/
6EzC4XnMQ8yNzCW /download)|

the basic recipe

Aoy L
hozva'jtuabe yeur mode

lecture &

Prepore your dota

Here is the basic recipe for machine learning again. This
week, we'll discuss what happens before and after. Today:
once you've trained some models, how do you figure out
which of them is best?

binary classification

L *

® Positive class
@ Negative class

The classifier is a detector for
the positive class.

error: 3/14

proportion of misclassifications

accuracy: 11/14

proportion of correct classifications

We’ll focus mostly on binary classification today (two-
class classification). In this case, we can think of the
classifier as a detector for one of the classes (like spam, or a
disease). We tend to call this class positive. As in “testing
positive for a disease.”

In classification, the main metric of performance is the
proportion of misclassified examples (which we’ve already
seen). This is called the error. The proportion of correctly
classified examples is called the accuracy.

http://mlvu.github.io

comparing models You compare models to figure out which is the best.

Ultimately, to choose which model you want to use in
linear vs. decision tree vs. kNN production.

This could be literally the production version of a piece of
software, or just the model whose predictions you decide to
use in the future.

Sometimes you are comparing different model types (a
decision tree vs a linear model), but you might also be
comparing different ways of configuring the same model
type. For instance in the kNN classifier, how many
neighbours (k) should we look at to determine our
classification?

With the 2D dataset, we can look at the decision boundary,
and make a visual judgment. Usually, that’s not the case: our
feature space will have hundreds of dimensions, and we’ll
need to measure the performance of a model.

performing an experiment Here is the simplest, most straightforward way to compare

two classifiers. You just train them both, so see how many
examples they get wrong, and pick the one that made

Train classifier A, train classifier B i . . .
fewest mistakes. This is a very simple approach, but it's

Compute the error of A, compute the error of B basically what we do.

error = proportion of mistakes

The lower the error, the better the model We just need to consider a few questions, to make sure
. that we can trust our results.
On which data do we compute the error?

How do we eliminate random effects?

Is error/accuracy the best metric to use?

training data. A model that fits the training data perfectly
may not be much use when it comes to data you haven't
seen before.

- 1]
. o %
o R
o
_ 501 ~’ . *
g - Lete
ﬁa,s— - o~ s
:)
Fao $ et o

o+

flipper length (dm) 718 19 22 23 24

20 21
flipper length (dm)

Never judge your

performance on the
training data

the test set

The proportion is not important, the absolute size of the
test data is.

We should aim to have at least 500 examples in the test
data (10 000 or more is ideal).

So the first thing we do in machine learning is withhold
some data. We train our classifiers on the training data and
test on the test data. That way, if we get good performance,
we know that we’re likely to get a good performance on
future data as well, and we haven’t just memorised random
fluctuations in the training data.

How should we split our data? The most important factor is
the size in instances of the test data. The bigger this
number, the more precise our estimate of our model’s error.
Ideally, we separate 10 000 test instances, and use
whatever we have left over as training data. Unfortunately,
this is not always realistic. We’ll look at this a little more
later.

*Se ¢
\ 4 °
[] ‘0

o’8® o TV

But even if we withhold some test data, we can still go
wrong. We'll use k nearest neighbours (kNN) as a running
example. Remember, KNN assigns the class of the k nearest
points.

kis what is called a hyperparameter. We need to choose
its value in some way before we run the algorithm. The
algorithm doesn't specify how it should be chosen. One way
of choosing k is to try a few values, and to see for which k
we get the best performance.

We will use the data from the first lecture as an example.
We will take a small subsample of the dataset, so that the
6.0 1 effects that we want to illustrate become exaggerated.
5.51
Ssod el .
f 5.0 :0 -
[u) *
Ees Cw e
> 3
8 4.0 v HELEEL
a X :.-
EET I S
° * ‘ * N
3.0 -
*
17 18 19 20 21 22 23
flipper length (dm)
W

k=1, err=0.16 k=2, err=0.28 k=3, err=0.24

k=4, err=02

Here we've tested 12 different values of k on the same test
data (using quite a small test set to illustrate the idea). We
can see that for k=1, we get the best performance. We
I - W———— plotted the test data (with the training data in low opacity).

k=7, err=0.24

k=8, err=0.32

30

17 18 19 20 21 22 23 24

k=10, err=0.32 k=12, err=0.28

as
a0
35

30

17 a8 19 20 21 22 23 24 17 18 1o 20 21 22 23 24 17 18 19 20 21 22 23 24

best model Here is the best run. Should we conclude that k=1 is

k=1, err=0.16 definitely a better setting than k=2 or k=3? Should we
conclude that we can expect an error of 0.16 on any future
data from the same source?

k=1, err=0.32

“] © “rerun:same models, new test set” |

P

k=4, err=0.12

.

k=5, err=0.2 k=6, err=0.12

17 18 19 20 21 22 23 24

k=8, err=0.12

17 18 19 20 21 22

TETTET=0TE
60

55

as

17 18 19 20 21 22 23 24 17 18 13 20 21 22 23 24 17 18 19 2o 21 22 23 24

k=12, err=0.16

17 15 19 20 21 22 23 2%

In this case, we have some more data from the same source,
so we can evaluate the classifiers again on a fresh test set.
This is a luxury we don't normally have (we normally use all
the data we are given).

What we see is that k=1 no longer gives us the best
performance. In fact, we get a radically different best value
of k, and k=1 now gives us the highest error in the run.

k=8, err=0.12
6.0

5.5
5.0
4.5
4.0
3.5
3.0

Here is one of the the new best runs.

k=1, err=0.16 k=1, err=0.32

The same models, different test sets and the conclusions are
entirely different. We were diligent in splitting our dataset
and evaluating only on withheld data, and yet if we had
done only one run on one dataset, as we normally would,
we would have concluded that k=1 is the best setting and
that an error of 0.16 can be expected with that value.

If we look at the k=1 model from the second run (the one
we chose), we will see that the performance on the new test
set is terrible. If we select a model in this way and take it
into production, we will find that it performs terribly.

So what's happening here?

conclusion: we're overfitting again

WE FOUNONO WE FOUNONO WE FOUNONO WE FOUND A WE FOUNONO
LINK GETWEEN LINK GETWEEN LINK GETWEEN LINK BETWEEN LINK GEWEEN
GREY LY TN JEuY CfaN Jewy GREEN JELY TAWGE JEWY
(P>0.05). (P>005). (P>005). (P<0.05). (P>0.05).

/ / / /

il B B

WE FOUNDNO WE FOUND NO WE FOUNDNO WE FOUND NO WE FOUND NO

LINK BETWEEN LLINK BETWEEN LINK BETWEEN LINK GEWEEN LUINK GETWEEN

BEIGE Jewy LAc Jewy BLACK JEuy PEACH JELY ORANGE JELY

(P>005). (P>005), (P>005). (P>005), (P>005),
/ / / / /

BIRRIR R

source: xked.com/882 16

This is essentially the overfitting problem again. Our
method of choosing the hyperparameter k is just another
learning algorithm. By testing so many values of k on such a
small amount of test data, we are overfitting our choice of k
on the test data. The model we choose fits well because of
random fluctuations in the data. When we resample the
data, these fluctuations disappear and the performance
drops.

This is an instance of the multiple testing problem in
statistics. We're testing so many things, that the likelihood
of a noticeable effect popping up by chance increases. We
are in danger of ascribing meaning to random fluctuations.

Specifically, in our case, the k=1 classifier got lucky on a
few examples, that just happened to fall on the right side of
the decision boundary. If we draw some new data, the same
classifier won't be lucky again. The more different values of
k we try, the more we are in danger of this kind of random
luck determining which hyperparameters come out as
good.

The simple answer to the problem of multiple testing is not
to test multiple times.

see also: https://www.explainxkcd.com/wiki/
index.php/882:_Significant

evaluation: the modern recipe

Split your data into train and test data.

sample randomly. At least 500 examples in your test set. In ML benchmarks the test data s often
given,

Choose your model, hyperparameters, etc. only using the
training set.

Save your test set until the very last minute. Don't use it for anything.

State your hypothesis

i.e. KNN with k=7 beats existing model X, or kNN with k=7 is better than kNN with k = 12

Test your hypothesis once on the test data

This is usually at the very end of your project when you write your report or paper.

There are many different approaches to machine learning
experimentation, and not every paper you see will follow
this approach, but this is the most common one.

It’s important to mention in your paper that you followed
this approach, since the reader can’t usually see it from the
presented results.

Don’t re-use your

Just to emphasize the important point: the more you use
the test data, the less reliable your conclusions become.
Figure out what the end of your project is, and do not touch
the test data until the end.

In really important and long-term projects, it's not a bad
idea to withhold multiple test sets. This allows you to still
test your conclusions in case you've ended up using the
original test data too often.

Causes you to pick the wrong model

Inflates your performance estimate

reusing your

Not only does reusing test data mean that you pick the
wrong model, it also means that the error estimate you get
is probably much lower than the error you would actually
get if you gathered some more test data.

During model and hyperparam. selection:

- trainon:

- teston:
) A

Final run: - asv® g

- trainon:

- teston:

validation set

This means that you need to test which model to use, which
hyperparameters to give it, and how to extract your
features only on the training data. In order not to evaluate
on the training data for these evaluations, you usually split
the training data again: into a (new) training set and a
validation set.

Ideally, your validation data is the same size as your test set,
but you can make it a little smaller to get some more
training data.

This means that you need to carefully plan your research
process. If you start out with just a single split and keep
testing on the same test data, there’s no going back (you
can’'t unsee your test data). And usually, you don’t have the
means to gather some new dataset.

It’s usually fine in the final run to append the validation
data to your training data. This is not always the case
however, so if you use a standard benchmark you should
check if this is allowed, and if you use your own dataset, you
should describe carefully whether you do this.

Note that this approach by itself doesn't prevent multiple
testing. It just provides for a final failsafe to detect it. Before
you make the decision to try your model on the test data,
you should first convince yourself that the results you see
are not down to multiple testing. You can do this by not
testing too many hyperparameter values, or if you fear that
you have, by rerunning your experiment on a different
train/validation split to double-check.

There's always a bit of a tense moment when you run the
experiment on the test data, and you get to find out how
close the real numbers you'll get to report are to the
numbers you've seen for the validation. However, if your
datasets are large, and you haven't done anything strange in
the hyperparameter tuning phase, they will usually be very
close together.

other method 1
other method 2
ours (k=1)
ours (k=2)
ours (k=3)
ours (k=4)
ours (k=5)

ours (k=6)

dataset 1

0.15

0.11

not this

dataset 2

dataset 3

0.27

0.29

This may seem like a simple principle to follow, but it goes
wrong a lot. Not just in student papers, also in published
research.

Here’s what you might come across in a bad machine
learning paper. In this (fictional) example, the authors are
introducing a new method (labeled ours) which has a
hyperparameter k. They are claiming that their model beats
every baseline, because their numbers are higher (for
specific hyperparameters).

These numbers create three impressions that are not
actually validated by this experiment:

« That the authors have a better model than the two other
methods shown.

+ That if you want to run the model on dataset 1, you
should use k=3

+ That if you have data like dataset 1, you can then expect
an error of 0.08.

None of these conclusions can be drawn from this
experiment, because we have not ruled out multiple testing.

but this
dataset 1 dataset 2 dataset 3
other method 1 0.15 0.08 0.27
other method 2 0.1 0.10 029
ours 0.11 0.11 0.24

“The hyperparameter k was chosen based on a validation set
split off from the training data. The test data was used only
once”

Here is what we should do instead. We should use the
training data (with validation withheld) to select our
hyperparameters, make a single choice for k for each
different dataset, and then estimate the accuracy of only
that model.

Note that the numbers have changed, because in the
previous example the authors gave themselves an
advantage by multiple testing. With a proper validation
split, that advantage disappears. These numbers are worse,
but more accurate. (I made these numbers up, but this is
the sort of thing you might see)

Now, we can actually draw the conclusions that the table
implies:
* On dataset 3, the new method is the best.

+ If we want to use the method on dataset 3 (or similar
data) we should use k=2

+ If our data is similar to that of dataset 3, we could expect
a performance around 0.24

Even though most people now use this approach, you
should still mention exactly what you did in your report (so
people don’t assume you got it wrong).

cross-validation

0.3
0.4
0.1
0.3
0.4

average

0.3

After you've split off a test and validation set, you may be
left with very little training data. If this is the case, you can
make better use of your training data by performing cross-
validation. You split your data into 5 chunks (“folds”) and
for each specific choice of hyperparameters that you want
to test, you do five runs: each with one of the folds as
validation data. You then average the scores of these runs.

This can be costly (because you need to train five times as
many classifiers), but you ensure that every instance has
been used as a training example once.

After selecting your hyperparameters with crossvalidation,
you still test once on the test data.

You may occasionally see papers that estimate error of their
finally chosen model by cross validation as well (splitting
off multiple test sets), but this is a complicated business,
and has fallen out of fashion. We won’t go into in this
course.

temporal data

time

If your data has special attributes, like a meaningful
temporal ordering of the instances, you need to take this
into account. In the case of temporal data, training on
samples that are in the future compared to the test set is
unrealistic, so you can’t sample your test set randomly. You
need to maintain the ordering.

Sometimes data has a timestamp, but there’s no meaningful
information in the ordering (like in email classification,
seeing emails from the future doesn’t usually give you much
of an unfair advantage in the task). In such cases, you can
just sample the test set randomly.

time

temporal data: walk-forward validation

0.4
0.1
0.3

If you want to do cross-validation in such time sensitive
data, you'll have to slice the dataset like this.

Evaluation is a simulation of production.

Validation is a simulation of evaluation.

In general, don’t just apply split testing and cross validation
blindly. Think about how you will ultimately train and use
your model “in production”. Production may be an actual
software production environment, or some other place
where you intend to employ your model. Your evaluation on
the test set is essentially a simulation of that setting.

If you're doing something in evaluation that you won't be
able to do in production (like training on instances from the
future), then you are cheating your evaluation.

Your validation is essentially a simulation of the evaluation.
If you want validation results that accurately predict your
evaluation results, then your validation should mimic the
evaluation as closely as possible.

Here, however, you are allowed to deviate a little. For
instance, you can make your validation data a little smaller
than your test data. This is a tradeoff: you are reducing the
certainty of your validation results, but you are gaining a
little extra training data, which will improve your results in
the end. Such tradeoffs are fine, so long as you are honest in

your final evaluation on the test data.

In general, when in doubt make sure that the evaluation
setting accurately simulates production, and that the
validation setting accurately simulates the evaluation
setting.

which hyperparameters to try?

Up to you:

- trial-and-error (intuition)
probably the most common approach

- grid search

define a finite set of values per hyperparameter and try all combinations.

- random search (remember?)

So, now that we know how to experiment, what
experiments should we run? Which values should we try for
the hyperparameters? So long as we make sure not to look
at our test set, we can do what we like. We can try a few
values, we can search a grid of values exhaustively, or we
can even use methods like random search, or simulated
annealing.

We should only be cautious not to try too many different
hyperparameter values if our test and validation sets are
small.

It's important to mention: trial and error is fine, and it’s
the approach that is most often used. It's usually the
most effective, because you (hopefully) have an intuitive
understanding of what your hyperparameters mean. You
can use this understanding to guide your search in a way
that automated methods can’t.

random samples vs. grid search

Grid Layout Random Layout

o Q o

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

source: Random search for hyper-parameter optimization, Bergstra and Bengio JMLR 2012

If you are going to use some kind of automated search,
trying a bunch of different combinations of hyperparameter
values, and then trying random samples in the hyper
parameter space is often better than exhaustively checking
a grid. This picture neatly illustrates why. If one parameter
turns out not to be important, and another does, a grid
search restricts us to only three samples over the important
parameter, at the cost training nine different models.

If we randomize the samples, we get nine different values of
each parameter at the same cost.

source: http://www.jmlr.org/papers/volume13/
bergstral2a/bergstral2a.pdf (recommended reading)

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Model Evaluation

Statistical Testing

|section|Statistical Testing|
|video|https://surfdrive.surf.nl/files/index.php/s/
AoCsdmxAmof17Y9/download)|

Machine Learning Statistics

Statistics ML

Stats but not ML: Analyzing research results. Experiment
design. Courtroom evidence.

More ML than Stats: Spam classification, movie
recommendation,.

As noted in the first lecture, statistics and ML are very
closely related. It’s surprising then, that when we perform
ML experiments, we use relatively little of the statistics
toolkit. We don’t often do significance tests, for instance.

should we do statistical tests at all?

- Makes ML experimentation difficult. Lots of
disagreement.

- People overestimate the value of statistical analyses.
- Does not promote the best methods

+ The ultimate validation of research is REPLICATION

On the appropriateness of statistical tests in machine learning, Janez Demsar, 2008
Machine Learning as an Experimental Science (Revisited), Chris Drummond, 2006

Should we be doing more statistics on our own
experiments?

There is a lot of disagreement. Hypothesis testing comes
with a lot of downsides. Given that we usually have very big
sample sizes (10 000 instances in the test set), our efforts
may be better spent elsewhere.

Another consideration is that the ultimate validation of
research is replication, not statistical significance.
Somebody else should repeat your research and get the
same results. Because all of our experimentation is
computer code, a basic replication could be as simple as
downloading and running a docker image. After that it’s
easy to try the same on new data, or check the model for
bugs.

In practice, replication can be a real nightmare, even in our
field.

Since the community is so divided on the question, we
won't emphasize statistical testing too much in this course.

http://mlvu.github.io

However, there are a few important statistical concepts to
be aware of, even if we don't use the whole statistical
toolbox to interrogate them rigorously.

unobservable

data distribution: p(x, t)
one instance x and its class t

true accuracy of C
probability that C(x) = t under p

e.q. the mean height
of a Dubch person

true metric vs. estimate

observable

- samPLe —» dataset

sample accuracy of C
proportion of test set that C classifies correctly

the mean height of 100
randomtl: sampLed
Dubch FeoFLe

The first is the difference between the true metric of a
problem or task, and the value you measure. This is a very
basic principle in statistics. For instance, we can’t observe
the mean height of all Dutch people currently living, but we
can take a random sample of 100 Dutch people, and use
their average height as an estimate of the true average
height.

To translate this to machine learning, let’s take
classification accuracy as an example.

We usually imagine that the data is sampled from some
distribution p(x). In this view, we're not really interested in
training a classifier that does well on the dataset we have,
even on the test data. What we really want is a classifier
that does well on any data sampled from p(x).

Imagine sampling one instance from the data distribution
and classifying it with some classifier C. If you do this, there
is a certain probability that C will be correct. This is called
the true accuracy. It is not something we can ever know or
compute (except in very specific cases). The only thing we
can do is take a large number of samples from p(x), classify
them with C, and approximate the true accuracy with the
relative frequency of correct classifications in our sample.
This is what we are doing when we compute the accuracy of
a classifier on the test set or the validation set: we are
estimating the true accuracy. To explicitly distinguish this
estimate from the true accuracy, we sometimes call this the
sample accuracy.

The accuracy is just the simplest example. We can apply the
same idea to any metric, like the MSE loss of a regression
model, or the many metrics for classifiers we will see in the
following videos. They all have a true value defined on the
data distribution, which we can't observe, and an estimate
which we can compute from the test set.

statistical testing

Can the observed results be
attributed to real characteristics of
the models under scrutiny or are
they observed by chance?

This brings us to the main question that statistical analysis
is meant to answer. If we do things properly, and we have a
large dataset, our estimate will be close to the true value.
Often, we can even prove how close it is likely to be. But
there will be some difference, which will be entirely
random.

So, when we estimate the test accuracy of models A and B
and we see that classifier A is better than classifier B
because their estimated accuracies on the test set are .997
and .998 respectively, can we really trust that statement?
Maybe this random noise we get when we compute the
estimate of the accuracy caused this difference. In other
words, how sure can we be, from these values, that the
true accuracy of A is also higher than the true accuracy
of B?

quote source: http://www.icmla-conference.org/icmla11/
PE_Tutorial.pdf

accuracy

1.0

incorrect

true accuracy
sample accuracy

prob, correct

true accuracy accuracy on sample (the test data)

03

Distribution on sample accuracy
same classifier, resampled test data 015

0.0 confidence interval

One way of doing this is to compute a confidence interval.
Here we see the process of computing a sample accuracy in
a simple animation: we start with the true accuracy (for
some given classifier, on the data distribution) which is
somewhere between 0 and 1. We sample a bunch of points
from the data distribution (our test set), and take the
relative frequency of correctly classified instances as the
sample accuracy.

Here, in the top half of the slide we model the process of
taking one instance of our test set and seeing whether the
classifier classifies it correctly as a single random draw
resulting in the outcome correct or incorrect. We'll see in
the next lecture that this type of distribution is called a
Bernoulli distribution.

The whole process of sampling the entire test set and
computing the sample accuracy is also a random process. If
we were to repeat it, sampling a new test set, we'd get a
different value for the sample accuracy. To simplify this, we
can look at the total number of instances in our sample that
the classifier classified correctly (so we don't divide by N).
In that case, it turns out we can work out the distribution of
this process as well: the number of "correct”s we getin N
samples from a Bernoulli distribution forms what is known
as a Binomial distribution.

The technical details aren't important. The main message is
that we can define precisely what distribution we can
expect on the value of the sample accuracy of we keep the
classifier and the true accuracy fixed, but resample the test
data. In this case, we see that for a true accuracy of 0.8, and
a test set of N=10 instances, we are most likely to see that
the classifier correctly classifies 7 instances in our sample
(as we did in the top half of the slide). However, it's also
perfectly possible to see 5, 6, or 8 instances classified
correctly.

This is a complicated picture with multiple random processes
going on. Take a little time to wrap your head around this
before moving on.

Imagine that if we have two classifiers, and we compute
sample accuracies for both on a test set of 10 instances. We
get 5/10 correct for one classifier and 8/10 correct for the

other. Can we conclude that the first is definitely worse than
the second? What we see here is that if they both have a
true accuracy of 0.8, it would be perfectly likely to see these
numbers. In short, with such little test data, we have much
uncertainty around our estimate of the true accuracy.

One way to quantify this uncertainty is to draw a
confidence interval. This is simply any interval on the
values of our sample accuracy that captures a given
proportion of the probability mass, usually 95%. You can
draw the confidence interval anywhere you like so long as
you decide how to draw it before seeing the data. The most
common approach is symmetrically around the mean, but
you can also start at the mean and extend it to the right as
far as possible or to the left as far as possible.

The confidence interval captures our uncertainty. We don't
know the true value of the accuracy, and we can't estimate it
very accurately, but we know it's most likely one of these
values.

confidence intervals

test set size accuracy

100

1000

10000

The size of this confidence interval depends on two factors:
the true accuracy and the size of the test set. Here are some
examples for different accuracies and test set sizes.

This tells us that if the true success probability (accuracy)
of a classifier is 0.5, and the test set contains 100 examples,
our confidence interval has size 0.2. This means that even if
we report 0.5 as the accuracy, we may well be wrong by as
much as 0.1 either side.

Even if these confidence intervals are usually not reported,
you can easily work them out (or look them up) yourself.
So, if you see someone say that classifier A is better than
classifier B because A scored 60% accuracy and and B score
59%, on a test set of 100 instances, you have reason to be
sceptical.

In short, this is why large test sets are important. Without
atleast 1000 instances in your test data, you cannot reliably
tell the difference between two classifiers.

0.200

0.1754

0.150

0.125+

0.100 4

Cl size

0.075 4

0.050

0.025 4

0.000

accuracy k3

Here are the full curves, in case you ever need to look it up.

Confidence depends on the size of the test set.
Avoid small test sets.
If you can't, look into Alpaydin’s 5x2 F test

https://www.cmpe.boun.edu.tr/~ethem/files/papers/
NC110804.PDF

If you don’t have the luxury of a large test set, you may need
to do some statistical testing to see whether the effect
you've observed (classifier A is better than classifier B) is
genuine or down to random chance. It’s generally accepted
that Alpaydin’s 5x2 cross validation is the best test for this
purpose. It’s out of scope for this course, but follow the link
if you run into this problem.

standard error

If we are computing a continuous value, like the mean
squared error loss of a regression model, the same principle
applies. For now, let's forget about the details and assume
that we are computing some number representing the
difference between the true regression value of an instance
and the predicted regression value. We'll call this number
m.

In this case m is the error of a model, but it could be any
measurement of any phenomenon.

We can often assume that m, computed for a single
randomly sampled instance, is normally distributed. The
likely values are clustered around a mean value, or
expectation of m. This is the distribution drawn in the top
half of the slide.

If we sample a test set and compute the mean of m for all
instances in the test data, we get an estimate for the true
expectation of m. This is an estimate of the mean of the
distribution at the top. Note that the estimated mean is
slightly different from the true mean.

This, again, is a random process. If we sample another test
set, keeping the model and the true mean fixed, we get a
slightly different estimate for the mean. The distribution on
the values we get for the sample mean is drawn at the
bottom. Note that its mean is the same as the true mean,
but its peak is more narrow.

This is not a normal distribution, but a so called Student's t
distribution. For test sets larger than ~30 instances, the
difference becomes negligable.

The standard deviation of the distribution at the bottom is
the variance of the one at the top, divided by the square of
the number of instances in our test set. The more instances,
the narrower the peak becomes, and the less uncertainty
we have around our estimate. This standard deviation is
called the standard error of the mean (sem).

https://www.cmpe.boun.edu.tr/~ethem/files/papers/NC110804.PDF
https://www.cmpe.boun.edu.tr/~ethem/files/papers/NC110804.PDF

95% confidence interval

13.6%
34.1%
34.1%
13.6%

mean +/- 1.96 sem is a 95% confidence interval

As you may know, the region of four standard deviations
around the mean of a normal distribution contains roughly
95% of the probability mass. This means that the interval
from two standard errors to the left of your mean to two
standard errors to the right of your mean is a 95%
confidence interval.

confidence interval estimates

unobservable H observable

true confidence interval : estimated confidence interval

These are good concepts to help us think about what we are
measuring when we compute metrics on our test data. But
it's important to realize that these are unobservable values.
We can only work out the true confidence interval for the
sample accuracy if we know the true accuracy. This puts the
confidence intervals we've talked about so far in the
unobservable column.

So what about all those confidence intervals you see
reported in the literature? These are estimated confidence
intervals. They are usually computed in the same way as the
true confidence interval, but wherever we need the true
value of some metric, we replace it by its estimate. This
gives us a confidence interval that isn't as correct as the
true confidence interval, and one that would change slightly
if we were to resample the test set, but we can at least
compute it, and it generally behaves in roughly the same
way as the true confidence interval.

about confidence interval estimates

Don't say: the probability that the true mean is in this
confidence interval is 95%.

Do say: If we repeat the experiment many times,
computing the confidence interval each time; the true
mean would be inside the interval in 95% of those

experiments.
The confidence interval changes from experiment to experiment, not the true mean.

The estimated confidence interval for the mean is a
statistic on the data, just like the mean itself or the
standard deviation.

When we use the phrase confidence interval to refer to this
kind of estimate, it's important to speak about it correctly.

There is no probability associated with the true mean at all.
It is simply an objective, determined value (which we don’t
know). The probability comes from sampling, and from
computing the interval from a sample.

So instead of having a fixed interval, with the true mean
jumping around probabilistically, we have a fixed true mean
around which we get an interval that jumps around if we
resample the data. The probability of it jumping so much
that it no longer contains the true mean is 5%.

This is typical frequentist agonizing over what the phrase
“probability” means. Confidence intervals are a uniquely
frequentist tool. If the distinction on the slide doesn’t make
sense to you, look back to the probability video in the
preliminaries.

bars?

" If you see a picture like this, showing the mean runtime of
an experiment, measured for three models, and averaged
over a number of runs, what would you imagine the error
bars denote? We've seen standard deviations, standard
errors and confidence intervals. What do error bars
represent?

0.0

A B C

runtime

The truth is that there is no standard definition for what
error bars denote, and if the authors didn’t specify what
their error bars indicate, the authors messed up.

These are the three most common options. If you didn't
quite get all the details of the previous slides, this slide

l illustrates the most important distinction: If we sample

data: 3,4,5,2,8,7, more data, the estimate of our standard deviation
8,23,570,24,
6,7,0,4,51,8,7,

1,2,3,574

becomes more accurate. It’s an estimate of a property of our
data distribution. The error bars representing standard

4.0
data: 3,4,6,3
0.0

0.0

deviation don't get smaller, they just get closer to their
standard ~ standard confidence

) correct size (which may be very wide around the head of
dev. error interval

¢ the bar).

The standard error and the confidence interval are
indicators of how confident we are about our estimate of
the mean of our data. For these, the more data we have, the
smaller they get. As we saw earlier, under the right
assumptions, the 95% confidence interval is roughly twice
the standard error.

standard deviation:
- measure of spread, variance
standard error, confidence interval:

- measures of confidence

[ET

standard confidence
error interval

overlap implies
not a sign. difference
between A and B

no overlap implies
sign. difference
between A and B

Under certain assumptions, the standard error of two
estimates can tell you whether a Student's t test allows you
to reject the null hypothesis that the two distributions are
the same. This would allow you to say, for instance, that
there is a statistically significant difference between the
accuracy estimates on two classifiers. As we said before,
such testing is not very popular in machine learning, so we
won't go into it in detail, but this can offer an additional
perspective on error bars.

We won't discuss the Student’s t test in detail, but it’s a
common test for comparing two normally distributed values.

Say you plot the mean squared error for regression models
A and B, together with some error bars. Does the the fact
that the error bars overlap or not tell you whether the
measured difference between the two models is statistically
significant? That is, does it indicate whether we can
conclude that A is a better model than B?

Yes, but we have to be careful. For standard error bars, the
existence of overlap implies that there is no significant
difference between the two effects. That is, the possibility
that the difference is due to random chance is high, and a
repeat of the experiment on new data may show a different
result. If you plot confidence interval error bars, and there
is no overlap, you may conclude that the difference between
the models is significant. If you repeat the experiment on
fresh data, it is very likely that model A would beat model B
again.

In both cases, the converse does not hold. If the SEM error
bars do not overlap, there may or may not be a significant
difference. If the confidence interval error bars do overlap,
there may still be a significant difference, depending on
how much they overlap.

All of this requires the assumption that the original values for
which the bar indicates the mean are normally distributed.

why use statistics in ML

- to show confidence

- to show spread

Confidently show the performance of the best model you
found, and then measure the variance of the method you
used to find it.

All of this was about showing confidence: showing how
reliable our numbers are as estimates of the true values that
we can’t observe.

Showing spread is more about providing insight to the
reader. Say I train a classifier by gradient descent. If | have a
big test set, I can very confidently measure and report the
accuracy of this particular classifier. However, gradient
descent uses random initialization. If | repeat the training
process, I may end up in a different local minimum, and get
a different classification performance. It’s likely that I also
want to communicate how much the measured
performance is dependent on this randomness. In short,
how lucky did we get in our choice of classifier?

showing spread

Sources of randomness:

- Data sampling

- Search algorithm (i.e. initializing gradient descent)
Report standard deviation, describe what you repeat.

- How do you repeat data sampling?

If we have a large enough test set, we know that the
confidence interval for our measurement of the
performance is small enough. But we also want to know
how much the randomness in our process affects the result.
What is the probability that repeating the process (on the
same data, or on new data) produces wildly different
results?

For factors like the initialisation of gradient descent, this is
easy to test: you just rerun a few times on the same data.
But how do you test how robust the results are against
sampling a new dataset?

resampling

Cross validation again, on the whole data set.

Stratified cross-validation (keeps the class proportions the
same in all folds).

Leave-one-out cross-validation, a.k.a. the jackknife method.

Slight bias: smaller datasets.

The cross validation that we have already seen provides
some indication of spread. If we do five-fold cross
validation, we are repeating our training five times on
slightly different datasets. This provides some indication of
how differently the algorithm may perform if we repeat on
new data.

Note, however that it's not quite a perfect simulation of
resampling our data: the datasets are slightly smaller, and
there is a lot of overlap between the five different datasets.
If we want more repeats, we get more overlap and a smaller
test set, making this bias hard to control.

bootstrapping

Sample, with replacement, a dataset of the same size as the
whole dataset.

On average, about 63.2% of the dataset will be included. The rest will be duplicated instances.

Each bootstrapped sample lets you repeat your
experiment.

Note that some classifiers will respond poorly to presence
of duplicate instances.

Better than cross validation for small datasets.

A different approach is bootstrapping. Here, we resample
the data with replacement. This allows us to sample a
dataset that is exactly the same size as the original data. We
can also resample as often as we'd like, without affecting
the size of the test data or the amount of overlap between
the datasets.

We will see in a later lecture that bootstrapping
approximates the data distribution in a very precisely
defined way.

statistics: summary

Don't worry too much about it (until you have to).

Even in top ML conferences, rigorous statistical analysis is relatively rare.

Distinguish between showing confidence, and showing
spread.

Think about what you want to claim, and what analysis
would make your claim as strong as possible.

- If you're interested in the difference between machine
St ical Modeling: The Two Cultures

Loo seiman learning and statistics, I can recommend this paper by Leo
Breiman. It shows the difference between the two cultures.

It makes clear that the machine learning approach of
measuring models purely for predictive accuracy on a large
test set, has a lot of benefits and makes the business of
statistics a lot simpler and more effective.

Bsimatsd culurs populaton. 9% of satisticant,

In this video we'll look at how to evaluate regression and
classification experiments. There will be a few pointers on
regression, but the main topic will be classification
experiments.

Model Evaluation |section|Metrics|

Evaluation metrics |video|https://surfdrive.surf.nl/files/index.php/s/
TrR5TrtLDZLBs08/download|

http://mlvu.github.io

regression

loss function: (mean) squared errors
1
;;(ﬂxi) —)’

evaluation function: root mean
squared error

One thing to pay attention to is that if you use MSE loss, you
may want to report the square root (the RMSE). The RMSE
is minimised at the same places as the MSE, but it’s easier
to interpret, because it has the same units as the original
output value.

For instance, if your outputs are in meters, then your MSE is
measured in square meters, but your RMSE is also
measured in meters.

IS [ewndo
® 3SW painseaw

4 3swenn
4

0.0

Bias

Variance —

Irreducible
Error

Bias and variance are good concepts to keep in mind when
thinking about regression performance. The bias is the
difference between your optimal MSE and the true MSE.
This is the part of your error that is down to fundamental
problems with your model: for instance, you are fitting a
line trough data with a parabolic pattern. This part stays the
same if you resample your data.

The variance is the difference between the true MSE and
the measured MSE. This is the part of your error that is
down to aspects of the random sampling of the data. This
part changes when you resample your data.

Normally, we train a regression model once, and get one
MSE value. This gives us one dot on the axis above. Without
repeating the process on freshly sampled data, we can't tell
how our error falls apart in bias and variance. However, we
can usually get some contextual clues, or investigate using
resampling.

low bias, low variance

—_—-—

low bias, high variance

—

high bias, low variance

Low Variance High Variance

. ..
)
/ Q] ||

Low Bias

High Bias

reading)

Here is a metaphor that is often used to describe bias and
variance: a dartboard.

Remember, this is a metaphor for our RMSE error estimate.
That means that normally, we have only one dart and we
can’t tell whether our error is due to high bias or high

variance.

image source: http://scott.fortmann-roe.com/docs/
BiasVariance.html (recommended reading)

tradeoff

High bias: model doesn't fit the generating distribution.
Poor assumptions, poor capacity. Aka underfitting.

5000
4000
3000
2000
1000

0

~1000

~2000

-3000

High bias tends to happen when the model is too simple to
follow the true "shape" of the data. Linear models in low-
dimensional spaces often have this problem. Here, we see
that the data has a slight curve, which is clearly part of its
natural pattern, and something the model should learn.
Since it's restricted to a line, however, it cannot make this
shape.

High variance: high model capacity, sensitivity to random
fluctuations. aka overfitting

5000
4000
3000
2000
1000
0
-1000

~2000

-3000

High variance happens when the model has the capacity to
follow the shape of the data perfectly, but it does it so
perfectly that it tends to get thrown off by small
fluctuations.

Here, the model doesn't just follow the natural curve of the
data, it goes in and out of every random fluctuation to
model every single point perfectly.

Even though this model (a regression tree) fits the data
perfectly, if we resample the data, we are stuck with all
sorts of weird peaks that won't fit the new data. This is
where the variance comes from. The true error varies
wildly, because the model captures every single random
fluctuation in the training data. These fluctuation will cause
a large error in the test data, which we put down to
variance rather than bias.

http://scott.fortmann-roe.com/docs/BiasVariance.html

making the tradeoff

Reducing bias: increase model capacity, increase features.

Reducing variance: reduce model capacity, add
regularization, reduce tree depth.

k-NN regression: increase k to increase bias, decrease
variance.

k=1 k=10 k=25

We will see techniques for all of these in the coming weeks.
Note that often, it really is a tradeoff: reducing the bias,
increases the variance and vice versa.

For some algorithms, there is a single parameter that allows
us to make the bias/variance tradeoff. KNN is one example:
low k values give us high variance, high k values give us
high bias.

In the strictest definition of bias and variance, these concepts
only apply to the mean squared error, where they explictly
appear as terms if you rewrite the error in a certain way.
However, in general machine learning parlance, the terms
are applied to any regression error, and they are roughly
synonymous with under- and overfitting.

lecture 10: ensembling

Combining models for variance reduction and for bias reduction.

P O S S

4 4 4

image source: e o

In a later lecture, we'll look at ensembling. This is a
method that allows us to combine different models, so as to
control the problems of high bias and high variance.

image source: https://www.toptal.com/machine-
learning/ensemble-methods-machine-learning

evaluating classification

Class imbalance, cost imbalance
Confusion matrix

True positive rate, True negative rate
More in the next video

Precision, recall

Let's now move to classification. We'll start by explaining
these four topics.

https://www.toptal.com/machine-learning/ensemble-methods-machine-learning

breast cancer screening

Redt preventieve screening op

borstkanker levens? AANBEVOLEN ARTIKE!

Voor- en tegenstanders van de mammografie

ATIKEL De ene beschouwt de I g0p
als levensreddend, volgens de ander zitten er meer nadelen dan voordelen aan
Een medisch vakblad spreekt al van een mammografieoorlog. Wat doe je nu als
50-plusvrouw met de oproep voor de borstenbus?

Door: Ellen de Visser

GIOICIG)

Here's one example domain: breast cancer screening

A recurring discussion in the Dutch media is the question
whether all women over 50 be screened for breast cancer.
This is an analogy for classification: the instances are
people and the target label is “has cancer” or “has no
cancer” You may think that this is a no-brainer: the more
tests we do, the more lives saved. But we need to take into
account how good the classifier is, and how bad the
consequences are of it making a mistake.

The first problem this example illustrates is class
imbalance. Unlike the classifiers we've seen so far, this
example has, thankfully, far more negatives than positives.
In a given year the people in this age group for whom breast
cancer will manifest is about half a percent. This includes
men, for whom breast cancer is rare (but not impossible),
so when we talk about screening for women over 50, we
should probably assume about 1% positives.

This means that we need to be very careful when
interpreting the reported performance of any breast cancer
detection method. We may think that an accuracy of 99%
sounds impressive, but this is the accuracy we would get if
we just called everything negative: that is, if we just
diagnosed all women with no cancer.

source: https://www.volkskrant.nl/wetenschap/redt-
preventieve-screening-op-borstkanker-
levens~a3761451/

Is an error of 0.01 good?

Imagine that somebody tells you about a machine learning
project they’re doing, and they proudly state that they geta
classification error (on their validation set) of 0.01 (1% of
the validation set is misclassified). Should you be
impressed?

The answer is it depends. The first thing it depends on is
the class imbalance in the data.

o

O .
@ 80% of time
o .

O

Hitmarker: Esports jobs grew
87%in 2019

An Al regul
could really work

This Al judge correctly predicts court case results

Ateam of computer scientists and legal professionals has created artifical m—m

So the next time you see a headline like this, your first
question should be: what was the class distribution in the
training data? If 90% of the cases in the training data are
acquittals, this is not a very impressive result.

As it happens, in this case the classes were balanced 50/50,
so 80 percent is at least notable. However, now we have a
classifier trained on artificially balanced data. In a
production environment (whatever that means here), the
classes are likely not balanced 50/50, so this specific
classifier will be of no further use.

Here is the original paper: https://peerj.com/articles/
cs-93/#fn-6 There are some issues with this research
beyond the class balance.

Class imbalance How much more likely is a Positive
example than a Negative example?

Cost imbalance How much worse is a mislabeled Positive
example than a mislabeled Negative example?

Another reason to mistrust accuracy is cost imbalance. In
breast cancer screening are two types of misclassification:
diagnosing a healthy person with cancer and diagnosing a
person with cancer as healthy. Both come with a cost but
not the same cost.

We can either miss a cancer diagnosis (a false negative),
which means the cancer will be caught much later and be
much harder to treat. However, diagnosing a healthy person
with cancer (a false positive) means they will be sent for
unnecessary invasive testing and suffer great psychological
stress. The cost of this is much less than the cost of missing
a positive, but it isn't zero.

This is what the discussion in the media centers on. If the
screening causes many more false negatives than false
positives, it may mean that the cost to human lives balances
out, and the net effect of the screening isn't to save more
lives.

There is of course, also the financial cost of screening a
large part of the population. Most people would put any
financial cost far below the cost of a human life, but if it
turns out that the classifier is weak enough that the gains in
human lives saved are negligible, we'd look at the financial
cost and say the program would need to end.

cost imbalance

disease diagnosis Sending a sick person home vs
applying invasive tests to a healthy person

spam classification Deleting a valid email vs showing the
user a single spam email

detecting financial fraud Having an expert review a non-
fraudulent transaction vs missing a fraud in progress

Domain-specific evaluation function: dollars lost, time lost,
lives lost, etc.

Here are some examples of problems with cost imbalance

In all these cases, one misclassification one way costs much
more than a misclassification the other way. But both cost
something. The time of an expert reviewer is not free, even
though five minutes of his time may be much cheaper than
the cost of letting a single fraud go unchecked. In such a
case, you may decide that missing one fraud is as costly as
having an expert review 500 harmless transactions. This is
then the general balance you are hoping for: one false
negative for every 500 false positives.

If you're lucky, both types of misclassification have the same
unit, and you can turn your error (an estimate of the
number of misclassifications) into a domain specific
evaluation function (like estimated dollars lost, or time
saved). You simply assign a cost to each type if
misclassification, and multiply it by how often that
misclassification occurs in the test set. The total is the
evaluation function you want to minimize.

If the units are not the same (money saved vs. lives saved)
making such a choice can seem very unethical if you're
literally equating a human life with an amount of money. On
the other hand, any classifier you decide to deploy will
implicity make such a choice even if you don't do the sums
yourself. Even if you decide not to use machine learning, the
alternative (a doctor using their own judgement) is also a
“classifier”, with its own cost balance.

social impact

Cost imbalance is particularly important when we consider
matters of social impact. If we predict a person’s sex from
their physical appearance perfectly, and we use that as a
prediction for their gender, we may easily achieve 99%
accuracy.

However the 1% we then misclassify is precisely that part
of the population for which gender is likely to be a sensitive
attribute. Just because our classifier has high accuracy,
doesn’t mean it can do no harm. In a large part because the
mistakes it makes are not uniformly distributed. They are
focused squarely on the vulnerable part of the population.

class imbalance

95% neg, 5% pos

Here is a pretty imbalanced dataset (though still not as
imbalanced as the cancer/not cancer problem). It looks
pretty difficult. What would be a good performance on this
task?

class imbalance

other method 1 0.15

other method 2 0.1
majority class 0.05
ours 0.05

Majority class classifier Assigns all instances the class that
is most prevalent in your data.

Example of a baseline.

As we've seen, even though an error of 0.05 might sound
pretty good, but on an imbalanced dataset like this, there is
a very simple classifier that gets that performance easily.
The classifier that assigns anything the class with the most
instances. We call this the majority class classifier.

The majority class classifier is an example of a baseline, a
simple method that is not meant to be used as a real model,
but that can help you calibrate the performance scores. In
this case, it tells you that you're really only interested in in
the error range from 0 to 0.05. Any higher error than that is
pretty useless.

class imbalance

10 000 instances

1000 instances ——

450 instances —
‘_)ﬂ
2
&
o
Q\Q
)

Here is another way that class imbalance can screw things
up for you. You might think you have a pretty decent
amount of data with 10 000 instances. However if you split
off a test set of 1 000 instances, you'd be left with just 50
instances of the positive class in your data. Practically, your
final evaluation will just be a question of how many of these
50 positives you detect. This means that you can really only
have 50 “levels of performance” that you can distinguish
between.

You can make a bigger test set of course (and you probably
should) but that leads to problems in your training data.
Since you're essentially building a detector for positives, it
doesn’t help if you can only give it 100 examples of what a
positive looks like.

In the next lecture, we'll look at some tricks we can use to
boost performance on such imbalanced data.

other performance metrics The best thing to do under class and cost imbalance, is to

look at your performance in more detail. We’ll look at six

)) different ways to measure classifier performance.
Confusion matrix

Precision, recall Most of these are only relevant if you have class or cost

imbalance. If you have a nice, balanced dataset, it’s likely
True positive rate, false positive rate .
that error or accuracy is all you need.

ROC plot, Coverage matrix, Area under the curve
Next video

table). It's simply a table with the actual classes on the
rows, and the predicted classes on the columns, and a tally
predicted in each cell of how often each actual class is given a
particular prediction. On the diagonal we tally all the

° .
. ° correct classifications and off the diagonal we tally all the
o o 7 . .
o ® ° 3 possible mistakes.
L) - ° E .
LS A confusion matrix doesn’t give you a single number, so it’s

8 6 more difficult to compare two classifiers by their confusion
matrices, but it’s a good way to get insight into what your
classifier is actually doing.

Note that for a binary classification problem, we are getting
the two types of mistakes (false positives and false
negatives) along the second diagonal. If we have cost
imbalance, the balance between these two values gives us a
quick insight into how well the classifier is aligned with our
estimate for the misclassification costs.

You can plot the confusion matrix for either the training,
validation or test data. All three can be informative.

The margins of the table give us four totals: the actual
number of each class present in the data, and the number of
each class predicted by the classifier.

true positives
predicted

05 ne
° ° P g

°
actual

false negatives
true negatives

We call accurately classified instances true positives and
true negatives. Misclassifications are called
and false negatives.

with class imbalance

predicted

pos neg

385

actual

neg

400 [

Here we see the confusion matrix for the majority class
baseline (the classifier that calls everything positive) in a
problem with high class imbalance.

predicted
precision
pos neg TP/(TP+FP)

recall
pos FN TP/(TP+FN)

actual

Precision and recall are two metrics that express a tradeoff
between the two types of mistakes.

Precision: what proportion of the returned positives are
actually positive?

Recall: what proportion of the existing positives did we
find?

The idea is that we usually want to find as many positives as
possible, so we should be eager to label things positive,
increasing the recall, but if we are too eager, we will label
lots of negatives as positive as well, which will hurt our
precision. Our main challenge in designing a classifier in the
face of cost and class imbalance, is to find the right tradeoff
between precision and recall.

relevant elements

false negatives true negatives

° o ° o o

How many selected
items are relevant?

How many relevant
items are selected?

Precision =——— Recall = ——

selected elements

source: By Walber - own work, CC BY-5A 4. 7

It always takes me a minute to figure out what precision
and recall mean in any given situation, and I usually consult
this diagram from Wikipedia to help me out.

The idea is that the goal of the classifier is to select the
positives in the dataset. The more it selects, the higher its
recall, but the lower its precision, as more negatives end up
in the selection.

source: By Walber - own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?
curid=36926283

Total
population
Predicted
condition
positive
Predicted
condition
negative

Predicted condition

True condition

Accuracy (ACC) =
Condition positive Condition negative Prevalence = & “M“&"m slive 5 True, R T
population
. e , Precision y rato (FOR) =
rue positive T positve 5 Fatso pose
W = £ Predicied condition positive e fition positive
False negative, = =
True negative
Typo ll ror = T B
. Recall . Fallout,
Sonsitvty, e rao)= TER
— X Truo positive _ _ I Falso posiive Diagnostc odds. R
= XCondiion posit = X Condiion negaiis oo 1 s00r0 =
Speciity (SPC), Selectiviy, True Molne) o frecsn: fecat
Falso nogaive rato (FNR), Miss rate : e PR =t
= st e - pLIne negaie_ ™
= £ Condion negaie

source: https://en.wikipedia.org/wiki/Confusion_matrix n

There are many more metrics which you can derive from
the confusion matrix. Wikipedia provides a helpful table, in
case you ever come across them. For most purposes,
precision, recall, accuracy and balanced accuracy are
sufficient.

Note that some terms, like recall, go by many different
names.

which dataset?

test accuracy
final test of model performance

validation accuracy
to choose hyperparameters

training accuracy
m

All of these metrics can be applied to different datasets.
When we compute (say) accuracy on the test set, we talk
about test accuracy. This is computed—only once—at the
very end of our project, to show that our conclusions are
true.

When we compute it on the validation set we call it
validation accuracy. We compute this to help us choose
good hyperparameters.

And, predictably, when we compute it on the training data,
we call it training accuracy. Remember that in the first
lecture I said, emphatically, that you should never judge
your model on how it performs on the training set. Why
then, would you ever want to compute the training accuracy
(or any other metrics on the training data)?

https://commons.wikimedia.org/w/index.php?curid=36926283
https://en.wikipedia.org/wiki/Confusion_matrix

generalization error

accuracy

o generalization gap
training

validation

underfitting overfitting

maximum tree size
or any other hvperrammzhar

The answer is that the difference between your validation
accuracy and your training accuracy, will tell you whether
or not your model is overfitting (matching the data too

well) or underfitting (not matching the data well enough).

The difference between the training and validation sets is
called the generalization gap. As in, it's the amount of
performance that won't generalize to data that isn't your

training data.

HERMAN

source: Jim Unger, Herman.

Model Evaluation

PR, ROC and AUC

|section|PR, ROC and AUC]|
|video|https://surfdrive.surf.nl/files/index.php/s/
p6Atngg3Q5AzMiz/download|

http://mlvu.github.io

relevant elements

false negatives true negatives

° o ° o o

How many selected How many relevant
items are relevant? items are selected?

Precision = Recall = ——

selected elements

source: By Walber - own work, CC BY-5A 4. 23

Let's return to the metrics of precision and recall. We often
have to make a tradeoff between high precision and high
recall. We can boost our recall by calling more things
positive. The drawback is that our precision will go down if
this means including more negatives among the things we
call positive. We can boost our precision by calling fewer
things positive, which will hurt our recall.

How exactly we make the tradeoff depends on our cost
imbalance, and our class imbalance. To help us investigate,
we can plot the precision and recall we get from different
classifiers.

source: By Walber - own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?
curid=36926283

precision/recall space

precision
[J

recall

The points in the corners represent our most extreme
options. We can easily get a 1.0 recall by calling everything
positive (ensuring that all true positives are among the
selected elements). We can get a very likely 1.0 precision by
calling only the instance we’re most sure about positive. If
we’re wrong we get a precision of 0, but if we're right we
get 1.0.

Whether we prefer the left or the right green classifier
depends on our preferences. However, whatever our
preference, we should always prefer either green classifier
to the blue classifier since both have better precision and
recall than the blue classifier.

TPR and FPR

predicted accuracy

(TP +TN)/ total

pos neg

true positive rate

. -
- TP/(TP +FN)

actual

TP/actual pos

false positive rate
FP/(FP +TN)
FP/actual neg

Another pair of metrics that provides this kind of tradeoff
are the true positive and false negative rate.

true positive rate: what proportion of the actual positives
did we get right. The higher the better. L.e. How many of the
people with cancer did we detect.

false positive rate: what proportion of the actual negatives
did we get wrong (by labelling them as positives). The
lower the better. I.e. How many healthy people did we
diagnose with cancer.

The

https://commons.wikimedia.org/w/index.php?curid=36926283

.0

true positive rate

false positiverate 1.0

We want to get the TPR as high as possible, and the FPR as
low as possible. That means the TPR/FPR space has the
best classifier in the top left corner. This space is called ROC
space.

Again, the orange points are the extremes, and easy to
achieve.

ROC stands for receiver-operating characteristic. Like so
many names in machine learning , this is a historical artifact,
a leftover from its invention in WWII to improve the detection
of Japanese aircraft from radar signals.

true positive rate

false positive rate

So far we've thought of FPR/TPR and precision/recall as a
way to analyze a given set of models.

However, what if we had a single classifier, but we could
control how eager it was to call things positive? If we made
it entirely timid, it would classify nothing as positive and
start in the bottom left corner. As it grew more brave, it
would start classifying some things as positive, but only if it
was really sure, and its true positive rate would go up. If we
made it even more daring, it would start getting some
things wrong and both the TPR and the FPR would increase.
Finally, it would end up classifying everything as positive,
and end up on the top right corner.

The curve this classifier would trace out, would give us an
indication of its performance, independent of how brave or
how timid we make it. How can we build such a classifier?

ranking classifiers

a

dbt ce ufv

z xgy

most
negative

most
positive

We can achieve this by turning a regular classifier into a
ranking classifier (also known as a scoring classifier). A
ranking classifier doesn’t just provide classes, it also gives a
score of how negative or how positive a point is. We can use
this to rank the points from most negative to most positive.

How to do this depends on the type of model we use. Here’s
how to do it for a linear classifier. We simply measure the
distance to the decision boundary. We can now scale our
classifier from timid to bold by moving the decision
boundary from left to right.

After we have a ranking, we can scale the eagerness of the
classifier to make things positive. by moving the threshold
(the dotted line) from left to right, the classifier becomes
more eager to call things negative. This allows us to trade
off the true positive rate and the false positive rate.

ranking error

Now, we can’t test a ranking on our test data, because we
don’t know what the correct ranking is. We don’t get a
correct ranking, just a correct labeling.

However, we can indicate for specific pairs that they are
ranked the wrong way around: all pairs of different labels.
For instance, t and f form a ranking error: t is ranked as
more negative than f, even though t is positive and f is
negative.

Note: a ranking error is a pair of instances that is ranked the
wrong way around. A single instance can be part of multiple
ranking errors.

coverage matrix

t
u

zZ v
v f a

u Xx
2 d e v
t c
x a b
y
g f e ¢ b d a

a dbt ce ufv 2z xgy

We can make a big matrix of all the pairs for which we know
how they should be ranked: negative points on the
horizontal axis, positive on the vertical. The more sure we
are that a point is positive, the closer we put it to the
bottom left corner. This is called a coverage matrix. We
color a cell green if the corresponding points are ranked the
right way round, and red if they are ranked the wrong way
round.

Note that the proportion of this table that is red, is the
probability of making a ranking error.

true positive rate

false positive rate

adbtceufvzxgy
— 00— —0 00—

The coverage matrix shows us exactly what happens to the
true positive rate and the false positive rate if we move the
threshold from the right to the left. We get exactly the kind
of behaviour we talked about earlier. We move from the all-
positive classifier step by step to the all-negative classifier.

warning: exam question

type: find a ranking
We have the following training set:

label
Neg
Neg
Neg
Neg
Pos
Pos
Pos
Pos

K
[

TR o a0 o
Vo wN =N O

@
~

For the following questions, it helps to draw the data and the classification
boundary in feature space.
We use a linear classifier defined by
Pos if0-x;+x—2>0
c(x1,%2) = .
Neg otherwise.

13. If we turn c into a ranking classifier, how does it rank the points,
from most Negative to most Positive?
Aabcdefgh
D ook Le

This is one of the question types on the exam. People very
often make mistakes in this question, so make sure you
understand what a ranking error is. It's not a misclassified
example. It's a property of a pair of examples.

There are more details in the third homework.

achievable rates

true positive rate
[]

false positive rate

If we draw a line between two classifiers we know we can
create, we can also create a classifier for every point on that
line simply by picking the output of one of the classifiers at
random. If we pick with 50/50 probability we end up
precisely halfway between the two.

If we vary the probability we can get closer to either
classifier.

area under the curve

4

true positive rate

false positive rate

This means we can create any classifier in this green area,
called the convex hull of the set of green dots. This is called
the area under the (ROC) curve.

The AUC is a good indication of the quality of the classifier.

Every point in the green shaded area is a classifier we now
how to make, so the bigger this area, the more classifiers we
can make (although the ones on the boundary are the only
ones we’d ever want to use).

If we have no idea of how we want to make the tradeoff
between the TPR and the FPR, the AUC may be a good way
to compare classifiers in general.

< X N < £ =

g f e c bda

As we saw before: normalizing the coverage matrix gives us
the ROC space (barring some small differences that
disappear for large datasets). The area under the ROC curve
is an estimate of the green proportion of the coverage
matrix. This gives us a good way to interpret the AUC.

The AUC (in ROC space) is an estimate of the probability
that a ranking classifier puts a randomly drawn pair of
positive and negative examples in the correct order.

body mass (kg)

male female male female

19 2.0 21
flipper length (dm)

Let's look at how this works for another type of classifier. To
reiterate, how we get a ranking from a classifier
depends entirely on the model class.

The decision tree is an example of a partitioning classifier. s
splits the feature space into partitions, and assigns each
partition, also known as a segment, a class. All instances in
the segment get the same class.

ranking decision tree

Z oy
f g
u X
d e v
t c

<X €9 <

In this example we have an instance space that has been
split into four segments by a decision tree. We rank the
segments by the proportion of positive points. We then put
all points in one region on the same level in the ranking.

In this example, b is more negative than a, because b’s
segment contains only negative examples, whereas a’s
segment contains a mix of positive and negative examples.

e
t

d
4
a

< x € Wv <

This means that for some pairs (like f,z), the classifier ranks
them as “the same”. We’ll color these cells orange in the
coverage matrix.

For large datasets, these regions will not contribute much
to the total area under the curve.

a Tim Triche, Jr. Folow)~

Your Favorite ROC Sucks.

Handy reminder from @michaelhoffman ‘s
talk here at #Bioc2018

source: https//twitter.com/timtriche/status/1022472947963969536 %

An alternative to the ROC is the precision/recall curve. It
works in exactly the same way, but has precision and recall
on the axes.

As you can see in this tweet, in many settings the PR curve
can be much more informative, especially when you're a
plotting the curves. Practically, it’s little effort to just plot
both, and judge which one is more informative.

ROC has the benefit of an intuitive interpretation for the
AUC (the probability of ordering a random pair the right
way round). I haven’t yet found a similar interpretation for
the PR-AUC.

important points

The confusion matrix and all metrics derived from it are
metrics for a single classifier.

AUC is a metric for a collection of classifiers, usually derived
from a ranking classifier.

How to turn a classifier into a ranking classifier, depends on
the type of classifier.

For linear classifiers, take the distance to the decision boundary
For tree classifiers, sort by class proportion in each segment

AUC is a good metric if we don't know the relative
importance of the classes, or if the classes are unbalanced.

To interpret the AUC, you should know not just what
classifier was used, but how it was made into a collection of
classifiers. You should also know whether it’s the area
under an ROC curve, or a precision/recall curve.

https://twitter.com/timtriche/status/1022472947963969536

setting the threshold

Show the user the ROC/PR curve, let them choose

This can be difficult to do accurately.

Estimate cost of misclassifications. Factor into the loss

function. Minimize the expected cost.
In sklearn, this is done by setting class weights. If a false negative costs as much as three false
positives, we set the positive weight to 3 and the negative weight to 1.

To put a classifier into production, a ranking may not be
enough. Sometimes, you just need to produce a single
answer. In that case, you can still use the ROC and PR curves
to tune your hyperparameters and choose your model, but
ultimately, you'll need to choose a threshold as well: the
point at which you decide to call something a positive.

This is more of a software development issue than a
scientific choice. Often, you have to look carefully at the
curves, perhaps together with the end users, to make a
decision.

The second approach works best with probabilistic
classifiers, which we’ll discuss next lecture.

recap so far

split your data into train/val/test

accuracy is great, unless you have class imbalance or cost
imbalance

if you do, look at your:
confusion matrix
precision/recall space
ROC space

if you need a single number: try ROC-AUC or PR-AUC

0

Model Evaluation

Social Impact 2

|section|Social Impact 2|
|video|https://surfdrive.surf.nl/files/index.php/s/
604T6Xzi8EAc1x5/download|

Model evaluation is not just about showing how well your
model works. It’s also about working out what it means to
get a certain performance. And more importantly, what it
doesn’t mean.

http://mlvu.github.io

interpreting results

Artificial intelligence e This article is more than 3 years old
(an

New Al can guess whether you're gay or
straight from a photograph

upto91% accuracy, raising tricky ethical questions

i

Artificial intellige s straight

Wang, Y, & Kosinski, M. (2018). Deep neural networks are more accurate than humans at
facial imag
psychology, 114(2),246.

In this video, we will use the following research as a
running example. In 2017 researchers from Stanford built a
classifier that predicted sexual orientation (restricted to the
classes “heterosexual” and “gay”) from profile image taken
from a dating site. They reported 91% ROC-AUC on men
and 83% ROC-AUC on women.

The results were immediately cited as evidence of a
biological link between biology and sexual orientation. The
following important caveats were largely overlooked in
media reports:

» Some of the performance came from facial landmarks
(roundness, length of nose, distance between eyes, etc),
but some came from superficial details like hairstyle,
lighting and grooming.

+ The results were true when averaged over a large
population. It’s true that women live longer than men on
average, but that doesn’t mean that there are no old men.
Likewise, the fact that you can guess orientation based
on, say, the length of the nose, with better than chance
accuracy, may only be due to a very small difference
between the two distributions, with plenty of overlap.

* ~90% ROC-AUC may sound impressive, but it basically
means that you will make 1 ranking error for every 10
attempts.

The study authors make many of these points themselves,
but that didn’t stop the paper from being wildly
misrepresented: https://docs.google.com/document/d/
110GZ1Ke3wK9E3BtOFfGfUQuuaSMR8A02WfWH3aVk
e6U/edit#

- Consider history

- Are you looking at what you think you're looking at?

- Are you predicting what you think you're predicting?

- What different hypotheses explain the observed effect?

- What do positive results mean?

Like in the previous video, we’ll look at some important
questions to ask yourself when you come up against a topic
like this. Let’s ask the same questions again (with some new
ones thrown in for good measure).

Consider history

PHYSIOGNOMY OF RUSSIAN FEMALE OFFENDERS.

source iki/File:Physiognomy_of Russian_Female_Offenders_Wellcome_L0074898.jpg

s

In these cases, it’s important to know your history.
Physiognomy is the study which attempts to infer character
from facial features.

In this case there’s is a long history of scientists claiming to
be able to divine personal attributes (most often
“criminality”) from the structure of a subject’s face. This is
called physiogmony and almost any claim made has been
conclusively disproven, and based on poor scientific
practice and spurious correlations.

That doesn’t mean, of course, that the entire idea of
physiognomy is conclusively disproven. Just because people
got it wrong in the past doesn’t mean there couldn’t still be
a link. But it does mean that when we are stumbling into
the same area with new tools, we should be aware of the
mistakes made in the past, so that we can be careful not to
repeat them.

Are you looking at what you think you're looking at?

P(Cardiomegaly)=0.752

https://arxiv.org/abs/1807.00431

The next thing to be aware of is what you're looking at. This
is especially important with modern systems that can look
at raw image data without extracting specific, interpretable
features.

Here a visualization of a classifier looking at a chest x-ray
and making a prediction of whether the patient has
Cardiomegaly (an enlarged heart). The positive values in
the heat map indicate that those regions are important for
the current classification. The largest values are near the
heart, which is what we expect.

The colors are a bit misleading, since the black background
washes them out. Pay more attention to the actual numbers.

However, the classifier is also getting a positive
contribution from the “PORTABLE” label in the top right
corner and the marker on the right. These indicate that the
x-ray was taken with a portable scanner. Such scanners are
only used when a patient’s condition has progressed so far
that they can’t leave their house. In such cases it’s a safe bet
that they have Cardiomegaly.

Note that the visualization of the attention is minimal for the
erroneous point of attention. The center of the image gets
much higher values. You have to notice a very small effect to
see that anything is wrong.

https://commons.wikimedia.org/wiki/File:Physiognomy_of_Russian_Female_Offenders_Wellcome_L0074898.jpg
https://jrzech.medium.com/what-are-radiological-deep-learning-models-actually-learning-f97a546c5b98
https://arxiv.org/abs/1807.00431

These problems are often called “Clever Hans” effects.
Clever Hans, or der Kluge Hans, was an early-20th century
German horse, who appeared to be able to do arithmetic.

As it turned out, Hans was not doing arithmetic, but just
reading the body language of its handler, to see whether it
was moving towards the right answer. This is impressive in
itself, of course, but it does mean that Hans didn’t show the
kind of intelligence that was being attributed to him.

Crucially, this was not a hoax. The handler truly believed that
Hans was able to do arithmetic, and had no idea that he was
guiding him subconsciously. This, incidentally is also why
double-blind experiments are so important in other fields.

For us, Hans serves as a powerful reminder that just
because we're seeing the performance we were hoping for,
doesn’t mean we're seeing it for the reasons we were hoping
for.

What's the causal direction?

!:;’ .:! = =
2f R

A related question you should ask when you find that you
can successfully predict X from Y is which causes which?

The image on the left, from [1], shows a feature that
researchers found when attempting to predict criminality
based on a dataset of faces of criminals and non-criminals.
One of their findings is that the angle made by the corners
of the mouth and the tip of the nose is a highly predictive
feature. The authors suggest that such facial features are
indicative of criminality

However, when we look at the dataset we see that it’s not
the features of the face, so much as the expression that
differs. In the “non-criminal” photographs, the subjects hold
a light smile, as is common, whereas in the criminal set the
expressions have a more explicitly relaxed jaw. What we’re
seeing here are not facial features, so much as facial
expressions.

This is important, because it changes the interpretation of
the results completely. The physiognomical interpretation is
that there is a biological mechanism that causes both
criminality and a particular wideness of the mouth, and
that this is determined at birth. The alternative explanation
is that when people with a criminal background have their
photographs taken, they are more likely to prefer a
menacing expression than the average person is.

Note, incidentally, that the photos of criminals are not arrest
photos. They are described as “normal ID photos” by the
authors.

Further discussion: https://www.callingbullshit.org/
case_studies/
case_study_criminal_machine_learning.html

[1] Wu, X,, & Zhang, X. (2016). Automated inference on
criminality using face images. arXiv preprint
arXiv:1611.04135, 4038-4052.

Are you looking at what you think you're looking at?

Pitch

Roll

Let’s go back to the sexuality classifier. What might a Clever
Hans effect look like here? In the most extreme case, you
might expect a classifier just to look at the background of
the image. The authors were more careful here than you
might expect:

» The background of the image was blurred and the the
facial features (eyes, nose, mouth) were detected and
aligned.

+ The focus of the classifier was investigated with saliency
maps (indicators of where the model is looking). This is a
fallible method, but it does show a general focus on the
face. (Still, remember how small the effect was in the
saliency map for the chest X-ray.)

» Asecond classifier was fed only facial landmarks: the
position of the eyes, roundness of the jaw, etc. That is, the
photo was translated to a series of explicit features. The
suggestion being that this prevents Clever Hans effects.

+ The deep neural network used to extract features from
pixels was not trained on this data, but on another facial
dataset. Only its features were fed to a shallow classifier
that learned from these labels. This limits the ability of
the classifier to pick up on surface detail.

Are you predicting what you think you're predicting?

Method

Facial images. We obtained facial images from public pro-
files posted on a U.S. dating website. We recorded 130,741 images
of 36,630 men and 170,360 images of 38,593 women between the
ages of 18 and 40, who reported their location as the United States.
Gay and heterosexual people were represented in equal numbers.
Their sexual orientation was established based on the gender of the
partners that they were looking for (according to their profiles).

m

Another question we suggested in the last video is whether
the target label you've chosen is saying what you think it's
saying.

Here, the authors inferred sexuality from the stated
preference in the dating profile. This is clearly correlated
with sexuality, but not the same thing. Firstly, sexuality is
one of those attributes (like movie genre) that can only be
crudely approximated by a set of finite categories.
Moreover, for many people it’s not a fixed attribute, and it is
subject to some evolution throughout their life.

The stated preference on a dating profile also means that
you are capturing only those gay people who are willing to
live (relatively) openly as gay. This may be highly dependent
on social background. It’s certainly conceivable that in
poorer subcultures, people are less likely to come out as
gay, either to their community or to themselves.

This means that what we’re detecting when we're
classifying a face in this dataset as “gay” is more likely a
combination of factors that are correlation to that label.

Incidentally, note the size of the dataset. One thing the
authors can’t be accused of is finding spurious correlations.
It’s a question of what the correlations that they found
mean, but with this amount of data, as we saw before, we
get very small confidence intervals, so the observed effects
are definitely there.

What different hypothesis explain the observed effect?

sexuality facial hair
Choice of presentation
o————0

@ facial features
./ e.g. prenatal hormone theory
\. sexuality

biological
mechanism

gay dating
/. profile
o

social\‘._>. jawline roundness

class NB: These 0T¢

! s
body weight only \«‘j\a"u’\ese

Il

So, what kind of hypotheses can we think of for what is
causing the performance of the classifier?

The authors observe that in their dataset the heterosexual
men are more likely have facial hair. That's most likely to be
a grooming choice, based on the differences in gay and
heterosexual subcultures.

For other correlations, such as that between sexuality and
nose length, the authors suggest the prenatal hormone
theory, a theory that relates prenatal hormone levels in the
mother with the sexuality of the subject. In short, a
biological mechanism that is responsible for both the
(slight) variation in facial features and the variation in
sexual preference.

But that’s not the only possibility. In the previous slide, we
saw that it’s difficult to separate facial features from facial
expressions. However, even if we somehow eliminate the
expression, that doesn’t mean that every facial feature we
see is determined at birth. For instance, the roundness of
the jaw is also influenced by body weight, which is strongly
influenced by social class (for instance, whether somebody
grows up poor or rich). And while there’s no evidence that
social class influences the probability of being gay, it most
likely does influence how likely a gay person is to end up
setting up a dating profile.

Note that these are purely hypotheses, intended to show
which kinds of causalities can cause these correlations. I'm
not in the least bit qualified to say which is more likely to be
true.

Composite heterosexua fices

Composite gay faces

m

The authors plotted the four average faces for the classes
male/female and gay/heterosexual in their dataset. Here
are the four options. It’s a peculiar property of datasets of
(aligned) faces that the mean is often quite a realistic face
itself.

Consider this plot with the hypotheses on the previous
slide. What differences do you see? Pay particular attention
to the differences in skin tone, grooming, body weight, and
the presence of glasses.

I'll leave you to decide which you think is the more likely
explanation for these difference: choice of presentation,
social class, or sexuality.

performance (AUC)

AUC

from pixels L T—

Deeplearning |

AUC

from facial landmarks
E— |

|
Male

Y

.
Contour | ===
Mouth o
Eyebrows E
Eyes [-
Nose E

Female

m

The authors repeated their experiments by classifying
based purely on facial landmarks. The idea is that we can
detect landmarks very accurately, and classifying on these
alone removes a lot of sources for potential Clever Hans
effects.

We see that all subsets of the face landmarks allow for some
predictive performance, but there is a clear difference
between them. Note that just because we are isolating
landmarks, doesn’t mean that we are focusing only on
biological causes. As we saw earlier, the shape of the mouth
is determined more by expression than by facial features,
and the roundness of the jaw is partly determined by body
weight, which is correlated with social class.

We will discuss the AUC metric in the third lecture. For now,
you can think of a classifier with 81% AUC as one that,
given a random pair of gay and heterosexual instances from
the data, will successfully select the gay instance 81% of the
time.

Let’s assume that the shape of the nose is mostly unaffected
by grooming and expression. | have no idea whether this
assumption is valid, but say that it is. Focusing purely on the
shape of the nose, we see that performance drops to 0.65
AUC for men and 0.56 AUC for women. This is still better
than chance level.

Can we say that homosexuality can be detected based on the
shape of the nose? Can we conclude a biological relation
based on this correlation?

What does 0.56, 0.65 AUC mean?

Accuracy AUC

Guessing sex or gender based on: proportion of incorrect chance of correctly ordering a
classifications random male/female pair

Age

Dutch census data 0.51 0.52

Age for people aged 80 and over 0.61 0.57

Dutch census data :)

Age 065 0.59

ANSUR Il data

Waist circumference 0.68 074

ANSUR Il data

Stature (height) 0.84 0.92

ANSUR Il data

To interpret numbers like these, it's good to get some points
of reference. If we try to guess somebody’s gender or sex
(the distinction doesn’t matter much for such a crude
guess), while knowing nothing about them except their
age, the best we can expect to do is slightly better than
chance level (51% of our guesses will be correct). The
reason we can get better than chance level is that women
tend to live longer than men. This means that if we guess
“female” for older people, we are a little bit more likely to
be correct.

If we restrict ourselves to older people, the effect becomes
more pronounced and we can get to the level the sexuality
classifier achieved (based purely on noses in the female
part of the data). This can help us to interpret the AUC the
authors managed to achieve. Note that this accuracy is
achieved by calling everybody female, and the AUC is
achieved by guessing that the older person in a pair is
always female. Think about that. If you walk into a care
home blindfolded and simply call everybody female,
can you really claim to be detecting their gender?

If we look purely at people’s height, we get an accuracy and
AUC that is comparable to what the authors achieved from
the pixel data. This is also an important point to consider.
Height and gender are correlated, but that doesn’t mean
that there are no tall women or short men. It also doesn’t
make tall women “masculine”, or short men “feminine”. It’s
just a slight correlation that allows us to make an educated
guess for certain parts of the range of heights.

This is how you should always interpret accuracy and AUC
values in the range 0.8 to 0.95: it's as impressive as
guessing somebody's sex or gender based purely on their
height. Yes, it can be done better than chance level, and yes
there is a definite correlation, but it doesn't much more
than that there is a very subtle correlation.

NB: In the ANSUR Il data, the subjects are soldiers. It's
possible that some sex differences are more pronounced in
this population due to selection effects or physical training.
We balanced the ANSUR data by subsampling to make the
numbers of male and female subjects equal.

To provide some points of references for ROC curves, here
are all the curves you can achieve for sex/gender
classification based on a single physical measurement. For
some of these we get very impressive looking curves. But is
the word "detection” really appropriate when you are
making one physical measurement and predicting sex or
gender based on that?

The lowest AUC comes from using buttock circumference as
a feature, and the highest from using neck circumference.
Since these are soldiers, it's likely that differences due to
muscle volume are more pronounced here than they would
be generally. This plot is for the complete, unbalanced data
so there is a 4:1 class imbalance (male:female).

= male
female

frequency

IS
S

20

170
height

116

Here are the histograms per sex/gender for the ANSUR
data. There is a big discrepancy, but notice also how big the
area of overlap is.

This is always what we should imagine when people say
that property A is predictive for attribute B. Just because
there’s some difference between the populations doesn’t
mean that there are no short men or tall women. And most
importantly it doesn’t mean that being short makes you in
some way more feminine or being tall makes you in some
way more masculine.

Are you detecting something?

How accurate was the classifier in our study? Very accurate: It is comparable with the accuracy of
mammograms (85%) or modern diagnostic tools for Parkinson's disease (90%).

So, are we really justified in calling this a detector?

Are you really detecting gender when you call somebody
male just because they’re tall? The authors compare their
classifiers to medical diagnostic tools to provide an
interpretation of the AUC scores.

This is where we must make a clear distinction between
what a classifier like this does and what a diagnostic test
does. A test like that for breast cancer looks explicitly only
at one particular source of information. In this case the
mammogram. The clinician will likely take the result of this
test, and factor in contextual clues like age and lifestyle if
the test is unclear. The test can be said to detect something,
because it is strictly confined to look at only one thing.

The clinician is then predicting or guessing something
based on different factors. One of which is the test.

The diagnosis of Parkinson’s is different. It's much more
similar to the way this classifier works, there is no
unambiguous diagnostic tool like a blood test, so the
diagnostician can only look at contextual clues like
symptoms, medical history, age and risk factors.

There is still a difference, however, in that the features are
made more explicit. The pixel-based sexuality classifier may
be inferring social class from the image, but it's not telling
us that it’s doing this. A doctor may be guilty of such
subconscious inferences as well, but we can expect a
greater level of interpretability from them.

NB: The authors use the word accuracy to refer to ROC-AUC.

https://docs.google.com/document/d/11oGZ1Ke3wK9E3BtOFfGfUQuuaSMR8AO2WfWH3aVke6U/edit#

Should this research have been performed and published?

Note that:
- The authors stumbled onto these results.

- The main aim is to warn of privacy concerns.
Not to make claims about the biological mechanisms underlying homosexuality

- Prenatal Hormone Theory is often mentioned.

1 e omsoty s

- The classifier is stated to detect sexuality. W

A prediction or a guess is closer to the truth. c 5
3 - 3 SN

After all that, it’s natural to ask whether this research
project was a mistake. In short, were the authors wrong to
do this, and if so in what way? This is a question of values
rather than science, so it’s up to you to decide. I'll just note
some important points to consider.

Firstly, the authors weren’t looking to prove this point one
way or another, and they initially stumbled on to their
findings. Given that a result has been established, it's most
often unethical not to report it. So long as that reporting is
done carefully and responsibly, of course.

The stated aim of the paper is not to make any claims about
causal mechanisms. The authors are less interested in
whether the classifier picks up on grooming choices of
biological features, than in whether the guess can be made
with some success at all.

If we decide that the result did need to be reported, we may
consider whether the authors were guilty of poor framing.
The use of the word detecting is subject to
misinterpretation. To be fair, that's something I only became
aware of when looking into this matter including all the
fallout from this particular paper, so for me at least it would
be hypocritical to be too judgemental of poor word choice.

Another odd thing, is that in both the paper and the
explanatory notes, prenatal hormone theory a suggested
biological causal mechanism for homosexuality, is often
mentioned. As we have seen the experiments shown here
provide no evidence for one causal hypothesis over another,
so it would probably have been better to make no claims
about causal effect whatsoever.

How do you frame your research?

Consider which features you are using.

Consider multiple hypotheses. Social, biological, personal.
Train yourself to always come up with different explanations for a given set of facts.

Distinguish between detecting, predicting and guessing.
Even 0.91 AUC is more guessing than predicting. It's only detecting if you strictly control
your features.

.
always read the pape

s

If you find yourself in the unfortunate situation of having to
publish something controversial like this, or having to
interpret somebody else's work on a controversial topic,
keep these tips in mind.

Finally, and this is a personal opinion, so make of it what
you will: if you read about research like this in a newspaper,
or on social media, remember that you are an academic (or
at least you will be when you graduate). That comes with a
certain responsibility to dig into the primary research
before you make a judgment. Don't just trust the journalists,
or worse, the commenters on Twitter. If you really want to
give your opinion on a situation like this, dig out the
original paper and read it. If you don't, the most honest
thing to do is to withhold judgment.

What you you will find when you dig down, is almost always
that the truth is much more subtle than the news and social
media make it look. In this specific case, the majority of
criticism leveled at the authors was simply inaccurate.
There are valid and serious criticisms of the paper, but you

really need to dig down to get past a lot of invalid criticisms.
The truth, as is so often the case is subtle and complex. Our
job as academics is to embrace that complexity, and to
simplify it as much as possible, but no further.

acknowledgements I'm indebted to people on twitter for helping me to see the

different angles on this topic.
Thanks to Jasmijn Bastings (@BastingsJasmijn) and Anne

Ogborn (@AnneOgborn) and others for discussing this
topic with me over Twitter.

)

|section|No Free Lunch|
|video|https://surfdrive.surf.nl/files/index.php/s/
0x1323uBQfMfwmX/download|

Model Evaluation

No Free Lunch

http://mlvu.github.io

We end with a very short, but important discussion.

A question that often arises is: which classifier, model, search
method, etc. is the best, independent of the data? Before we
see the data, can we make a best guess for which
approaches to try? Are there some methods that always
work really well?

The no-free-lunch theorem(s) In the 90s two researchers, named Wolpert and MacReady

published a proof of an important theorem. The details are

technical, but it basically stated that if we look at
Wolpert & MacReady 1997
optimization algorithms (of which machine learning

.. any two optimization algorithms are equivalent when algorithms are a specific instance), by averaging their
their performance is averaged across all possible .
problems” performance over all possible tasks, they all perform

exactly the same. That is, if we want to know which
algorithm is the best independent of the task, we cannot tell
them apart by their performance.

source: Wolpert, D. H, & Macready, W. G. (1997). No free lunch theorems for optimizati 1(1),67-82. E

gradient descent and gradient ascent Let's look at some examples of what this means in practice.
For instance, gradient descent is a pretty intuitive
algorithm, and we've seen already that there are many tasks
for which it works well. Let's imagine the polar opposite
algorithm: gradient ascent. We are still looking for the
lowest point on the loss surface, but instead of descending,
we climb. Intuitively, this is a ridiculous algorithm,

However, according to the no free lunch theorem, both
gradient descent and gradient ascent should work equally

well when their performance is averaged over all problems.
This means that for every task on which gradient descent
works well, and gradient ascent works terribly, we should

m

be able to find a task where the roles are reversed.

The slide shows the kind of landscape that might result in
this situation. On the left we have a typical loss landscape,
with a lowest point that gradient descent should easily find.
On the right we have the opposite. A reverse loss landscape
that you need to climb to get near the lowest point.
Gradient descent would go nowhere near the optimimum.

Gradient ascent, with just the right hyperparameters, will
climb all the way to the top, and in its last step fall into the
crevice and get stuck on the plateau at the bottom.

Given some data X and basic methods A and B.
Meta-methods:

- method C: Use a data split, choose whichever performs
the best.

- method D: Use a data split, choose whichever performs
the worst.

According to the NFL theorem, there are as many datasets
X for which C beats D as there are for which D beats C.

s

Here is another example, that should show you what a
strange result the no free lunch theorem is. The common
practice of dataset splitting and choosing a model by its test
set performance is also an algorithm. We do it manually, but
we could also program it into a computer. Let's say we want
to choose between two methods A and B. We can follow the
normal approach: split the data, apply both and choose
whichever performs best. Call this method C.

We can also do a ridiculous, counter-intuitive thing and
choose the method that performs worst. Call this method D.

The no free lunch theorem says that method D should
outperform method C just as often as the other way around.

The kind of datasets where this happens are the ones where
the test set happens to behave very differently from the
training set. Since we usually make the split randomly, these
would be very unusual or unlikely datasets, and we feel
justified in using method C. Still, this only works because
we are able to make certain assumptions about our data.

the problem of induction again

In a way, we're back to the problem of induction. For any
given situation where a learning method works, there’s a
situation where it doesn’t. Induction (aka. learning from
experience) works in practice, but there are exceptions, and
we can't tell just by looking at the data when it will and
won't work.

Note that if there were some algorithm that could tell us
which situation we were in, we could just use this algorithm
to select our learning method, and beat the NFL theorem.

In short, we need to make some assumptions about the
nature of whatever it was that created our data. Without
such assumptions, learning doesn't work.

The aspects of a learning algorithm, which implicitly or
explicitly make it suitable for certain learning problems
and unsuitable for others.

A linear method has an inductive bias for linear relations.

This is an increasingly important phrase in machine
learning. The inductive bias of a method or model are those
assumptions about the domain that are, explicitly or
implicitly, hardcoded into the model.

For instance, in a linear regression model, the assumption is
that all instances lie on a line (or the higher-dimensional
equivalent). If this assumption isn't violated too much, the
model is a good fit for the data. If the assumption is violated
very badly, we need to look for ways to change the
inductive bias, for instance by picking a different model, or
by enriching the linear model with extra features, like we
will do in the next lecture.

We can summarize the business of machine learning and
data science as follows. The business of the machine
learning researcher is to create a variety of models with
helpful inductive biases. The business of the data scientist is
to figure out which of the available inductive biases is
helpful for any given problem.

the universal distribution

Not all datasets are created equal. The datasets for which
our method works, are the likely ones.

The universe “generates” data for which our methods work
- Compressible data
- Simple data

The datasets that don't work aren’t selected, because they
look random to us.
We only understand those parts of the universe that generate understandable data

E

One “out” to the NFL Theorem, is that there is a “universal
distribution” governing all processes that create data.

The NFL Theorem implicitly assumes that all datasets are
equally likely. Since this is not the case, there is some other,
non-uniform distribution that tells us which datasets are
more likely than others, averaged over all possible settings.

Using such a universal data distribution, we could (in
theory) work out a universally best learning algorithm.

Occam’s razor

“The simplest explanation is often the best”
We should bias our algorithms towards simple models.

- Reduces overfitting, helps generalization.

”

We don't have too many practical ideas about the properties
of such a universal distribution, but one thing that crops up
alot is that simple data is necessarily more likely than
complex data.

This suggests that in learning we should have a simplicity
bias. If there are two models that both fit the data, one very
simple, like a linear model, and one very complex, like a
very big decision tree, then it's more likely that the simple
model generated the data.

Such simplicity biases can be implemented in many
different ways, and we'll see some concrete examples as the
course progresses.

the no-free-lunch principle

There is no single best learning method. Whether
an algorithm is good, depends on the domain.

13

Whether or not the NFL theorem means anything for us in
practice, it has also given rise to a general principle,
commonly followed in machine learning practice. The
principle is that we should choose our method to deal with
the task at hand, and not look for a universally best method.

Note that this is distinct from the NFL theorem, because
everybody still uses data splitting universally to evaluate
which of these many methods is the best. And by the NFL
theorem, model selection by data splitting is also nota
universal algorithm. So the NFL theorem and the NFL
principle are really two very different things.

In practice, the NFL theorem shouldn't keep you awake at
night. It's an interesting thought to return to occasionally,
and a reminder that by choosing a model, we are making
assumptions about the source of our data.

The NFL principle is an important concept to keep in mind
when selecting models. Don't just run gradient boosted
decision trees by default, just because somebody
somewhere said it was the best approach. Investigate your
task. figure out what makes it special, try different
approaches and tailor your approach to the problem at
hand.

