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offline machine learning: the basic recipe

Abstract (part of ) your problem to a standard task. 
Classification, Regression, Clustering, Density estimation, Generative Modeling, Online learning, 
Reinforcement Learning, Structured Output Learning 

Choose your instances and their features.  
For supervised learning, choose a target.  

Choose your model class. 
Linear models, Decision Trees, kNN,  

Search for a good model. 
Usually, a model comes with its own search method. Sometimes multiple options are available.
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today: 
  Evaluate y

our model

lecture 5: 

  Prepare yo
ur data

Here	is	the	basic	recipe	for	machine	learning	again.	This	
week,	we’ll	discuss	what	happens	before	and	after.	Today:	
once	you’ve	trained	some	models,	how	do	you	8igure	out	
which	of	them	is	best?

binary classification

Positive class 

Negative class 

The classifier is a detector for 
the positive class.
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error: 3/14  
proportion of misclassifications 

accuracy: 11/14 
proportion of correct classifications

We’ll	focus	mostly	on	binary	classi+ication	today	(two-
class	classi8ication).	In	this	case,	we	can	think	of	the	
classi8ier	as	a	detector	for	one	of	the	classes	(like	spam,	or	a	
disease).	We	tend	to	call	this	class	positive.	As	in	“testing	
positive	for	a	disease.”	

In	classi8ication,	the	main	metric	of	performance	is	the	
proportion	of	misclassi8ied	examples	(which	we’ve	already	
seen).	This	is	called	the	error.	The	proportion	of	correctly	
classi8ied	examples	is	called	the	accuracy.	

http://mlvu.github.io


comparing models
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linear vs. decision tree vs. kNN

different values of the hyperparameter k

You	compare	models	to	8igure	out	which	is	the	best.	
Ultimately,	to	choose	which	model	you	want	to	use	in	
production.		

This	could	be	literally	the	production	version	of	a	piece	of	
software,	or	just	the	model	whose	predictions	you	decide	to	
use	in	the	future.	

Sometimes	you	are	comparing	different	model	types	(a	
decision	tree	vs	a	linear	model),	but	you	might	also	be	
comparing	different	ways	of	con8iguring	the	same	model	
type.	For	instance	in	the	kNN	classi8ier,	how	many	
neighbours	(k)	should	we	look	at	to	determine	our	
classi8ication?	

With	the	2D	dataset,	we	can	look	at	the	decision	boundary,	
and	make	a	visual	judgment.	Usually,	that’s	not	the	case:	our	
feature	space	will	have	hundreds	of	dimensions,	and	we’ll	
need	to	measure	the	performance	of	a	model.	

performing an experiment

Train classifier A, train classifier B 

Compute the error of A, compute the error of B 
error = proportion of mistakes 

The lower the error, the better the model
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On which data do we compute the error? 

How do we eliminate random effects? 

Is error/accuracy the best metric to use?

Here	is	the	simplest,	most	straightforward	way	to	compare	
two	classi8iers.	You	just	train	them	both,	so	see	how	many	
examples	they	get	wrong,	and	pick	the	one	that	made	
fewest	mistakes.	This	is	a	very	simple	approach,	but	it’s	
basically	what	we	do.		

We	just	need	to	consider	a	few	questions,	to	make	sure	
that	we	can	trust	our	results.

Overfitting We’ve	already	seen	what	happens	when	you	evaluate	on	the	
training	data.	A	model	that	8its	the	training	data	perfectly	
may	not	be	much	use	when	it	comes	to	data	you	haven't	
seen	before.



Never judge your 
performance on the 

training data
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the test set

The proportion is not important, the absolute size of the 
test data is. 

We should aim to have at least 500 examples in the test 
data (10 000 or more is ideal).
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test datatraining data

So	the	8irst	thing	we	do	in	machine	learning	is	withhold	
some	data.	We	train	our	classi8iers	on	the	training	data	and	
test	on	the	test	data.	That	way,	if	we	get	good	performance,	
we	know	that	we’re	likely	to	get	a	good	performance	on	
future	data	as	well,	and	we	haven’t	just	memorised	random	
8luctuations	in	the	training	data.	

How	should	we	split	our	data?	The	most	important	factor	is	
the	size	in	instances	of	the	test	data.	The	bigger	this	
number,	the	more	precise	our	estimate	of	our	model’s	error.	
Ideally,	we	separate	10	000	test	instances,	and	use	
whatever	we	have	left	over	as	training	data.	Unfortunately,	
this	is	not	always	realistic.	We’ll	look	at	this	a	little	more	
later.

what if you need to  test many models?
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?

But	even	if	we	withhold	some	test	data,	we	can	still	go	
wrong.	We’ll	use	k	nearest	neighbours	(kNN)	as	a	running	
example.	Remember,	kNN	assigns	the	class	of	the	k	nearest	
points.		

k	is	what	is	called	a	hyperparameter.	We	need	to	choose	
its	value	in	some	way	before	we	run	the	algorithm.	The	
algorithm	doesn't	specify	how	it	should	be	chosen.	One	way	
of	choosing	k	is	to	try	a	few	values,	and	to	see	for	which	k	
we	get	the	best	performance.
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We	will	use	the	data	from	the	8irst	lecture	as	an	example.	
We	will	take	a	small	subsample	of	the	dataset,	so	that	the	
effects	that	we	want	to	illustrate	become	exaggerated.

Here	we’ve	tested	12	different	values	of	k	on	the	same	test	
data	(using	quite	a	small	test	set	to	illustrate	the	idea).	We	
can	see	that	for	k=1,	we	get	the	best	performance.	We	
plotted	the	test	data	(with	the	training	data	in	low	opacity).	

best model
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Here	is	the	best	run.	Should	we	conclude	that	k=1	is	
de8initely	a	better	setting	than	k=2	or	k=3?	Should	we	
conclude	that	we	can	expect	an	error	of	0.16	on	any	future	
data	from	the	same	source?



rerun: same models, new test set
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In	this	case,	we	have	some	more	data	from	the	same	source,	
so	we	can	evaluate	the	classi8iers	again	on	a	fresh	test	set.	
This	is	a	luxury	we	don't	normally	have	(we	normally	use	all	
the	data	we	are	given).		

What	we	see	is	that	k=1	no	longer	gives	us	the	best	
performance.	In	fact,	we	get	a	radically	different	best	value	
of	k,	and	k=1	now	gives	us	the	highest	error	in	the	run.

14

Here	is	one	of	the	the	new	best	runs.
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The	same	models,	different	test	sets	and	the	conclusions	are	
entirely	different.	We	were	diligent	in	splitting	our	dataset	
and	evaluating	only	on	withheld	data,	and	yet	if	we	had	
done	only	one	run	on	one	dataset,	as	we	normally	would,	
we	would	have	concluded	that	k=1	is	the	best	setting	and	
that	an	error	of	0.16	can	be	expected	with	that	value.		

If	we	look	at	the	k=1	model	from	the	second	run	(the	one	
we	chose),	we	will	see	that	the	performance	on	the	new	test	
set	is	terrible.	If	we	select	a	model	in	this	way	and	take	it	
into	production,	we	will	8ind	that	it	performs	terribly.	

So	what's	happening	here?	



conclusion: we’re overfitting again
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This	is	essentially	the	over8itting	problem	again.	Our	
method	of	choosing	the	hyperparameter	k	is	just	another	
learning	algorithm.	By	testing	so	many	values	of	k	on	such	a	
small	amount	of	test	data,	we	are	over8itting	our	choice	of	k	
on	the	test	data.	The	model	we	choose	8its	well	because	of	
random	8luctuations	in	the	data.	When	we	resample	the	
data,	these	8luctuations	disappear	and	the	performance	
drops.	

This	is	an	instance	of	the	multiple	testing	problem	in	
statistics.	We’re	testing	so	many	things,	that	the	likelihood	
of	a	noticeable	effect	popping	up	by	chance	increases.	We	
are	in	danger	of	ascribing	meaning	to	random	8luctuations.		

Speci8ically,	in	our	case,	the	k=1	classi8ier	got	lucky	on	a	
few	examples,	that	just	happened	to	fall	on	the	right	side	of	
the	decision	boundary.	If	we	draw	some	new	data,	the	same	
classi8ier	won't	be	lucky	again.	The	more	different	values	of	
k	we	try,	the	more	we	are	in	danger	of	this	kind	of	random	
luck	determining	which	hyperparameters	come	out	as	
good.	

The	simple	answer	to	the	problem	of	multiple	testing	is	not	
to	test	multiple	times.	

see	also:	https://www.explainxkcd.com/wiki/
index.php/882:_Signi+icant	

evaluation: the modern recipe

Split your data into train and test data. 
Sample randomly. At least 500 examples in your test set. In ML benchmarks the test data is often 
given. 

Choose your model, hyperparameters, etc. only using the 
training set. 
Save your test set until the very last minute. Don’t use it for anything. 

State your hypothesis 
i.e. kNN with k=7 beats existing model X, or kNN with k=7 is better than kNN with k = 12 

Test your hypothesis once on the test data 
This is usually at the very end of your project when you write your report or paper.
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There	are	many	different	approaches	to	machine	learning	
experimentation,	and	not	every	paper	you	see	will	follow	
this	approach,	but	this	is	the	most	common	one.		

It’s	important	to	mention	in	your	paper	that	you	followed	
this	approach,	since	the	reader	can’t	usually	see	it	from	the	
presented	results.	



Don’t re-use your test data

Just	to	emphasize	the	important	point:	the	more	you	use	
the	test	data,	the	less	reliable	your	conclusions	become.	
Figure	out	what	the	end	of	your	project	is,	and	do	not	touch	
the	test	data	until	the	end.	

In	really	important	and	long-term	projects,	it’s	not	a	bad	
idea	to	withhold	multiple	test	sets.	This	allows	you	to	still	
test	your	conclusions	in	case	you’ve	ended	up	using	the	
original	test	data	too	often.

reusing your test data

Causes you to pick the wrong model 

Inflates your performance estimate 
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Not	only	does	reusing	test	data	mean	that	you	pick	the	
wrong	model,	it	also	means	that	the	error	estimate	you	get	
is	probably	much	lower	than	the	error	you	would	actually	
get	if	you	gathered	some	more	test	data.	

validation set

During model and hyperparam. selection: 

• train on: 

• test on: 

Final run: 

• train on: 

• test on:
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testtraining validation

validation

training

training validation

test

<- us
ually

This	means	that	you	need	to	test	which	model	to	use,	which	
hyperparameters	to	give	it,	and	how	to	extract	your	
features	only	on	the	training	data.	In	order	not	to	evaluate	
on	the	training	data	for	these	evaluations,	you	usually	split	
the	training	data	again:	into	a	(new)	training	set	and	a	
validation	set.	

Ideally,	your	validation	data	is	the	same	size	as	your	test	set,	
but	you	can	make	it	a	little	smaller	to	get	some	more	
training	data.	

This	means	that	you	need	to	carefully	plan	your	research	
process.	If	you	start	out	with	just	a	single	split	and	keep	
testing	on	the	same	test	data,	there’s	no	going	back	(you	
can’t	unsee	your	test	data).	And	usually,	you	don’t	have	the	
means	to	gather	some	new	dataset.	

It’s	usually	8ine	in	the	8inal	run	to	append	the	validation	
data	to	your	training	data.	This	is	not	always	the	case	
however,	so	if	you	use	a	standard	benchmark	you	should	
check	if	this	is	allowed,	and	if	you	use	your	own	dataset,	you	
should	describe	carefully	whether	you	do	this.	



Note	that	this	approach	by	itself	doesn't	prevent	multiple	
testing.	It	just	provides	for	a	8inal	failsafe	to	detect	it.	Before	
you	make	the	decision	to	try	your	model	on	the	test	data,	
you	should	8irst	convince	yourself	that	the	results	you	see	
are	not	down	to	multiple	testing.	You	can	do	this	by	not	
testing	too	many	hyperparameter	values,	or	if	you	fear	that	
you	have,	by	rerunning	your	experiment	on	a	different	
train/validation	split	to	double-check.	

There's	always	a	bit	of	a	tense	moment	when	you	run	the	
experiment	on	the	test	data,	and	you	get	to	8ind	out	how	
close	the	real	numbers	you'll	get	to	report	are	to	the	
numbers	you've	seen	for	the	validation.	However,	if	your	
datasets	are	large,	and	you	haven't	done	anything	strange	in	
the	hyperparameter	tuning	phase,	they	will	usually	be	very	
close	together.

not this
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dataset 1 dataset 2 dataset 3

other method 1 0.15 0.08 0.27

other method 2 0.11 0.10 0.29

ours (k=1) 0.89 0.45 0.23

ours (k=2) 0.09 0.23 0.70

ours (k=3) 0.08 0.45 0.57

ours (k=4) 0.15 0.56 0.32

ours (k=5) 0.57 0.09 0.88

ours (k=6) 0.58 0.07 0.89

This	may	seem	like	a	simple	principle	to	follow,	but	it	goes	
wrong	a	lot.	Not	just	in	student	papers,	also	in	published	
research.	

Here’s	what	you	might	come	across	in	a	bad	machine	
learning	paper.	In	this	(8ictional)	example,	the	authors	are	
introducing	a	new	method	(labeled	ours)	which	has	a	
hyperparameter	k.	They	are	claiming	that	their	model	beats	
every	baseline,	because	their	numbers	are	higher	(for	
speci8ic	hyperparameters).	

These	numbers	create	three	impressions	that	are	not	
actually	validated	by	this	experiment:	

• That	the	authors	have	a	better	model	than	the	two	other	
methods	shown.		

• That	if	you	want	to	run	the	model	on	dataset	1,		you	
should	use	k=3	

• That	if	you	have	data	like	dataset	1,	you	can	then	expect	
an	error	of	0.08.	

None	of	these	conclusions	can	be	drawn	from	this	
experiment,	because	we	have	not	ruled	out	multiple	testing.	



but this
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dataset 1 dataset 2 dataset 3

other method 1 0.15 0.08 0.27

other method 2 0.11 0.10 0.29

k 3 5 2

ours 0.11 0.11 0.24

“The hyperparameter k was chosen based on a validation set 
split off from the training data. The test data was used only 

once.”

Here	is	what	we	should	do	instead.	We	should	use	the	
training	data	(with	validation	withheld)	to	select	our	
hyperparameters,	make	a	single	choice	for	k	for	each	
different	dataset,	and	then	estimate	the	accuracy	of	only	
that	model.		

Note	that	the	numbers	have	changed,	because	in	the	
previous	example	the	authors	gave	themselves	an	
advantage	by	multiple	testing.	With	a	proper	validation	
split,	that	advantage	disappears.	These	numbers	are	worse,	
but	more	accurate.	(I	made	these	numbers	up,	but	this	is	
the	sort	of	thing	you	might	see)	

Now,	we	can	actually	draw	the	conclusions	that	the	table	
implies:	

• On	dataset	3,	the	new	method	is	the	best.	

• If	we	want	to	use	the	method	on	dataset	3	(or	similar	
data)	we	should	use	k=2	

• If	our	data	is	similar	to	that	of	dataset	3,	we	could	expect	
a	performance	around	0.24	

Even	though	most	people	now	use	this	approach,	you	
should	still	mention	exactly	what	you	did	in	your	report	(so	
people	don’t	assume	you	got	it	wrong).

cross-validation
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training

val.

val.

val.

val.

val.

average

0.3

0.4

0.1

0.3

0.4

0.3

After	you’ve	split	off	a	test	and	validation	set,	you	may	be	
left	with	very	little	training	data.	If	this	is	the	case,	you	can	
make	better	use	of	your	training	data	by	performing	cross-
validation.	You	split	your	data	into	5	chunks	(“folds”)	and	
for	each	speci8ic	choice	of	hyperparameters	that	you	want	
to	test,	you	do	8ive	runs:	each	with	one	of	the	folds	as	
validation	data.	You	then	average	the	scores	of	these	runs.	

This	can	be	costly	(because	you	need	to	train	8ive	times	as	
many	classi8iers),	but	you	ensure	that	every	instance	has	
been	used	as	a	training	example	once.	

After	selecting	your	hyperparameters	with	crossvalidation,	
you	still	test	once	on	the	test	data.	

You	may	occasionally	see	papers	that	estimate	error	of	their	
8inally	chosen	model	by	cross	validation	as	well	(splitting	
off	multiple	test	sets),	but	this	is	a	complicated	business,	
and	has	fallen	out	of	fashion.	We	won’t	go	into	in	this	
course.



temporal data

24

training data

time

test

If	your	data	has	special	attributes,	like	a	meaningful	
temporal	ordering	of	the	instances,	you	need	to	take	this	
into	account.	In	the	case	of	temporal	data,	training	on	
samples	that	are	in	the	future	compared	to	the	test	set	is	
unrealistic,	so	you	can’t	sample	your	test	set	randomly.	You	
need	to	maintain	the	ordering.	

Sometimes	data	has	a	timestamp,	but	there’s	no	meaningful	
information	in	the	ordering	(like	in	email	classi8ication,	
seeing	emails	from	the	future	doesn’t	usually	give	you	much	
of	an	unfair	advantage	in	the	task).	In	such	cases,	you	can	
just	sample	the	test	set	randomly.	

temporal data: walk-forward validation
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training data

time

train v 0.4

0.1train v

0.3train v

average
0.4

0.3

train v

… …

If	you	want	to	do	cross-validation	in	such	time	sensitive	
data,	you’ll	have	to	slice	the	dataset	like	this.	

Evaluation is a simulation of production.  

Validation is a simulation of evaluation.
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In	general,	don’t	just	apply	split	testing	and	cross	validation	
blindly.	Think	about	how	you	will	ultimately	train	and	use	
your	model	“in	production”.	Production	may	be	an	actual	
software	production	environment,	or	some	other	place	
where	you	intend	to	employ	your	model.	Your	evaluation	on	
the	test	set	is	essentially	a	simulation	of	that	setting.		

If	you're	doing	something	in	evaluation	that	you	won't	be	
able	to	do	in	production	(like	training	on	instances	from	the	
future),	then	you	are	cheating	your	evaluation.		

Your	validation	is	essentially	a	simulation	of	the	evaluation.	
If	you	want	validation	results	that	accurately	predict	your	
evaluation	results,	then	your	validation	should	mimic	the	
evaluation	as	closely	as	possible.		

Here,	however,	you	are	allowed	to	deviate	a	little.	For	
instance,	you	can	make	your	validation	data	a	little	smaller	
than	your	test	data.	This	is	a	tradeoff:	you	are	reducing	the	
certainty	of	your	validation	results,	but	you	are	gaining	a	
little	extra	training	data,	which	will	improve	your	results	in	
the	end.	Such	tradeoffs	are	8ine,	so	long	as	you	are	honest	in	



your	8inal	evaluation	on	the	test	data.	

In	general,	when	in	doubt	make	sure	that	the	evaluation	
setting	accurately	simulates	production,	and	that	the	
validation	setting	accurately	simulates	the	evaluation	
setting.

which hyperparameters to try?

Up to you: 

• trial-and-error (intuition) 
probably the most common approach 

• grid search 
define a finite set of values per hyperparameter and try all combinations. 

• random search (remember?)
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So,	now	that	we	know	how	to	experiment,	what	
experiments	should	we	run?	Which	values	should	we	try	for	
the	hyperparameters?	So	long	as	we	make	sure	not	to	look	
at	our	test	set,	we	can	do	what	we	like.	We	can	try	a	few	
values,	we	can	search	a	grid	of	values	exhaustively,	or	we	
can	even	use	methods	like	random	search,	or	simulated	
annealing.		

We	should	only	be	cautious	not	to	try	too	many	different	
hyperparameter	values	if	our	test	and	validation	sets	are	
small.	

It’s	important	to	mention:	trial	and	error	is	+ine,	and	it’s	
the	approach	that	is	most	often	used.	It’s	usually	the	
most	effective,	because	you	(hopefully)	have	an	intuitive	
understanding	of	what	your	hyperparameters	mean.	You	
can	use	this	understanding	to	guide	your	search	in	a	way	
that	automated	methods	can’t.

random samples vs. grid search

28source: Random search  for hyper-parameter optimization, Bergstra and Bengio JMLR 2012 
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.
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If	you	are	going	to	use	some	kind	of	automated	search,	
trying	a	bunch	of	different	combinations	of	hyperparameter	
values,	and	then	trying	random	samples	in	the	hyper	
parameter	space	is	often	better	than	exhaustively	checking	
a	grid.	This	picture	neatly	illustrates	why.	If	one	parameter	
turns	out	not	to	be	important,	and	another	does,	a	grid	
search	restricts	us	to	only	three	samples	over	the	important	
parameter,	at	the	cost	training	nine	different	models.	

If	we	randomize	the	samples,	we	get	nine	different	values	of	
each	parameter	at	the	same	cost.	

source:	http://www.jmlr.org/papers/volume13/
bergstra12a/bergstra12a.pdf	(recommended	reading)	

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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|video|https://surfdrive.surf.nl/8iles/index.php/s/
AoCsdmxAmof17Y9/download|

Machine Learning vs. Statistics

Stats but not ML: Analyzing research results. Experiment 
design. Courtroom evidence. 
More ML than Stats: Spam classification, movie 
recommendation,.
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Statistics ML

As	noted	in	the	8irst	lecture,	statistics	and	ML	are	very	
closely	related.	It’s	surprising	then,	that	when	we	perform	
ML	experiments,	we	use	relatively	little	of	the	statistics	
toolkit.	We	don’t	often	do	signi+icance	tests,	for	instance.

should we do statistical tests at all?

• Makes ML experimentation difficult. Lots of 
disagreement. 

• People overestimate the value of statistical analyses. 

• Does not promote the best methods 

• The ultimate validation of research is REPLICATION 

On the appropriateness of statistical tests in machine learning, Janez Demšar, 2008 
Machine Learning as an Experimental Science (Revisited), Chris Drummond, 2006
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Should	we	be	doing	more	statistics	on	our	own	
experiments?	

There	is	a	lot	of	disagreement.	Hypothesis	testing	comes	
with	a	lot	of	downsides.	Given	that	we	usually	have	very	big	
sample	sizes	(10	000	instances	in	the	test	set),	our	efforts	
may	be	better	spent	elsewhere.	

Another	consideration	is	that	the	ultimate	validation	of	
research	is	replication,	not	statistical	signi8icance.	
Somebody	else	should	repeat	your	research	and	get	the	
same	results.	Because	all	of	our	experimentation	is	
computer	code,	a	basic	replication	could	be	as	simple	as	
downloading	and	running	a	docker	image.	After	that	it’s	
easy	to	try	the	same	on	new	data,	or	check	the	model	for	
bugs.	

In	practice,	replication	can	be	a	real	nightmare,	even	in	our	
>ield.	

Since	the	community	is	so	divided	on	the	question,	we	
won’t	emphasize	statistical	testing	too	much	in	this	course.	

http://mlvu.github.io


However,	there	are	a	few	important	statistical	concepts	to	
be	aware	of,	even	if	we	don't	use	the	whole	statistical	
toolbox	to	interrogate	them	rigorously.

true metric vs. estimate

data distribution: p(x, t) 
one instance x and its class t 

true accuracy of C 
probability that C(x) = t under p
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unobservable observable

dataset 

sample accuracy of C 
proportion of test set that C classifies correctly

 - sample ->

e.g. the mean height 
of a Dutch person

the mean height of 100 
randomly sampled 
Dutch people

->

The	8irst	is	the	difference	between	the	true	metric	of	a	
problem	or	task,	and	the	value	you	measure.	This	is	a	very	
basic	principle	in	statistics.	For	instance,	we	can’t	observe	
the	mean	height	of	all	Dutch	people	currently	living,	but	we	
can	take	a	random	sample	of	100	Dutch	people,	and	use	
their	average	height	as	an	estimate	of	the	true	average	
height.			

To	translate	this	to	machine	learning,	let’s	take	
classi8ication	accuracy	as	an	example.	

We	usually	imagine	that	the	data	is	sampled	from	some	
distribution	p(x).	In	this	view,	we're	not	really	interested	in	
training	a	classi8ier	that	does	well	on	the	dataset	we	have,	
even	on	the	test	data.	What	we	really	want	is	a	classi8ier	
that	does	well	on	any	data	sampled	from	p(x).	

Imagine	sampling	one	instance	from	the	data	distribution	
and	classifying	it	with	some	classi8ier	C.	If	you	do	this,	there	
is	a	certain	probability	that	C	will	be	correct.	This	is	called	
the	true	accuracy.	It	is	not	something	we	can	ever	know	or	
compute	(except	in	very	speci8ic	cases).	The	only	thing	we	
can	do	is	take	a	large	number	of	samples	from	p(x),	classify	
them	with	C,	and	approximate	the	true	accuracy	with	the	
relative	frequency	of	correct	classi8ications	in	our	sample.	
This	is	what	we	are	doing	when	we	compute	the	accuracy	of	
a	classi8ier	on	the	test	set	or	the	validation	set:	we	are	
estimating	the	true	accuracy.	To	explicitly	distinguish	this	
estimate	from	the	true	accuracy,	we	sometimes	call	this	the	
sample	accuracy.	

The	accuracy	is	just	the	simplest	example.	We	can	apply	the	
same	idea	to	any	metric,	like	the	MSE	loss	of	a	regression	
model,	or	the	many	metrics	for	classi8iers	we	will	see	in	the	
following	videos.	They	all	have	a	true	value	de8ined	on	the	
data	distribution,	which	we	can't	observe,	and	an	estimate	
which	we	can	compute	from	the	test	set.



statistical testing
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Can the observed results be 
attributed to real characteristics of 

the models under scrutiny or are 
they observed by chance?

This	brings	us	to	the	main	question	that	statistical	analysis	
is	meant	to	answer.	If	we	do	things	properly,	and	we	have	a	
large	dataset,	our	estimate	will	be	close	to	the	true	value.	
Often,	we	can	even	prove	how	close	it	is	likely	to	be.	But	
there	will	be	some	difference,	which	will	be	entirely	
random.	

So,	when	we	estimate	the	test	accuracy	of	models	A	and	B	
and	we	see	that	classi8ier	A	is	better	than	classi8ier	B	
because	their	estimated	accuracies	on	the	test	set	are	.997	
and	.998	respectively,	can	we	really	trust	that	statement?	
Maybe	this	random	noise	we	get	when	we	compute	the	
estimate	of	the	accuracy	caused	this	difference.	In	other	
words,	how	sure	can	we	be,	from	these	values,	that	the	
true	accuracy	of	A	is	also	higher	than	the	true	accuracy	
of	B?	

quote source: http://www.icmla-conference.org/icmla11/
PE_Tutorial.pdf

showing confidence: accuracy
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One	way	of	doing	this	is	to	compute	a	con+idence	interval.	
Here	we	see	the	process	of	computing	a	sample	accuracy	in	
a	simple	animation:	we	start	with	the	true	accuracy	(for	
some	given	classi8ier,	on	the	data	distribution)	which	is	
somewhere	between	0	and	1.	We	sample	a	bunch	of	points	
from	the	data	distribution	(our	test	set),	and	take	the	
relative	frequency	of	correctly	classi8ied	instances	as	the	
sample	accuracy.	

Here,	in	the	top	half	of	the	slide	we	model	the	process	of	
taking	one	instance	of	our	test	set	and	seeing	whether	the	
classi8ier	classi8ies	it	correctly	as	a	single	random	draw	
resulting	in	the	outcome	correct	or	incorrect.	We'll	see	in	
the	next	lecture	that	this	type	of	distribution	is	called	a	
Bernoulli	distribution.	

The	whole	process	of	sampling	the	entire	test	set	and	
computing	the	sample	accuracy	is	also	a	random	process.	If	
we	were	to	repeat	it,	sampling	a	new	test	set,	we'd	get	a	
different	value	for	the	sample	accuracy.	To	simplify	this,	we	
can	look	at	the	total	number	of	instances	in	our	sample	that	
the	classi8ier	classi8ied	correctly	(so	we	don't	divide	by	N).	
In	that	case,	it	turns	out	we	can	work	out	the	distribution	of	
this	process	as	well:	the	number	of	"correct"s	we	get	in	N	
samples	from	a	Bernoulli	distribution	forms	what	is	known	
as	a	Binomial	distribution.	

The	technical	details	aren't	important.	The	main	message	is	
that	we	can	de8ine	precisely	what	distribution	we	can	
expect	on	the	value	of	the	sample	accuracy	of	we	keep	the	
classi8ier	and	the	true	accuracy	8ixed,	but	resample	the	test	
data.	In	this	case,	we	see	that	for	a	true	accuracy	of	0.8,	and	
a	test	set	of	N=10	instances,	we	are	most	likely	to	see	that	
the	classi8ier	correctly	classi8ies	7	instances	in	our	sample	
(as	we	did	in	the	top	half	of	the	slide).	However,	it's	also	
perfectly	possible	to	see	5,	6,	or	8	instances	classi8ied	
correctly.	

This	is	a	complicated	picture	with	multiple	random	processes	
going	on.	Take	a	little	time	to	wrap	your	head	around	this	
before	moving	on.	

Imagine	that	if	we	have	two	classi8iers,	and	we	compute	
sample	accuracies	for	both	on	a	test	set	of	10	instances.	We	
get	5/10	correct	for	one	classi8ier	and	8/10	correct	for	the	



other.	Can	we	conclude	that	the	8irst	is	de8initely	worse	than	
the	second?	What	we	see	here	is	that	if	they	both	have	a	
true	accuracy	of	0.8,	it	would	be	perfectly	likely	to	see	these	
numbers.	In	short,	with	such	little	test	data,	we	have	much	
uncertainty	around	our	estimate	of	the	true	accuracy.	

One	way	to	quantify	this	uncertainty	is	to	draw	a	
con+idence	interval.	This	is	simply	any	interval	on	the	
values	of	our	sample	accuracy	that	captures	a	given	
proportion	of	the	probability	mass,	usually	95%.	You	can	
draw	the	con8idence	interval	anywhere	you	like	so	long	as	
you	decide	how	to	draw	it	before	seeing	the	data.	The	most	
common	approach	is	symmetrically	around	the	mean,	but	
you	can	also	start	at	the	mean	and	extend	it	to	the	right	as	
far	as	possible	or	to	the	left	as	far	as	possible.	

The	con8idence	interval	captures	our	uncertainty.	We	don't	
know	the	true	value	of	the	accuracy,	and	we	can't	estimate	it	
very	accurately,	but	we	know	it's	most	likely	one	of	these	
values.	

confidence intervals
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The	size	of	this	con8idence	interval	depends	on	two	factors:	
the	true	accuracy	and	the	size	of	the	test	set.	Here	are	some	
examples	for	different	accuracies	and	test	set	sizes.	

This	tells	us	that	if	the	true	success	probability	(accuracy)	
of	a	classi8ier	is	0.5,	and	the	test	set	contains	100	examples,	
our	con8idence	interval	has	size	0.2.	This	means	that	even	if	
we	report	0.5	as	the	accuracy,	we	may	well	be	wrong	by	as	
much	as	0.1	either	side.	

Even	if	these	con8idence	intervals	are	usually	not	reported,	
you	can	easily	work	them	out	(or	look	them	up)	yourself.	
So,	if	you	see	someone	say	that	classi8ier	A	is	better	than	
classi8ier	B	because	A	scored	60%	accuracy	and	and	B	score	
59%,	on	a	test	set	of	100	instances,	you	have	reason	to	be	
sceptical.	

In	short,	this	is	why	large	test	sets	are	important.	Without	
at	least	1000	instances	in	your	test	data,	you	cannot	reliably	
tell	the	difference	between	two	classi8iers.
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Here	are	the	full	curves,	in	case	you	ever	need	to	look	it	up.



Confidence depends on the size of the test set. 

Avoid small test sets.  

 
If you can’t, look into Alpaydin’s 5x2 F test  
https://www.cmpe.boun.edu.tr/~ethem/files/papers/
NC110804.PDF 
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If	you	don’t	have	the	luxury	of	a	large	test	set,	you	may	need	
to	do	some	statistical	testing	to	see	whether	the	effect	
you’ve	observed	(classi8ier	A	is	better	than	classi8ier	B)	is	
genuine	or	down	to	random	chance.	It’s	generally	accepted	
that	Alpaydin’s	5x2	cross	validation	is	the	best	test	for	this	
purpose.	It’s	out	of	scope	for	this	course,	but	follow	the	link	
if	you	run	into	this	problem.

standard error
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mean

If	we	are	computing	a	continuous	value,	like	the	mean	
squared	error	loss	of	a	regression	model,	the	same	principle	
applies.	For	now,	let's	forget	about	the	details	and	assume	
that	we	are	computing	some	number	representing	the	
difference	between	the	true	regression	value	of	an	instance	
and	the	predicted	regression	value.	We'll	call	this	number	
m.		

In	this	case	m	is	the	error	of	a	model,	but	it	could	be	any	
measurement	of	any	phenomenon.		

We	can	often	assume	that	m,	computed	for	a	single	
randomly	sampled	instance,	is	normally	distributed.	The	
likely	values	are	clustered	around	a	mean	value,	or	
expectation	of	m.	This	is	the	distribution	drawn	in	the	top	
half	of	the	slide.	

If	we	sample	a	test	set	and	compute	the	mean	of	m	for	all	
instances	in	the	test	data,	we	get	an	estimate	for	the	true	
expectation	of	m.	This	is	an	estimate	of	the	mean	of	the	
distribution	at	the	top.	Note	that	the	estimated	mean	is	
slightly	different	from	the	true	mean.	

This,	again,	is	a	random	process.	If	we	sample	another	test	
set,	keeping	the	model	and	the	true	mean	8ixed,	we	get	a	
slightly	different	estimate	for	the	mean.	The	distribution	on	
the	values	we	get	for	the	sample	mean	is	drawn	at	the	
bottom.	Note	that	its	mean	is	the	same	as	the	true	mean,	
but	its	peak	is	more	narrow.		

This	is	not	a	normal	distribution,	but	a	so	called	Student's	t	
distribution.	For	test	sets	larger	than	~30	instances,	the	
difference	becomes	negligable.		

The	standard	deviation	of	the	distribution	at	the	bottom	is	
the	variance	of	the	one	at	the	top,	divided	by	the	square	of	
the	number	of	instances	in	our	test	set.	The	more	instances,	
the	narrower	the	peak	becomes,	and	the	less	uncertainty	
we	have	around	our	estimate.	This	standard	deviation	is	
called	the	standard	error	of	the	mean	(sem).	

https://www.cmpe.boun.edu.tr/~ethem/files/papers/NC110804.PDF
https://www.cmpe.boun.edu.tr/~ethem/files/papers/NC110804.PDF


95% confidence interval

mean +/- 1.96 sem is a 95% confidence interval
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As	you	may	know,	the	region	of	four	standard	deviations	
around	the	mean	of	a	normal	distribution	contains	roughly	
95%	of	the	probability	mass.	This	means	that	the	interval	
from	two	standard	errors	to	the	left	of	your	mean	to	two	
standard	errors	to	the	right	of	your	mean	is	a	95%	
con8idence	interval.

confidence interval estimates
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data distribution: p(x, t) 
instances x and classes t 

true accuracy of C 
probability that C(x) = t under p 

true confidence interval

unobservable observable

dataset 

sample accuracy of C 
proportion of test set that C classifies correctly 

estimated confidence interval

These	are	good	concepts	to	help	us	think	about	what	we	are	
measuring	when	we	compute	metrics	on	our	test	data.	But	
it's	important	to	realize	that	these	are	unobservable	values.	
We	can	only	work	out	the	true	con8idence	interval	for	the	
sample	accuracy	if	we	know	the	true	accuracy.	This	puts	the	
con8idence	intervals	we've	talked	about	so	far	in	the	
unobservable	column.	

So	what	about	all	those	con8idence	intervals	you	see	
reported	in	the	literature?	These	are	estimated	con8idence	
intervals.	They	are	usually	computed	in	the	same	way	as	the	
true	con8idence	interval,	but	wherever	we	need	the	true	
value	of	some	metric,	we	replace	it	by	its	estimate.	This	
gives	us	a	con8idence	interval	that	isn't	as	correct	as	the	
true	con8idence	interval,	and	one	that	would	change	slightly	
if	we	were	to	resample	the	test	set,	but	we	can	at	least	
compute	it,	and	it	generally	behaves	in	roughly	the	same	
way	as	the	true	con8idence	interval.

about confidence interval estimates

Don’t say: the probability that the true mean is in this 
confidence interval is 95%. 

Do say: If we repeat the experiment many times, 
computing the confidence interval each time; the true 
mean would be inside the interval in 95% of those 
experiments. 
The confidence interval changes from experiment to experiment, not the true mean. 

The estimated confidence interval for the mean is a 
statistic on the data, just like the mean itself or the 
standard deviation. 
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When	we	use	the	phrase	con>idence	interval	to	refer	to	this	
kind	of	estimate,	it's	important	to	speak	about	it	correctly.		

There	is	no	probability	associated	with	the	true	mean	at	all.	
It	is	simply	an	objective,	determined	value	(which	we	don’t	
know).	The	probability	comes	from	sampling,	and	from	
computing	the	interval	from	a	sample.	

So	instead	of	having	a	8ixed	interval,	with	the	true	mean	
jumping	around	probabilistically,	we	have	a	8ixed	true	mean	
around	which	we	get	an	interval	that	jumps	around	if	we	
resample	the	data.	The	probability	of	it	jumping	so	much	
that	it	no	longer	contains	the	true	mean	is	5%.	

This	is	typical	frequentist	agonizing	over	what	the	phrase	
“probability”	means.	Con>idence	intervals	are	a	uniquely	
frequentist	tool.	If	the	distinction	on	the	slide	doesn’t	make	
sense	to	you,	look	back	to	the	probability	video	in	the	
preliminaries.



error bars
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A	very	relevant	question	is	how	do	you	interpret	error	
bars?	

If	you	see	a	picture	like	this,	showing	the	mean	runtime	of	
an	experiment,	measured	for	three	models,	and	averaged	
over	a	number	of	runs,	what	would	you	imagine	the	error	
bars	denote?	We've	seen	standard	deviations,	standard	
errors	and	con8idence	intervals.	What	do	error	bars	
represent?

43

data: 3, 4, 6, 3

0.0

4.0

data: 3, 4, 5, 2, 8, 7, 
8, 2, 3, 5, 7, 0, 2, 4,  
6, 7, 0, 4, 5, 1, 8, 7, 
1, 2, 3, 5, 7, 4

0.0

4.0

standard  
dev.

standard  
error

confidence 
interval

The	truth	is	that	there	is	no	standard	de8inition	for	what	
error	bars	denote,	and	if	the	authors	didn’t	specify	what	
their	error	bars	indicate,	the	authors	messed	up.	

These	are	the	three	most	common	options.	If	you	didn't	
quite	get	all	the	details	of	the	previous	slides,	this	slide	
illustrates	the	most	important	distinction:	If	we	sample	
more	data,	the	estimate	of	our	standard	deviation	
becomes	more	accurate.	It’s	an	estimate	of	a	property	of	our	
data	distribution.	The	error	bars	representing	standard	
deviation	don't	get	smaller,	they	just	get	closer	to	their	
correct	size	(which	may	be	very	wide	around	the	head	of	
the	bar).	

The	standard	error	and	the	con8idence	interval	are	
indicators	of	how	con8ident	we	are	about	our	estimate	of	
the	mean	of	our	data.	For	these,	the	more	data	we	have,	the	
smaller	they	get.	As	we	saw	earlier,	under	the	right	
assumptions,	the	95%	con8idence	interval	is	roughly	twice	
the	standard	error.

standard deviation:  

• measure of spread, variance 

standard error, confidence interval:  

• measures of confidence
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overlap
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standard  
error

confidence 
interval

overlap implies 
not a sign. difference 

between A and B

no overlap implies  
sign. difference  

between A and B

A B A B

Under	certain	assumptions,	the	standard	error	of	two	
estimates	can	tell	you	whether	a	Student's	t	test	allows	you	
to	reject	the	null	hypothesis	that	the	two	distributions	are	
the	same.	This	would	allow	you	to	say,	for	instance,	that	
there	is	a	statistically	signi8icant	difference	between	the	
accuracy	estimates	on	two	classi8iers.	As	we	said	before,	
such	testing	is	not	very	popular	in	machine	learning,	so	we	
won't	go	into	it	in	detail,	but	this	can	offer	an	additional	
perspective	on	error	bars.	

We	won’t	discuss	the	Student’s	t	test	in	detail,	but	it’s	a	
common	test	for	comparing	two	normally	distributed	values.	

Say	you	plot	the	mean	squared	error	for	regression	models	
A	and	B,	together	with	some	error	bars.	Does	the	the	fact	
that	the	error	bars	overlap	or	not	tell	you	whether	the	
measured	difference	between	the	two	models	is	statistically	
signi8icant?	That	is,	does	it	indicate	whether	we	can	
conclude	that	A	is	a	better	model	than	B?	

Yes,	but	we	have	to	be	careful.	For	standard	error	bars,	the	
existence	of	overlap	implies	that	there	is	no	signi8icant	
difference	between	the	two	effects.	That	is,	the	possibility	
that	the	difference	is	due	to	random	chance	is	high,	and	a	
repeat	of	the	experiment	on	new	data	may	show	a	different	
result.	If	you	plot	con8idence	interval	error	bars,	and	there	
is	no	overlap,	you	may	conclude	that	the	difference	between	
the	models	is	signi8icant.	If	you	repeat	the	experiment	on	
fresh	data,	it	is	very	likely	that	model	A	would	beat	model	B	
again.	

In	both	cases,	the	converse	does	not	hold.	If	the	SEM	error	
bars	do	not	overlap,	there	may	or	may	not	be	a	signi8icant	
difference.	If	the	con8idence	interval	error	bars	do	overlap,	
there	may	still	be	a	signi8icant	difference,	depending	on	
how	much	they	overlap.	

All	of	this	requires	the	assumption	that	the	original	values	for	
which	the	bar	indicates	the	mean	are	normally	distributed.

why use statistics in ML

• to show confidence 

• to show spread 

Confidently show the performance of the best model you 
found, and then measure the variance of the method you 
used to find it.
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All	of	this	was	about	showing	con+idence:	showing	how	
reliable	our	numbers	are	as	estimates	of	the	true	values	that	
we	can’t	observe.	

Showing	spread	is	more	about	providing	insight	to	the	
reader.	Say	I	train	a	classi8ier	by	gradient	descent.	If	I	have	a	
big	test	set,	I	can	very	con>idently	measure	and	report	the	
accuracy	of	this	particular	classi8ier.	However,	gradient	
descent	uses	random	initialization.	If	I	repeat	the	training	
process,	I	may	end	up	in	a	different	local	minimum,	and	get	
a	different	classi8ication	performance.	It’s	likely	that	I	also	
want	to	communicate	how	much	the	measured	
performance	is	dependent	on	this	randomness.	In	short,	
how	lucky	did	we	get	in	our	choice	of	classi8ier?



showing spread

Sources of randomness: 

• Data sampling 

• Search algorithm (i.e. initializing gradient descent) 

Report standard deviation, describe what you repeat. 

• How do you repeat data sampling? 
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If	we	have	a	large	enough	test	set,	we	know	that	the	
con8idence	interval	for	our	measurement	of	the	
performance	is	small	enough.	But	we	also	want	to	know	
how	much	the	randomness	in	our	process	affects	the	result.	
What	is	the	probability	that	repeating	the	process	(on	the	
same	data,	or	on	new	data)	produces	wildly	different	
results?	

For	factors	like	the	initialisation	of	gradient	descent,	this	is	
easy	to	test:	you	just	rerun	a	few	times	on	the	same	data.	
But	how	do	you	test	how	robust	the	results	are	against	
sampling	a	new	dataset?

resampling

Cross validation again, on the whole data set. 

Stratified cross-validation (keeps the class proportions the 
same in all folds). 

Leave-one-out cross-validation, a.k.a. the jackknife method. 

Slight bias: smaller datasets. 
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The	cross	validation	that	we	have	already	seen	provides	
some	indication	of	spread.	If	we	do	8ive-fold	cross	
validation,	we	are	repeating	our	training	8ive	times	on	
slightly	different	datasets.	This	provides	some	indication	of	
how	differently	the	algorithm	may	perform	if	we	repeat	on	
new	data.	

Note,	however	that	it's	not	quite	a	perfect	simulation	of	
resampling	our	data:	the	datasets	are	slightly	smaller,	and	
there	is	a	lot	of	overlap	between	the	8ive	different	datasets.	
If	we	want	more	repeats,	we	get	more	overlap	and	a	smaller	
test	set,	making	this	bias	hard	to	control.

bootstrapping

Sample, with replacement, a dataset of the same size as the 
whole dataset. 
On average, about 63.2% of the dataset will be included. The rest will be duplicated instances. 

Each bootstrapped sample lets you repeat your 
experiment. 

Note that some classifiers will respond poorly to presence 
of duplicate instances. 

Better than cross validation for small datasets.
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A	different	approach	is	bootstrapping.	Here,	we	resample	
the	data	with	replacement.	This	allows	us	to	sample	a	
dataset	that	is	exactly	the	same	size	as	the	original	data.	We	
can	also	resample	as	often	as	we'd	like,	without	affecting	
the	size	of	the	test	data	or	the	amount	of	overlap	between	
the	datasets.	

We	will	see	in	a	later	lecture	that	bootstrapping	
approximates	the	data	distribution	in	a	very	precisely	
de8ined	way.



statistics: summary

Don’t worry too much about it (until you have to). 
Even in top ML conferences, rigorous statistical analysis is relatively rare. 

Distinguish between showing confidence, and showing 
spread. 

Think about what you want to claim, and what analysis 
would make your claim as strong as possible. 
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If	you’re	interested	in	the	difference	between	machine	
learning	and	statistics,	I	can	recommend	this	paper	by	Leo	
Breiman.	It	shows	the	difference	between	the	two	cultures.	
It	makes	clear	that	the	machine	learning	approach	of	
measuring	models	purely	for	predictive	accuracy	on	a	large	
test	set,	has	a	lot	of	bene8its	and	makes	the	business	of	
statistics	a	lot	simpler	and	more	effective.	

Model Evaluation 
Part 3: Evaluation metrics 

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

In	this	video	we'll	look	at	how	to	evaluate	regression	and	
classi8ication	experiments.	There	will	be	a	few	pointers	on	
regression,	but	the	main	topic	will	be	classi8ication	
experiments.	

|section|Metrics|	
|video|https://surfdrive.surf.nl/8iles/index.php/s/
TrR5TrtLDZLBs08/download|

http://mlvu.github.io


regression

loss function: (mean) squared errors 

evaluation function: root mean 
squared error
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One	thing	to	pay	attention	to	is	that	if	you	use	MSE	loss,	you	
may	want	to	report	the	square	root	(the	RMSE).	The	RMSE	
is	minimised	at	the	same	places	as	the	MSE,	but	it’s	easier	
to	interpret,	because	it	has	the	same	units	as	the	original	
output	value.	

For	instance,	if	your	outputs	are	in	meters,	then	your	MSE	is	
measured	in	square	meters,	but	your	RMSE	is	also	
measured	in	meters.

bias and variance
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Bias	and	variance	are	good	concepts	to	keep	in	mind	when	
thinking	about	regression	performance.	The	bias	is	the	
difference	between	your	optimal	MSE	and	the	true	MSE.	
This	is	the	part	of	your	error	that	is	down	to	fundamental	
problems	with	your	model:	for	instance,	you	are	8itting	a	
line	trough	data	with	a	parabolic	pattern.	This	part	stays	the	
same	if	you	resample	your	data.	

The	variance	is	the	difference	between	the	true	MSE	and	
the	measured	MSE.	This	is	the	part	of	your	error	that	is	
down	to	aspects	of	the	random	sampling	of	the	data.	This	
part	changes	when	you	resample	your	data.	

Normally,	we	train	a	regression	model	once,	and	get	one	
MSE	value.	This	gives	us	one	dot	on	the	axis	above.	Without	
repeating	the	process	on	freshly	sampled	data,	we	can't	tell	
how	our	error	falls	apart	in	bias	and	variance.	However,	we	
can	usually	get	some	contextual	clues,	or	investigate	using	
resampling.

bias and variance

low bias, low variance
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low bias, high variance 

high bias, low variance 



bias and variance

56image source: http://scott.fortmann-roe.com/docs/BiasVariance.html (recommended reading)

Here	is	a	metaphor	that	is	often	used	to	describe	bias	and	
variance:	a	dartboard.	

Remember,	this	is	a	metaphor	for	our	RMSE	error	estimate.	
That	means	that	normally,	we	have	only	one	dart	and	we	
can’t	tell	whether	our	error	is	due	to	high	bias	or	high	
variance.		

image	source:	http://scott.fortmann-roe.com/docs/
BiasVariance.html	(recommended	reading)	

the bias-variance tradeoff

High bias: model doesn’t fit the generating distribution. 
Poor assumptions, poor capacity. Aka underfitting.
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High	bias	tends	to	happen	when	the	model	is	too	simple	to	
follow	the	true	"shape"	of	the	data.	Linear	models	in	low-
dimensional	spaces	often	have	this	problem.	Here,	we	see	
that	the	data	has	a	slight	curve,	which	is	clearly	part	of	its	
natural	pattern,	and	something	the	model	should	learn.	
Since	it's	restricted	to	a	line,	however,	it	cannot	make	this	
shape.

the bias-variance tradeoff

High variance: high model capacity, sensitivity to random 
fluctuations. aka overfitting
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High	variance	happens	when	the	model	has	the	capacity	to	
follow	the	shape	of	the	data	perfectly,	but	it	does	it	so	
perfectly	that	it	tends	to	get	thrown	off	by	small	
8luctuations.		

Here,	the	model	doesn't	just	follow	the	natural	curve	of	the	
data,	it	goes	in	and	out	of	every	random	8luctuation	to	
model	every	single	point	perfectly.	

Even	though	this	model	(a	regression	tree)	8its	the	data	
perfectly,	if	we	resample	the	data,	we	are	stuck	with	all	
sorts	of	weird	peaks	that	won’t	8it	the	new	data.	This	is	
where	the	variance	comes	from.	The	true	error	varies	
wildly,	because	the	model	captures	every	single	random	
8luctuation	in	the	training	data.	These	8luctuation	will	cause	
a	large	error	in	the	test	data,	which	we	put	down	to	
variance	rather	than	bias.

http://scott.fortmann-roe.com/docs/BiasVariance.html


making the tradeoff

Reducing bias: increase model capacity, increase features. 

Reducing variance: reduce model capacity, add 
regularization, reduce tree depth. 

k-NN regression: increase k to increase bias, decrease 
variance.
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We	will	see	techniques	for	all	of	these	in	the	coming	weeks.	
Note	that	often,	it	really	is	a	tradeoff:	reducing	the	bias,	
increases	the	variance	and	vice	versa.	

For	some	algorithms,	there	is	a	single	parameter	that	allows	
us	to	make	the	bias/variance	tradeoff.	kNN	is	one	example:	
low	k	values	give	us	high	variance,	high	k	values	give	us	
high	bias.		

In	the	strictest	de>inition	of	bias	and	variance,	these	concepts	
only	apply	to	the	mean	squared	error,	where	they	explictly	
appear	as	terms	if	you	rewrite	the	error	in	a	certain	way.	
However,	in	general	machine	learning	parlance,	the	terms	
are	applied	to	any	regression	error,	and	they	are	roughly	
synonymous	with	under-	and	over>itting.

lecture 10: ensembling
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Combining models for variance reduction and for bias reduction.

image source: https://www.toptal.com/machine-learning/ensemble-methods-machine-learning

In	a	later	lecture,	we'll	look	at	ensembling.	This	is	a	
method	that	allows	us	to	combine	different	models,	so	as	to	
control	the	problems	of	high	bias	and	high	variance.	

image	source:	https://www.toptal.com/machine-
learning/ensemble-methods-machine-learning	

evaluating classification

Class imbalance, cost imbalance 

Confusion matrix 

True positive rate, True negative rate 
More in the next video 

Precision, recall 
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Let's	now	move	to	classi8ication.	We'll	start	by	explaining	
these	four	topics.

https://www.toptal.com/machine-learning/ensemble-methods-machine-learning


example: breast cancer screening
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Here's	one	example	domain:	breast	cancer	screening	

A	recurring	discussion	in	the	Dutch	media	is	the	question	
whether	all	women	over	50	be	screened	for	breast	cancer.	
This	is	an	analogy	for	classi8ication:	the	instances	are	
people	and	the	target	label	is	“has	cancer”	or	“has	no	
cancer.”	You	may	think	that	this	is	a	no-brainer:	the	more	
tests	we	do,	the	more	lives	saved.	But	we	need	to	take	into	
account	how	good	the	classi8ier	is,	and	how	bad	the	
consequences	are	of	it	making	a	mistake.	

The	8irst	problem	this	example	illustrates	is	class	
imbalance.	Unlike	the	classi8iers	we've	seen	so	far,	this	
example	has,	thankfully,	far	more	negatives	than	positives.	
In	a	given	year	the	people	in	this	age	group	for	whom	breast	
cancer	will	manifest	is	about	half	a	percent.	This	includes	
men,	for	whom	breast	cancer	is	rare	(but	not	impossible),	
so	when	we	talk	about	screening	for	women	over	50,	we	
should	probably	assume	about	1%	positives.	

This	means	that	we	need	to	be	very	careful	when	
interpreting	the	reported	performance	of	any	breast	cancer	
detection	method.	We	may	think	that	an	accuracy	of	99%	
sounds	impressive,	but	this	is	the	accuracy	we	would	get	if	
we	just	called	everything	negative:	that	is,	if	we	just	
diagnosed	all	women	with	no	cancer.	

source:	https://www.volkskrant.nl/wetenschap/redt-
preventieve-screening-op-borstkanker-
levens~a3761451/	
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Is an error of 0.01 good?

Imagine	that	somebody	tells	you	about	a	machine	learning	
project	they’re	doing,	and	they	proudly	state	that	they	get	a	
classi8ication	error	(on	their	validation	set)	of	0.01	(1%	of	
the	validation	set	is	misclassi8ied).	Should	you	be	
impressed?		

The	answer	is	it	depends.	The	8irst	thing	it	depends	on	is	
the	class	imbalance	in	the	data.
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So	the	next	time	you	see	a	headline	like	this,	your	8irst	
question	should	be:	what	was	the	class	distribution	in	the	
training	data?	If	90%	of	the	cases	in	the	training	data	are	
acquittals,	this	is	not	a	very	impressive	result.	

As	it	happens,	in	this	case	the	classes	were	balanced	50/50,	
so	80	percent	is	at	least	notable.	However,	now	we	have	a	
classi8ier	trained	on	arti8icially	balanced	data.	In	a	
production	environment	(whatever	that	means	here),	the	
classes	are	likely	not	balanced	50/50,	so	this	speci8ic	
classi8ier	will	be	of	no	further	use.	

Here	is	the	original	paper:	https://peerj.com/articles/
cs-93/#fn-6	There	are	some	issues	with	this		research	
beyond	the	class	balance.	

is 1% error good? it depends

Class imbalance How much more likely is a Positive 
example than a Negative example? 

Cost imbalance How much worse is a mislabeled Positive 
example than a mislabeled Negative example?
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Another	reason	to	mistrust	accuracy	is	cost	imbalance.	In	
breast	cancer	screening	are	two	types	of	misclassi8ication:	
diagnosing	a	healthy	person	with	cancer	and	diagnosing	a	
person	with	cancer	as	healthy.	Both	come	with	a	cost	but	
not	the	same	cost.		

We	can	either	miss	a	cancer	diagnosis	(a	false	negative),	
which	means	the	cancer	will	be	caught	much	later	and	be	
much	harder	to	treat.	However,	diagnosing	a	healthy	person	
with	cancer	(a	false	positive)	means	they	will	be	sent	for	
unnecessary	invasive	testing	and	suffer	great	psychological	
stress.	The	cost	of	this	is	much	less	than	the	cost	of	missing	
a	positive,	but	it	isn't	zero.	

This	is	what	the	discussion	in	the	media	centers	on.	If	the	
screening	causes	many	more	false	negatives	than	false	
positives,	it	may	mean	that	the	cost	to	human	lives	balances	
out,	and	the	net	effect	of	the	screening	isn't	to	save	more	
lives.	

There	is	of	course,	also	the	8inancial	cost	of	screening	a	
large	part	of	the	population.	Most	people	would	put	any	
8inancial	cost	far	below	the	cost	of	a	human	life,	but	if	it	
turns	out	that	the	classi8ier	is	weak	enough	that	the	gains	in	
human	lives	saved	are	negligible,	we'd	look	at	the	8inancial	
cost	and	say	the	program	would	need	to	end.



cost imbalance

disease diagnosis Sending a sick person home vs 
applying invasive tests to a healthy person 

spam classification Deleting a valid email vs showing the 
user a single spam email 

detecting financial fraud Having an expert review a non-
fraudulent transaction vs missing a fraud in progress 

Domain-specific evaluation function: dollars lost, time lost,  
lives lost, etc. 

66

Here	are	some	examples	of	problems	with	cost	imbalance	

In	all	these	cases,	one	misclassi8ication	one	way	costs	much	
more	than	a	misclassi8ication	the	other	way.	But	both	cost	
something.	The	time	of	an	expert	reviewer	is	not	free,	even	
though	8ive	minutes	of	his	time	may	be	much	cheaper	than	
the	cost	of	letting	a	single	fraud	go	unchecked.	In	such	a	
case,	you	may	decide	that	missing	one	fraud	is	as	costly	as	
having	an	expert	review	500	harmless	transactions.	This	is	
then	the	general	balance	you	are	hoping	for:	one	false	
negative	for	every	500	false	positives.	

If	you’re	lucky,	both	types	of	misclassi8ication	have	the	same	
unit,	and	you	can	turn	your	error	(an	estimate	of	the	
number	of	misclassi8ications)	into	a	domain	speci8ic	
evaluation	function	(like	estimated	dollars	lost,	or	time	
saved).	You	simply	assign	a	cost	to	each	type	if	
misclassi+ication,	and	multiply	it	by	how	often	that	
misclassi+ication	occurs	in	the	test	set.	The	total	is	the	
evaluation	function	you	want	to	minimize.	

If	the	units	are	not	the	same	(money	saved	vs.	lives	saved)	
making	such	a	choice	can	seem	very	unethical	if	you're	
literally	equating	a	human	life	with	an	amount	of	money.	On	
the	other	hand,	any	classi8ier	you	decide	to	deploy	will	
implicity	make	such	a	choice	even	if	you	don't	do	the	sums	
yourself.	Even	if	you	decide	not	to	use	machine	learning,	the	
alternative	(a	doctor	using	their	own	judgement)	is	also	a	
“classi8ier”,	with	its	own	cost	balance.

social impact
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Cost	imbalance	is	particularly	important	when	we	consider	
matters	of	social	impact.	If	we	predict	a	person’s	sex	from	
their	physical	appearance	perfectly,	and	we	use	that	as	a	
prediction	for	their	gender,	we	may	easily	achieve	99%	
accuracy.		

However	the	1%	we	then	misclassify	is	precisely	that	part	
of	the	population	for	which	gender	is	likely	to	be	a	sensitive	
attribute.	Just	because	our	classi8ier	has	high	accuracy,	
doesn’t	mean	it	can	do	no	harm.	In	a	large	part	because	the	
mistakes	it	makes	are	not	uniformly	distributed.	They	are	
focused	squarely	on	the	vulnerable	part	of	the	population.



class imbalance
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Here	is	a	pretty	imbalanced	dataset	(though	still	not	as	
imbalanced	as	the	cancer/not	cancer	problem).	It	looks	
pretty	dif8icult.	What	would	be	a	good	performance	on	this	
task?

class imbalance

Majority class classifier Assigns all instances the class that 
is most prevalent in your data. 

Example of a baseline.
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other method 1 0.15

other method 2 0.1

majority class 0.05

ours 0.05

As	we've	seen,	even	though	an	error	of	0.05	might	sound	
pretty	good,	but	on	an	imbalanced	dataset	like	this,	there	is	
a	very	simple	classi8ier	that	gets	that	performance	easily.	
The	classi8ier	that	assigns	anything	the	class	with	the	most	
instances.	We	call	this	the	majority	class	classi+ier.	

The	majority	class	classi8ier	is	an	example	of	a	baseline,	a	
simple	method	that	is	not	meant	to	be	used	as	a	real	model,	
but	that	can	help	you	calibrate	the	performance	scores.	In	
this	case,	it	tells	you	that	you’re	really	only	interested	in	in	
the	error	range	from	0		to	0.05.	Any	higher	error	than	that	is	
pretty	useless.

class imbalance
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testtraining

1000 instances
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Here	is	another	way	that	class	imbalance	can	screw	things	
up	for	you.	You	might	think	you	have	a	pretty	decent	
amount	of	data	with	10	000	instances.	However	if	you	split	
off	a	test	set	of	1	000	instances,	you'd	be	left	with	just	50	
instances	of	the	positive	class	in	your	data.	Practically,	your	
8inal	evaluation	will	just	be	a	question	of	how	many	of	these	
50	positives	you	detect.	This	means	that	you	can	really	only	
have	50	“levels	of	performance”	that	you	can	distinguish	
between.	

You	can	make	a	bigger	test	set	of	course	(and	you	probably	
should)	but	that	leads	to	problems	in	your	training	data.	
Since	you’re	essentially	building	a	detector	for	positives,	it	
doesn’t	help	if	you	can	only	give	it	100	examples	of	what	a	
positive	looks	like.	

In	the	next	lecture,	we’ll	look	at	some	tricks	we	can	use	to	
boost	performance	on	such	imbalanced	data.



other performance metrics

Confusion matrix 

Precision, recall 

True positive rate, false positive rate 

ROC plot, Coverage matrix, Area under the curve 
Next video
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The	best	thing	to	do	under	class	and	cost	imbalance,	is	to	
look	at	your	performance	in	more	detail.	We’ll	look	at	six	
different	ways	to	measure	classi8ier	performance.	

Most	of	these	are	only	relevant	if	you	have	class	or	cost	
imbalance.	If	you	have	a	nice,	balanced	dataset,	it’s	likely	
that	error	or	accuracy	is	all	you	need.

confusion matrix
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predicted

pos neg

pos … …

neg … …
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7

7

8 6

6 1

2 5

This	is	a	confusion	matrix	(also	known	as	a	contingency	
table).	It's	simply	a	table	with	the	actual	classes	on	the	
rows,	and	the	predicted	classes	on	the	columns,	and	a	tally	
in	each	cell	of	how	often	each	actual	class	is	given	a	
particular	prediction.	On	the	diagonal	we	tally	all	the	
correct	classi8ications	and	off	the	diagonal	we	tally	all	the	
possible	mistakes.		

A	confusion	matrix	doesn’t	give	you	a	single	number,	so	it’s	
more	dif8icult	to	compare	two	classi8iers	by	their	confusion	
matrices,	but	it’s	a	good	way	to	get	insight	into	what	your	
classi8ier	is	actually	doing.		

Note	that	for	a	binary	classi8ication	problem,	we	are	getting	
the	two	types	of	mistakes	(false	positives	and	false	
negatives)	along	the	second	diagonal.	If	we	have	cost	
imbalance,	the	balance	between	these	two	values	gives	us	a	
quick	insight	into	how	well	the	classi8ier	is	aligned	with	our	
estimate	for	the	misclassi8ication	costs.	

You	can	plot	the	confusion	matrix	for	either	the	training,	
validation	or	test	data.	All	three	can	be	informative.	

The	margins	of	the	table	give	us	four	totals:	the	actual	
number	of	each	class	present	in	the	data,	and	the	number	of	
each	class	predicted	by	the	classi8ier.	
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predicted

pos neg

pos … …

neg … …

ac
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true 
positives

false 
negatives

false 
postives

true 
negatives

false positives

false negatives
true negatives

true positives

We		call	accurately	classi8ied	instances	true	positives	and	
true	negatives.	Misclassi8ications	are	called	false	positives	
and	false	negatives.	

with class imbalance
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predicted

pos neg

pos 385 0 385

neg 15 0 15

400 0

ac
tu

al

Here	we	see	the	confusion	matrix	for	the	majority	class	
baseline	(the	classi8ier	that	calls	everything	positive)	in	a	
problem	with	high	class	imbalance.

precision and recall

precision   
     TP/(TP+FP) 

recall aka true positive rate 
     TP/(TP+FN)
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predicted

pos neg

pos TP FN

neg FP TN
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Precision	and	recall	are	two	metrics	that	express	a	tradeoff	
between	the	two	types	of	mistakes.	

Precision:	what	proportion	of	the	returned	positives	are	
actually	positive?	

Recall:	what	proportion	of	the	existing	positives	did	we	
8ind?	

The	idea	is	that	we	usually	want	to	8ind	as	many	positives	as	
possible,	so	we	should	be	eager	to	label	things	positive,	
increasing	the	recall,	but	if	we	are	too	eager,	we	will	label	
lots	of	negatives	as	positive	as	well,	which	will	hurt	our	
precision.	Our	main	challenge	in	designing	a	classi8ier	in	the	
face	of	cost	and	class	imbalance,	is	to	8ind	the	right	tradeoff	
between	precision	and	recall.
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It	always	takes	me	a	minute	to	8igure	out	what	precision	
and	recall	mean	in	any	given	situation,	and	I	usually	consult	
this	diagram	from	Wikipedia	to	help	me	out.		

The	idea	is	that	the	goal	of	the	classi8ier	is	to	select	the	
positives	in	the	dataset.	The	more	it	selects,	the	higher	its	
recall,	but	the	lower	its	precision,	as	more	negatives	end	up	
in	the	selection.	

source:	By	Walber	-	own	work,	CC	BY-SA	4.0,	https://
commons.wikimedia.org/w/index.php?
curid=36926283	

77source: https://en.wikipedia.org/wiki/Confusion_matrix

There	are	many	more	metrics	which	you	can	derive	from	
the	confusion	matrix.	Wikipedia	provides	a	helpful	table,	in	
case	you	ever	come	across	them.	For	most	purposes,	
precision,	recall,	accuracy	and	balanced	accuracy	are	
suf8icient.	

Note	that	some	terms,	like	recall,	go	by	many	different	
names.

which dataset?

test accuracy  
final test of model performance 

validation accuracy 
to choose hyperparameters 

training accuracy 
??? 
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All	of	these	metrics	can	be	applied	to	different	datasets.	
When	we	compute	(say)	accuracy	on	the	test	set,	we	talk	
about	test	accuracy.	This	is	computed—only	once—at	the	
very	end	of	our	project,	to	show	that	our	conclusions	are	
true.	

When	we	compute	it	on	the	validation	set	we	call	it	
validation	accuracy.	We	compute	this	to	help	us	choose	
good	hyperparameters.	

And,	predictably,	when	we	compute	it	on	the	training	data,	
we	call	it	training	accuracy.	Remember	that	in	the	8irst	
lecture	I	said,	emphatically,	that	you	should	never	judge	
your	model	on	how	it	performs	on	the	training	set.	Why	
then,	would	you	ever	want	to	compute	the	training	accuracy	
(or	any	other	metrics	on	the	training	data)?

https://commons.wikimedia.org/w/index.php?curid=36926283
https://en.wikipedia.org/wiki/Confusion_matrix


generalization error
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or any other hyperparameter

generalization gap

The	answer	is	that	the	difference	between	your	validation	
accuracy	and	your	training	accuracy,	will	tell	you	whether	
or	not	your	model	is	over8itting	(matching	the	data	too	
well)	or	under8itting	(not	matching	the	data	well	enough).	

The	difference	between	the	training	and	validation	sets	is	
called	the	generalization	gap.	As	in,	it's	the	amount	of	
performance	that	won't	generalize	to	data	that	isn't	your	
training	data.
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source:	Jim	Unger,	Herman.

Model Evaluation 
Part 4: PR, ROC and AUC

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

|section|PR,	ROC	and	AUC|	
|video|https://surfdrive.surf.nl/8iles/index.php/s/
p6Atngg3Q5AzMiz/download|

http://mlvu.github.io
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Let's	return	to	the	metrics	of	precision	and	recall.	We	often	
have	to	make	a	tradeoff	between	high	precision	and	high	
recall.	We	can	boost	our	recall	by	calling	more	things	
positive.	The	drawback	is	that	our	precision	will	go	down	if	
this	means	including	more	negatives	among	the	things	we	
call	positive.	We	can	boost	our	precision	by	calling	fewer	
things	positive,	which	will	hurt	our	recall.		

How	exactly	we	make	the	tradeoff	depends	on	our	cost	
imbalance,	and	our	class	imbalance.	To	help	us	investigate,	
we	can	plot	the	precision	and	recall	we	get	from	different	
classi8iers.	

source:	By	Walber	-	own	work,	CC	BY-SA	4.0,	https://
commons.wikimedia.org/w/index.php?
curid=36926283	

precision/recall space
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The	points	in	the	corners	represent	our	most	extreme	
options.	We	can	easily	get	a	1.0	recall	by	calling	everything	
positive	(ensuring	that	all	true	positives	are	among	the	
selected	elements).	We	can	get	a	very	likely	1.0	precision	by	
calling	only	the	instance	we’re	most	sure	about	positive.	If	
we’re	wrong	we	get	a	precision	of	0,	but	if	we’re	right	we	
get	1.0.	

Whether	we	prefer	the	left	or	the	right	green	classi8ier	
depends	on	our	preferences.	However,	whatever	our	
preference,	we	should	always	prefer	either	green	classi8ier	
to	the	blue	classi8ier	since	both	have	better	precision	and	
recall	than	the	blue	classi8ier.	

TPR and FPR

accuracy 
  (TP + TN)/ total 

true positive rate 
   TP/(TP + FN) 
   TP/actual pos 

false positive rate 
   FP/(FP + TN) 
   FP/actual neg
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pos neg
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Another	pair	of	metrics	that	provides	this	kind	of	tradeoff	
are	the	true	positive	and	false	negative	rate.	

true	positive	rate:	what	proportion	of	the	actual	positives	
did	we	get	right.	The	higher	the	better.	I.e.	How	many	of	the	
people	with	cancer	did	we	detect.	

false	positive	rate:	what	proportion	of	the	actual	negatives	
did	we	get	wrong	(by	labelling	them	as	positives).	The	
lower	the	better.	I.e.	How	many	healthy	people	did	we	
diagnose	with	cancer.	

The	

https://commons.wikimedia.org/w/index.php?curid=36926283


ROC space
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We	want	to	get	the	TPR	as	high	as	possible,	and	the	FPR	as	
low	as	possible.	That	means	the	TPR/FPR	space	has	the	
best	classi8ier	in	the	top	left	corner.	This	space	is	called	ROC	
space.	

Again,	the	orange	points	are	the	extremes,	and	easy	to	
achieve.		

ROC	stands	for	receiver-operating	characteristic.		Like	so	
many	names	in	machine	learning	,	this	is	a	historical	artifact,	
a	leftover	from	its	invention	in	WWII	to	improve	the	detection	
of	Japanese	aircraft	from	radar	signals.

ROC curves
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So	far	we’ve	thought	of	FPR/TPR	and	precision/recall	as	a	
way	to	analyze	a	given	set	of	models.	

However,	what	if	we	had	a	single	classi8ier,	but	we	could	
control	how	eager	it	was	to	call	things	positive?	If	we	made	
it	entirely	timid,	it	would	classify	nothing	as	positive	and	
start	in	the	bottom	left	corner.	As	it	grew	more	brave,	it	
would	start	classifying	some	things	as	positive,	but	only	if	it	
was	really	sure,	and	its	true	positive	rate	would	go	up.	If	we	
made	it	even	more	daring,	it	would	start	getting	some	
things	wrong	and	both	the	TPR	and	the	FPR	would	increase.	
Finally,	it	would	end	up	classifying	everything	as	positive,	
and	end	up	on	the	top	right	corner.		

The	curve	this	classi8ier	would	trace	out,	would	give	us	an	
indication	of	its	performance,	independent	of	how	brave	or	
how	timid	we	make	it.	How	can	we	build	such	a	classi8ier?

ranking classifiers
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We	can	achieve	this	by	turning	a	regular	classi8ier	into	a	
ranking	classi+ier	(also	known	as	a	scoring	classi+ier).	A	
ranking	classi8ier	doesn’t	just	provide	classes,	it	also	gives	a	
score	of	how	negative	or	how	positive	a	point	is.	We	can	use	
this	to	rank	the	points	from	most	negative	to	most	positive.	

How	to	do	this	depends	on	the	type	of	model	we	use.	Here’s	
how	to	do	it	for	a	linear	classi8ier.	We	simply	measure	the	
distance	to	the	decision	boundary.	We	can	now	scale	our	
classi8ier	from	timid	to	bold	by	moving	the	decision	
boundary	from	left	to	right.	

After	we	have	a	ranking,	we	can	scale	the	eagerness	of	the	
classi8ier	to	make	things	positive.	by	moving	the	threshold	
(the	dotted	line)	from	left	to	right,	the	classi8ier	becomes	
more	eager	to	call	things	negative.	This	allows	us	to	trade	
off	the	true	positive	rate	and	the	false	positive	rate.



ranking error
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a bd t c e fu v z gx y

Now,	we	can’t	test	a	ranking	on	our	test	data,	because	we	
don’t	know	what	the	correct	ranking	is.	We	don’t	get	a	
correct	ranking,	just	a	correct	labeling.		

However,	we	can	indicate	for	speci8ic	pairs	that	they	are	
ranked	the	wrong	way	around:	all	pairs	of	different	labels.	
For	instance,	t	and	f	form	a	ranking	error:	t	is	ranked	as	
more	negative	than	f,	even	though	t	is	positive	and	f	is	
negative.	

Note:	a	ranking	error	is	a	pair	of	instances	that	is	ranked	the	
wrong	way	around.	A	single	instance	can	be	part	of	multiple	
ranking	errors.

coverage matrix

89

a b
c

d e

f g

t

u x
v

z y

t

u

v

z

x

y

g f e c b d a

a bd t c e fu v z gx y

We	can	make	a	big	matrix	of	all	the	pairs	for	which	we	know	
how	they	should	be	ranked:	negative	points	on	the	
horizontal	axis,	positive	on	the	vertical.	The	more	sure	we	
are	that	a	point	is	positive,	the	closer	we	put	it	to	the	
bottom	left	corner.	This	is	called	a	coverage	matrix.	We	
color	a	cell	green	if	the	corresponding	points	are	ranked	the	
right	way	round,	and	red	if	they	are	ranked	the	wrong	way	
round.	

Note	that	the	proportion	of	this	table	that	is	red,	is	the	
probability	of	making	a	ranking	error.
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The	coverage	matrix	shows	us	exactly	what	happens	to	the	
true	positive	rate	and	the	false	positive	rate	if	we	move	the	
threshold	from	the	right	to	the	left.	We	get	exactly	the	kind	
of	behaviour	we	talked	about	earlier.	We	move	from	the	all-
positive	classi8ier	step	by	step	to	the	all-negative	classi8ier.



warning: exam question
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This	is	one	of	the	question	types	on	the	exam.	People	very	
often	make	mistakes	in	this	question,	so	make	sure	you	
understand	what	a	ranking	error	is.	It's	not	a	misclassi+ied	
example.	It's	a	property	of	a	pair	of	examples.	

There	are	more	details	in	the	third	homework.

achievable rates
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If	we	draw	a	line	between	two	classi8iers	we	know	we	can	
create,	we	can	also	create	a	classi8ier	for	every	point	on	that	
line	simply	by	picking	the	output	of	one	of	the	classi8iers	at	
random.	If	we	pick	with	50/50	probability	we	end	up	
precisely	halfway	between	the	two.	

If	we	vary	the	probability	we	can	get	closer	to	either	
classi8ier.

area under the curve
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This	means	we	can	create	any	classi8ier	in	this	green	area,	
called	the	convex	hull	of	the	set	of	green	dots.	This	is	called	
the	area	under	the	(ROC)	curve.	

The	AUC	is	a	good	indication	of	the	quality	of	the	classi8ier.		

Every	point	in	the	green	shaded	area	is	a	classi>ier	we	now	
how	to	make,	so	the	bigger	this	area,	the	more	classi>iers	we	
can	make	(although	the	ones	on	the	boundary	are	the	only	
ones	we’d	ever	want	to	use).	

If	we	have	no	idea	of	how	we	want	to	make	the	tradeoff	
between	the	TPR	and	the	FPR,	the	AUC	may	be	a	good	way	
to	compare	classi8iers	in	general.		
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As	we	saw	before:	normalizing	the	coverage	matrix	gives	us	
the	ROC	space	(barring	some	small	differences	that	
disappear	for	large	datasets).	The	area	under	the	ROC	curve	
is	an	estimate	of	the	green	proportion	of	the	coverage	
matrix.	This	gives	us	a	good	way	to	interpret	the	AUC.		

The	AUC	(in	ROC	space)	is	an	estimate	of	the	probability	
that	a	ranking	classi+ier	puts	a	randomly	drawn	pair	of	
positive	and	negative	examples	in	the	correct	order.	
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f > 1.9?

b > 4.5? b > 5.3?

male malefemale female

yes no

yes no yes no

Let's	look	at	how	this	works	for	another	type	of	classi8ier.	To	
reiterate,	how	we	get	a	ranking	from	a	classi+ier	
depends	entirely	on	the	model	class.	

The	decision	tree	is	an	example	of	a	partitioning	classi8ier.	Is	
splits	the	feature	space	into	partitions,	and	assigns	each	
partition,	also	known	as	a	segment,	a	class.	All	instances	in	
the	segment	get	the	same	class.

ranking decision tree
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In	this	example	we	have	an	instance	space	that	has	been	
split	into	four	segments	by	a	decision	tree.	We	rank	the	
segments	by	the	proportion	of	positive	points.	We	then	put	
all	points	in	one	region	on	the	same	level	in	the	ranking.	

In	this	example,	b	is	more	negative	than	a,	because	b’s	
segment	contains	only	negative	examples,	whereas	a’s	
segment	contains	a	mix	of	positive	and	negative	examples.
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This	means	that	for	some	pairs	(like	f,z),	the	classi8ier	ranks	
them	as	“the	same”.	We’ll	color	these	cells	orange	in	the	
coverage	matrix.		

For	large	datasets,	these	regions	will	not	contribute	much	
to	the		total	area	under	the	curve.
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ROC vs precision-recall

source: https://twitter.com/timtriche/status/1022472947963969536 

An	alternative	to	the	ROC	is	the	precision/recall	curve.	It	
works	in	exactly	the	same	way,	but	has	precision	and	recall	
on	the	axes.	

As	you	can	see	in	this	tweet,	in	many	settings	the	PR	curve	
can	be	much	more	informative,	especially	when	you’re	a	
plotting	the	curves.	Practically,	it’s	little	effort	to	just	plot	
both,	and	judge	which	one	is	more	informative.		

ROC	has	the	bene8it	of	an	intuitive	interpretation	for	the	
AUC	(the	probability	of	ordering	a	random	pair	the	right	
way	round).	I	haven’t	yet	found	a	similar	interpretation	for	
the	PR-AUC.

important points

The confusion matrix and all metrics derived from it are 
metrics for a single classifier. 

AUC is a metric for a collection of classifiers, usually derived 
from a ranking classifier. 

How to turn a classifier into a ranking classifier, depends on 
the type of classifier.  
For linear classifiers, take the distance to the decision boundary 
For tree classifiers, sort by class proportion in each segment 

AUC is a good metric if we don’t know the relative 
importance of the classes, or if the classes are unbalanced.
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To	interpret	the	AUC,	you	should	know	not	just	what	
classi8ier	was	used,	but	how	it	was	made	into	a	collection	of	
classi8iers.	You	should	also	know	whether	it’s	the	area	
under	an	ROC	curve,	or	a	precision/recall	curve.

https://twitter.com/timtriche/status/1022472947963969536


setting the threshold

Show the user the ROC/PR curve, let them choose 
This can be difficult to do accurately. 

Estimate cost of misclassifications. Factor into the loss 
function. Minimize the expected cost. 
In sklearn, this is done by setting class weights. If a false negative costs as much as three false 
positives, we set the positive weight to 3 and the negative weight to 1. 
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To	put	a	classi8ier	into	production,	a	ranking	may	not	be	
enough.	Sometimes,	you	just	need	to	produce	a	single	
answer.	In	that	case,	you	can	still	use	the	ROC	and	PR	curves	
to	tune	your	hyperparameters	and	choose	your	model,	but	
ultimately,	you’ll	need	to	choose	a	threshold	as	well:	the	
point	at	which	you	decide	to	call	something	a	positive.	

This	is	more	of	a	software	development	issue	than	a	
scienti8ic	choice.	Often,	you	have	to	look	carefully	at	the	
curves,	perhaps	together	with	the	end	users,	to	make	a	
decision.	

The	second	approach	works	best	with	probabilistic	
classi8iers,	which	we’ll	discuss	next	lecture.

recap so far

split your data into train/val/test 

accuracy is great, unless you have class imbalance or cost 
imbalance 

if you do, look at your: 
   confusion matrix 
   precision/recall space 
   ROC space 

if you need a single number: try ROC-AUC or PR-AUC 

101

Model Evaluation 
Part 5: Social Impact 2

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

|section|Social	Impact	2|	
|video|https://surfdrive.surf.nl/8iles/index.php/s/
6o4T6Xzi8EAc1x5/download|	

Model	evaluation	is	not	just	about	showing	how	well	your	
model	works.	It’s	also	about	working	out	what	it	means	to	
get	a	certain	performance.	And	more	importantly,	what	it	
doesn’t	mean.

http://mlvu.github.io


interpreting results

103

Wang, Y., & Kosinski, M. (2018). Deep neural networks are more accurate than humans at 
detecting sexual orientation from facial images. Journal of personality and social 

psychology, 114(2), 246.

In	this	video,	we	will	use	the	following	research	as	a	
running	example.	In	2017	researchers	from	Stanford	built	a	
classi8ier	that	predicted	sexual	orientation	(restricted	to	the	
classes	“heterosexual”	and	“gay”)	from	pro8ile	image	taken	
from	a	dating	site.	They	reported	91%	ROC-AUC	on	men	
and	83%	ROC-AUC	on	women.	

The	results	were	immediately	cited	as	evidence	of	a	
biological	link	between	biology	and	sexual	orientation.	The	
following	important	caveats	were	largely	overlooked	in	
media	reports:	

• Some	of	the	performance	came	from	facial	landmarks	
(roundness,	length	of	nose,	distance	between	eyes,	etc),	
but	some	came	from	super8icial	details	like	hairstyle,	
lighting	and	grooming.	

• The	results	were	true	when	averaged	over	a	large	
population.	It’s	true	that	women	live	longer	than	men	on	
average,	but	that	doesn’t	mean	that	there	are	no	old	men.	
Likewise,		the	fact	that	you	can	guess	orientation	based	
on,	say,	the	length	of	the	nose,	with	better	than	chance	
accuracy,	may	only	be	due	to	a	very	small	difference	
between	the	two	distributions,	with	plenty	of	overlap.	

• ~90%	ROC-AUC	may	sound	impressive,	but	it	basically	
means	that	you	will	make	1	ranking	error	for	every	10	
attempts.	

The	study	authors	make	many	of	these	points	themselves,	
but	that	didn’t	stop	the	paper	from	being	wildly	
misrepresented:	https://docs.google.com/document/d/
11oGZ1Ke3wK9E3BtOFfGfUQuuaSMR8AO2WfWH3aVk
e6U/edit#	

• Consider history 

• Are you looking at what you think you’re looking at? 

• Are you predicting what you think you’re predicting? 

• What different hypotheses explain the observed effect? 

• What do positive results mean?
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Like	in	the	previous	video,	we’ll	look	at	some	important	
questions	to	ask	yourself	when	you	come	up	against	a	topic	
like	this.	Let’s	ask	the	same	questions	again	(with	some	new	
ones	thrown	in	for	good	measure).



Consider history

105source : https://commons.wikimedia.org/wiki/File:Physiognomy_of_Russian_Female_Offenders_Wellcome_L0074898.jpg

In	these	cases,	it’s	important	to	know	your	history.	
Physiognomy	is	the	study	which	attempts	to	infer	character	
from	facial	features.	

In	this	case	there’s	is	a	long	history	of	scientists	claiming	to	
be	able	to	divine	personal	attributes	(most	often	
“criminality”)	from	the	structure	of	a	subject’s	face.	This	is	
called	physiogmony	and	almost	any	claim	made	has	been	
conclusively	disproven,	and	based	on	poor	scienti8ic	
practice	and	spurious	correlations.	

That	doesn’t	mean,	of	course,	that	the	entire	idea	of	
physiognomy	is	conclusively	disproven.	Just	because	people	
got	it	wrong	in	the	past	doesn’t	mean	there	couldn’t	still	be	
a	link.	But	it	does	mean	that	when	we	are	stumbling	into	
the	same	area	with	new	tools,	we	should	be	aware	of	the	
mistakes	made	in	the	past,	so	that	we	can	be	careful	not	to	
repeat	them.

Are you looking at what you think you’re looking at?
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sources:  
https://jrzech.medium.com/what-are-radiological-deep-learning-models-actually-learning-f97a546c5b98 
https://arxiv.org/abs/1807.00431

The	next	thing	to	be	aware	of	is	what	you’re	looking	at.	This	
is	especially	important	with	modern	systems	that	can	look	
at	raw	image	data	without	extracting	speci8ic,	interpretable	
features.	

Here	a	visualization	of	a	classi8ier	looking	at	a	chest	x-ray	
and	making	a	prediction	of	whether	the	patient	has	
Cardiomegaly	(an	enlarged	heart).	The	positive	values	in	
the	heat	map	indicate	that	those	regions	are	important	for	
the	current	classi8ication.	The	largest	values	are	near	the	
heart,	which	is	what	we	expect.		

The	colors	are	a	bit	misleading,	since	the	black	background	
washes	them	out.	Pay	more	attention	to	the	actual	numbers.	

However,	the	classi8ier	is	also	getting	a	positive	
contribution	from	the	“PORTABLE”	label	in	the	top	right	
corner	and	the	marker	on	the	right.	These	indicate	that	the	
x-ray	was	taken	with	a	portable	scanner.	Such	scanners	are	
only	used	when	a	patient’s	condition	has	progressed	so	far	
that	they	can’t	leave	their	house.	In	such	cases	it’s	a	safe	bet	
that	they	have	Cardiomegaly.	

Note	that	the	visualization	of	the	attention	is	minimal	for	the	
erroneous	point	of	attention.	The	center	of	the	image	gets	
much	higher	values.	You	have	to	notice	a	very	small	effect	to	
see	that	anything	is	wrong.

https://commons.wikimedia.org/wiki/File:Physiognomy_of_Russian_Female_Offenders_Wellcome_L0074898.jpg
https://jrzech.medium.com/what-are-radiological-deep-learning-models-actually-learning-f97a546c5b98
https://arxiv.org/abs/1807.00431


Clever Hans
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These	problems	are	often	called	“Clever	Hans”	effects.	
Clever	Hans,	or	der	Kluge	Hans,	was	an	early-20th	century	
German	horse,	who	appeared	to	be	able	to	do	arithmetic.	

As	it	turned	out,	Hans	was	not	doing	arithmetic,	but	just	
reading	the	body	language	of	its	handler,	to	see	whether	it	
was	moving	towards	the	right	answer.	This	is	impressive	in	
itself,		of	course,	but	it	does	mean	that	Hans	didn’t	show	the	
kind	of	intelligence	that	was	being	attributed	to	him.		

Crucially,	this	was	not	a	hoax.	The	handler	truly	believed	that	
Hans	was	able	to	do	arithmetic,	and	had	no	idea	that	he	was	
guiding	him	subconsciously.	This,	incidentally	is	also	why	
double-blind	experiments	are	so	important	in	other	>ields.	

For	us,	Hans	serves	as	a	powerful	reminder	that	just	
because	we’re	seeing	the	performance	we	were	hoping	for,	
doesn’t	mean	we’re	seeing	it	for	the	reasons	we	were	hoping	
for.

What’s the causal direction?
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(a) Three samples in criminal ID photo set Sc.

(b) Three samples in non-criminal ID photo set Sn

Figure 1. Sample ID photos in our data set.

2. Data preparation
In order to conduct our experiments and draw conclu-

sions with strict control of variables, we collected 1856 ID
photos that satisfy the following criteria: Chinese, male,
between ages of 18 and 55, no facial hair, no facial scars
or other markings, and denote this data set by S. Set S is
divided into two subsets Sn and Sc for non-criminals and
criminals, respectively. Subset Sn contains ID photos of
1126 non-criminals that are acquired from Internet using the
web spider tool; they are from a wide gamut of professions
and social status, including waiters, construction workers,
taxi and truck drivers, real estate agents, doctors, lawyers
and professors; roughly half of the individuals in subset Sn

have university degrees.
Subset Sc contains ID photos of 730 criminals, of which

330 are published as wanted suspects by the ministry of
public security of China and by the departments of public
security for the provinces of Guangdong, Jiangsu, Liaoning,
etc.; the others are provided by a city police department in
China under a confidentiality agreement. We stress that the
criminal face images in Sc are normal ID photos not police
mugshots. Out of the 730 criminals 235 committed violent
crimes including murder, rape, assault, kidnap and robbery;
the remaining 536 are convicted of non-violent crimes, such
as theft, fraud, abuse of trust (corruption), forgery and rack-
eteering. Some sample ID photos in Sc and Sn are dis-
played in Figure 1. The individuals in Sc and Sn are resi-
dents of a very large geographical areas, stretching from the
northeast all the way to the far south of China and including
poor and very rich provinces of the country.

In all selected ID photos, only the region of the face and
upper neck is extracted and the background is removed. All
the extracted faces are normalized in size and aligned into
an 80 ⇥ 80 image. Although all test face images are ID
photos acquired with uniform frontal lighting, we still take

extra measures to neutralize any possible effects of varied
illumination conditions. Only the luminance component of
all color face images is used to factor out the spectrum of
the lighting and the skin color. Moreover, all resulting grey
scale images are normalized to have the same intensity dis-
tribution or the same overall tone production. This is done
by matching the histogram of every input image to the aver-
age histogram for the entire data set of 1856 grey scale face
images.

All ID photos in S are JPEG compressed with QP factor
of 90 or higher. Still we applied JPEG soft decoding tech-
niques [23, 28] to remove small (perceptually transparent)
compression noises; in the process any device-dependent,
signal-level signatures are destroyed as well.

3. Validity of Face Classifiers on Criminality
As argued in the introduction, one way of assessing the

accuracy of the automated inference on criminality based
solely on still face images is to build and test classifiers with
modern machine learning techniques. This section presents
the design and results of the classification experiments.

3.1. Methods

In order to prove or disprove the hypothesis that still face
images suffice to distinguish criminals and non-criminals,
we try to make our investigations as thorough as possible.
We run four different classification methods, logistic regres-
sion, KNN, SVM and CNN, on the image data set S pre-
pared as above.

As the first three classification methods work on image
features, we run them and evaluate their performances on a
wide range of features, including 1. Facial landmark points
like eye corners, mouth corners and tip of the nose, etc.;
2. Facial feature vector generated by modular PCA [18]; 3.
Facial feature vector based on Local Binary Pattern (LBP)
histograms [1]; 4. The concatenation of the above three fea-
ture vectors. We stress that the landmark points are defined
of strategic positions on a face, hence they are features that
are beyond signal level and invariant to source cameras.

Our convolutional neural network is constructed by re-
training the parameters of every layer in AlexNet [21] while
retaining its architecture.

Define the criminal subset Sc as the positive class and
the non-criminal subset Sn as the negative class. We per-
form 10-fold cross validation for all possible combinations
of the three feature-driven classifiers and the four types of
feature vectors, plus data-driven CNN without explicit fea-
ture vector; altogether thirteen cases (3 classifiers ⇥ 4 fea-
ture vectors plus CNN) of 10-fold cross validation type. In
the interest of statistic significance we repeated the cross
validation for each of the thirteen cases ten times with dif-
ferent random seeds. In each of these (13 cases ⇥ 10 runs)

3

A	related	question	you	should	ask	when	you	8ind	that	you	
can	successfully	predict	X	from	Y	is	which	causes	which?	

The	image	on	the	left,	from	[1],	shows	a	feature	that	
researchers	found	when	attempting	to	predict	criminality	
based	on	a	dataset	of	faces	of	criminals	and	non-criminals.	
One	of	their		8indings	is	that	the	angle	made	by	the	corners	
of	the	mouth	and	the	tip	of	the	nose	is	a	highly	predictive	
feature.	The	authors	suggest	that	such	facial	features	are	
indicative	of	criminality	

However,	when	we	look	at	the	dataset	we	see	that	it’s	not	
the	features	of	the	face,	so	much	as	the	expression	that	
differs.	In	the	“non-criminal”	photographs,	the	subjects	hold	
a	light	smile,	as	is	common,	whereas	in	the	criminal	set	the	
expressions	have	a	more	explicitly	relaxed	jaw.	What	we’re	
seeing	here	are	not	facial	features,	so	much	as	facial	
expressions.	

This	is	important,	because	it	changes	the	interpretation	of	
the	results	completely.	The	physiognomical	interpretation	is	
that	there	is	a	biological	mechanism	that	causes	both	
criminality	and	a	particular	wideness	of	the	mouth,	and	
that	this	is	determined	at	birth.	The	alternative	explanation	
is	that	when	people	with	a	criminal	background	have	their	
photographs	taken,	they	are	more	likely	to	prefer	a	
menacing	expression	than	the	average	person	is.	

Note,	incidentally,	that	the	photos	of	criminals	are	not	arrest	
photos.	They	are	described	as	“normal	ID	photos”	by	the	
authors.	

Further	discussion:	https://www.callingbullshit.org/
case_studies/
case_study_criminal_machine_learning.html	

[1]	Wu,	X.,	&	Zhang,	X.	(2016).	Automated	inference	on	
criminality	using	face	images.	arXiv	preprint	
arXiv:1611.04135,	4038-4052.	
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DEEP NEURAL NETWORKS CAN DETECT SEXUAL ORIENTATION FROM FACES 
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probability of being gay, resulting from masking a given area of the image, was used as a proxy 336 

for the importance of a given area to the prediction of sexual orientation.  337 

Results 338 

The results are presented in Figure 3 as heat maps showing the degree to which masking 339 

a given part of an image changes the classification outcome. The color scale ranges from blue 340 

(no change) to red (substantial change). Heat maps reveal that, for both genders, classification 341 

mainly relied on the facial area and ignored the background. The most informative facial areas 342 

among men included the nose, eyes, eyebrows, cheeks, hairline, and chin; informative areas 343 

among women included the nose, mouth corners, hair, and neckline. The heat maps are not 344 

symmetrical because duplicated facial features, such as eyes, may prompt the classifier to focus 345 

on only one of them and ignore the other as redundant. 346 

The results presented here confirm that the VGG-Face scores extracted here focus on the facial 347 

features rather than on other parts of the image. 348 

  
Figure 3. Heat maps showing the degree to which masking a given part of an image changes the 349 

(absolute) classification outcome, which is a proxy for the importance of that region in 350 

women (53/47%; see Table 1 for details). Facial images were
cropped using the facial frame provided by Face!! (the blue box
in Figure 1), and resized to 224 " 224 pixels.

Extracting facial features using a deep neural network.
Facial features were extracted from the images using a widely
employed DNN called VGG-Face (Parkhi, Vedaldi, & Zisserman,
2015). VGG-Face was originally developed (or trained) using a
sample of 2.6 million images for the purpose of facial recognition
(i.e., recognizing a given person across different images). VGG-
Face is similar to traditional scoring keys accompanying psychomet-
ric tests. A traditional scoring key can be used to convert responses to
test questions into one or more psychometric scores, such as a single
IQ score, or a set of five Big Five personality scores. VGG-Face
translates a facial image into 4,096 scores subsuming its core features.
Unfortunately, unlike psychometric scores, VGG-Face scores are not
easily interpretable. A single score might subsume differences in
multiple facial features typically considered to be distinct by humans
(e.g., nose shape, skin tone, or eye color).

VGG-Face offers two main advantages in the context of this study.
First, successful facial recognition depends on the DNN’s ability to
detect facial features that are unlikely to vary across images. Thus,
VGG-Face aims at representing a given face as a vector of scores that
are as unaffected as possible by facial expression, background, light-
ing, head orientation, image properties such as brightness or contrast,
and other factors that can vary across different images of the same
person. Consequently, employing VGG-Face scores enabled us to
minimize the role of such transient features when distinguishing
between gay and heterosexual faces. Second, employing a DNN
trained on a different sample and for a different purpose reduces the
risk of overfitting (i.e., discovering differences between gay and
heterosexual faces that are specific to our sample rather than univer-
sal). We also tried training a custom DNN directly on the images in
our sample; its accuracy was somewhat higher, but it exposed us to
the risk of overfitting.

Training classifiers. We used a simple prediction model,
logistic regression, combined with a standard dimensionality-
reduction approach: singular value decomposition (SVD). SVD is

similar to principal component analysis (PCA), a dimensionality-
reduction approach widely used by social scientists. The models
were trained separately for each gender.

Self-reported sexual orientation (gay/heterosexual) was used as
a dependent variable; 4,096 scores, extracted using VGG-Face,
were used as independent variables. To prevent overfitting, we
used a 20-fold cross-validation when estimating the predictions.
The users were split into 20 subsamples; one of the subsamples
(test set) was put aside, while the remaining 19 subsamples (train-
ing sets) were used to train the prediction model. As the number of
independent variables was relatively large (4,096) when compared
with the number of cases (7,083 in the smallest training set), we
used SVD to extract n # 500 dimensions4 from the independent
variables. This helped to reduce the number of independent vari-
ables and eliminate redundant information.

A logistic regression model was trained to classify sexual ori-
entation (a dependent variable) using 500 singular values extracted
from VGG-Face scores (independent variables). Least absolute
shrinkage and selection operator (LASSO; Hastie, Tibshirani, &
Friedman, 2009) was used for variable selection and regularization
when training the regression model. The LASSO penalty param-
eter $ was set to 1; the regularization parameter % was automati-
cally estimated using 10-fold cross-validation.

Finally, the model built on the training set, combining the SVD
dimensionality reduction and logistic regression, was used to pre-
dict the sexual orientation of the participants in the test set. This
procedure was repeated 20 times to assign a probability (ranging
from 0 to 1) of being gay to all images in the sample.

For many users, more than one facial image was available. This
enabled us to examine how the accuracy changes with the number
of facial images available. To produce an aggregate probability of
being gay based on n images, the probabilities associated with a
randomly selected set of n images (ranging from 1 to 5) of a given
participant were averaged.5 Thus, a participant with three facial
images was described by three probabilities of being gay: one
based on a single randomly selected image, one based on two
randomly selected images, and one based on all three images.

Results

The accuracy of predicting sexual orientation from facial images
is presented in Figure 2. Across this article, the accuracy is
expressed using the area under receiver operating characteristic
curve (AUC) coefficient. AUC represents the likelihood of a
classifier being correct when presented with the faces of two
randomly selected participants—one gay and one heterosexual.
The AUC # .50 (or 50%) indicates that the classifier is correct
only half of the time, which is no better than a random draw. The
AUC # 1.00 (or 100%) indicates that the classifier is always
correct. AUC is an equivalent of the Wilcoxon signed-ranks test
coefficient, used more widely in social sciences.

4 Dimensions extracted by SVD are referred to as singular values; they
are an equivalent of principal components in the context of PCA.

5 Logit transformation is used whenever the probabilities are averaged in
this work. This means that the probabilities are logit transformed and
averaged, and the resulting values are converted back into probabilities
using an inverse-logit transformation.

Figure 1. Graphical illustration of the outcome produced by Face!!.
Panel A illustrates facial landmarks (colored dots, n # 83) and facial frame
(blue box). Panel B illustrates pitch, roll, and yaw parameters that describe
the head’s orientation in space.
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249ALGORITHM CAN DETECT SEXUAL ORIENTATION FROM FACES

Let’s	go	back	to	the	sexuality	classi8ier.	What	might	a	Clever	
Hans	effect	look	like	here?	In	the	most	extreme	case,	you	
might	expect	a	classi8ier	just	to	look	at	the	background	of	
the	image.	The	authors	were	more	careful	here	than	you	
might	expect:	

• The	background	of	the	image	was	blurred	and	the	the	
facial	features	(eyes,	nose,	mouth)	were	detected	and	
aligned.		

• The	focus	of	the	classi8ier	was	investigated	with	saliency	
maps	(indicators	of	where	the	model	is	looking).	This	is	a	
fallible	method,	but	it	does	show	a	general	focus	on	the	
face.	(Still,	remember	how	small	the	effect	was	in	the	
saliency	map	for	the	chest	X-ray.)	

• A	second	classi8ier	was	fed	only	facial	landmarks:	the	
position	of	the	eyes,	roundness	of	the	jaw,	etc.	That	is,	the	
photo	was	translated	to	a	series	of	explicit	features.	The	
suggestion	being	that	this	prevents	Clever	Hans	effects.	

• The	deep	neural	network	used	to	extract	features	from	
pixels	was	not	trained	on	this	data,	but	on	another	facial	
dataset.	Only	its	features	were	fed	to	a	shallow	classi8ier	
that	learned	from	these	labels.	This	limits	the	ability	of	
the	classi8ier	to	pick	up	on	surface	detail.	

Are you predicting what you think you’re predicting?
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some cultures, gay men and women still suffer physical and
psychological abuse at the hands of governments, neighbors, and
even their own families. Perhaps due to discrimination and stig-
matization, gay people are also at a higher risk of depression,
suicide, self-harm, and substance abuse (King et al., 2008). Con-
sequently, their well-being and safety may depend on their ability
to control when and to whom to reveal their sexual orientation.
Press reports suggest that governments and corporations are de-
veloping and deploying face-based prediction tools aimed at inti-
mate psycho–demographic traits, such as the likelihood of com-
mitting a crime, or being a terrorist or pedophile (Chin & Lin,
2017; Lubin, 2016). The laws in many countries criminalize same-
gender sexual behavior, and in eight countries—including Iran,
Mauritania, Saudi Arabia, and Yemen—it is punishable by death
(United Nations Human Rights Council, 2015). It is thus critical to
inform policymakers, technology companies and, most impor-
tantly, the gay community, of how accurate face-based predictions
might be.

This work examines whether an intimate psycho–demographic
trait, sexual orientation, is displayed on human faces beyond what
can be perceived by humans. We address this question using a
data-driven approach. A DNN was used to extract features from
the facial images of 35,326 gay and heterosexual men and women.
These features were entered (separately for each gender) as inde-
pendent variables into a cross-validated logistic regression model
aimed at predicting self-reported sexual orientation. The resulting
classification accuracy offers a proxy for the amount of informa-
tion relevant to the sexual orientation displayed on human faces.
We also explore the features employed by the classifier and
examine whether, as predicted by the PHT, the faces of gay men
and women tend to be gender atypical. Furthermore, we compare
the accuracy of the computer algorithm with that of human judges.
Human accuracy does not only provide a baseline for interpreting
the algorithm’s accuracy, but it also helps to examine whether the
nonstandardized facial images used here are not more revealing of
sexual orientation than standardized facial images taken in a con-
trolled environment. Finally, using an independent sample of gay
men’s facial images, we test the external predictive validity of the
classifier developed here.

Study 1a: Using Deep Neural Networks to Detect
Sexual Orientation

In Study 1a, we show that a DNN can be used to identify sexual
orientation from facial images. Previous studies linking facial
features with sexual orientation used either images of neutral2

faces taken in a laboratory (e.g., Skorska et al., 2015; Valentova et
al., 2014) or self-taken images obtained from online dating web-
sites (e.g., Hughes & Bremme, 2011; Lyons et al., 2014; Rule &
Ambady, 2008; Rule, Ambady, Adams, & Macrae, 2008). We
employed the latter approach, as such images can be collected in
large numbers, from more representative samples, and at a lower
cost (from the perspective of both the participants and researchers).
Larger and more representative samples, in turn, enable the dis-
covery of phenomena that might not have been apparent in the
smaller, lab-based samples. Additionally, using self-taken, easily
accessible digital facial images increases the ecological validity of
our results, which is particularly important given their critical
privacy implications.

Images taken and uploaded by the participants have a number of
potential drawbacks. They may vary in quality, facial expression,
head orientation, and background. Furthermore, given that they
were originally posted on a dating website, they might be espe-
cially revealing of sexual orientation. We take several steps to
mitigate the influence of such factors. First, the facial features are
extracted using a DNN that was specifically developed to focus on
nontransient facial features, disregarding the head’s orientation
and the background. Second, Study 1b investigates the areas of the
face employed by the classifier and shows that the classifier
focuses on the face and does not rely on the background. Third,
Studies 1c and 2 explore the facial features used by the classifier
and shows that they are consistent with PHT, a widely accepted
theory explaining the origins of sexual orientation. Fourth, Studies
3 and 4 show that the images used here were not substantially more
revealing of sexual orientation than images of neutral faces taken
in a controlled setting or images obtained from Facebook.

Method

Facial images. We obtained facial images from public pro-
files posted on a U.S. dating website. We recorded 130,741 images
of 36,630 men and 170,360 images of 38,593 women between the
ages of 18 and 40, who reported their location as the United States.
Gay and heterosexual people were represented in equal numbers.
Their sexual orientation was established based on the gender of the
partners that they were looking for (according to their profiles).

The location of the face in the image, outlines of its elements,
and the head’s orientation were extracted using a widely used
face-detection software: Face!!.3 Figure 1 shows the output of
Face!! in a graphical format. The colored dots (Panel A) indicate
the location of the facial landmarks outlining the contour and
elements of the face. Additionally, Face!! provided the estimates
of the head’s yaw, pitch, and roll (Panel B).

Based on the Face!! results, we removed images containing
multiple faces, partially hidden faces (i.e., with one or more
landmarks missing), and overly small faces (i.e., where the dis-
tance between the eyes was below 40 pixels). We also removed
faces that were not facing the camera directly (i.e., with a yaw
greater than 15 degrees and a pitch greater than 10 degrees).

Next, we employed Amazon Mechanical Turk (AMT) workers
to verify that the faces were adult, Caucasian, fully visible, and of
a gender that matched the one reported on the user’s profile. We
limited the task to the workers from the U.S., who had previously
completed at least 1,000 tasks and obtained an approval rate of at
least 98%. Only faces approved by four out of six workers were
retained (see Figure S1 in supplemental materials, for the instruc-
tions presented to the workers).

Finally, we randomly removed some users to balance the age
distribution of the sexual orientation subsamples and their size—
separately for each gender. The final sample contained 35,326
facial images of 14,776 gay and heterosexual (50/50%) men and

2 We believe that no face can be truly “neutral.” People may systemat-
ically differ in the expression that they adopt when instructed to “adopt a
neutral expression.” Furthermore, even an image of a perfectly neutral face
(e.g., taken under anesthesia) would still contain traces of typically adopted
expressions (e.g., laugh lines), grooming style (e.g., skin health), and one’s
environment (e.g., tan).

3 Face!! can be accessed at http://www.faceplusplus.com.
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some cultures, gay men and women still suffer physical and
psychological abuse at the hands of governments, neighbors, and
even their own families. Perhaps due to discrimination and stig-
matization, gay people are also at a higher risk of depression,
suicide, self-harm, and substance abuse (King et al., 2008). Con-
sequently, their well-being and safety may depend on their ability
to control when and to whom to reveal their sexual orientation.
Press reports suggest that governments and corporations are de-
veloping and deploying face-based prediction tools aimed at inti-
mate psycho–demographic traits, such as the likelihood of com-
mitting a crime, or being a terrorist or pedophile (Chin & Lin,
2017; Lubin, 2016). The laws in many countries criminalize same-
gender sexual behavior, and in eight countries—including Iran,
Mauritania, Saudi Arabia, and Yemen—it is punishable by death
(United Nations Human Rights Council, 2015). It is thus critical to
inform policymakers, technology companies and, most impor-
tantly, the gay community, of how accurate face-based predictions
might be.

This work examines whether an intimate psycho–demographic
trait, sexual orientation, is displayed on human faces beyond what
can be perceived by humans. We address this question using a
data-driven approach. A DNN was used to extract features from
the facial images of 35,326 gay and heterosexual men and women.
These features were entered (separately for each gender) as inde-
pendent variables into a cross-validated logistic regression model
aimed at predicting self-reported sexual orientation. The resulting
classification accuracy offers a proxy for the amount of informa-
tion relevant to the sexual orientation displayed on human faces.
We also explore the features employed by the classifier and
examine whether, as predicted by the PHT, the faces of gay men
and women tend to be gender atypical. Furthermore, we compare
the accuracy of the computer algorithm with that of human judges.
Human accuracy does not only provide a baseline for interpreting
the algorithm’s accuracy, but it also helps to examine whether the
nonstandardized facial images used here are not more revealing of
sexual orientation than standardized facial images taken in a con-
trolled environment. Finally, using an independent sample of gay
men’s facial images, we test the external predictive validity of the
classifier developed here.

Study 1a: Using Deep Neural Networks to Detect
Sexual Orientation

In Study 1a, we show that a DNN can be used to identify sexual
orientation from facial images. Previous studies linking facial
features with sexual orientation used either images of neutral2

faces taken in a laboratory (e.g., Skorska et al., 2015; Valentova et
al., 2014) or self-taken images obtained from online dating web-
sites (e.g., Hughes & Bremme, 2011; Lyons et al., 2014; Rule &
Ambady, 2008; Rule, Ambady, Adams, & Macrae, 2008). We
employed the latter approach, as such images can be collected in
large numbers, from more representative samples, and at a lower
cost (from the perspective of both the participants and researchers).
Larger and more representative samples, in turn, enable the dis-
covery of phenomena that might not have been apparent in the
smaller, lab-based samples. Additionally, using self-taken, easily
accessible digital facial images increases the ecological validity of
our results, which is particularly important given their critical
privacy implications.

Images taken and uploaded by the participants have a number of
potential drawbacks. They may vary in quality, facial expression,
head orientation, and background. Furthermore, given that they
were originally posted on a dating website, they might be espe-
cially revealing of sexual orientation. We take several steps to
mitigate the influence of such factors. First, the facial features are
extracted using a DNN that was specifically developed to focus on
nontransient facial features, disregarding the head’s orientation
and the background. Second, Study 1b investigates the areas of the
face employed by the classifier and shows that the classifier
focuses on the face and does not rely on the background. Third,
Studies 1c and 2 explore the facial features used by the classifier
and shows that they are consistent with PHT, a widely accepted
theory explaining the origins of sexual orientation. Fourth, Studies
3 and 4 show that the images used here were not substantially more
revealing of sexual orientation than images of neutral faces taken
in a controlled setting or images obtained from Facebook.

Method

Facial images. We obtained facial images from public pro-
files posted on a U.S. dating website. We recorded 130,741 images
of 36,630 men and 170,360 images of 38,593 women between the
ages of 18 and 40, who reported their location as the United States.
Gay and heterosexual people were represented in equal numbers.
Their sexual orientation was established based on the gender of the
partners that they were looking for (according to their profiles).

The location of the face in the image, outlines of its elements,
and the head’s orientation were extracted using a widely used
face-detection software: Face!!.3 Figure 1 shows the output of
Face!! in a graphical format. The colored dots (Panel A) indicate
the location of the facial landmarks outlining the contour and
elements of the face. Additionally, Face!! provided the estimates
of the head’s yaw, pitch, and roll (Panel B).

Based on the Face!! results, we removed images containing
multiple faces, partially hidden faces (i.e., with one or more
landmarks missing), and overly small faces (i.e., where the dis-
tance between the eyes was below 40 pixels). We also removed
faces that were not facing the camera directly (i.e., with a yaw
greater than 15 degrees and a pitch greater than 10 degrees).

Next, we employed Amazon Mechanical Turk (AMT) workers
to verify that the faces were adult, Caucasian, fully visible, and of
a gender that matched the one reported on the user’s profile. We
limited the task to the workers from the U.S., who had previously
completed at least 1,000 tasks and obtained an approval rate of at
least 98%. Only faces approved by four out of six workers were
retained (see Figure S1 in supplemental materials, for the instruc-
tions presented to the workers).

Finally, we randomly removed some users to balance the age
distribution of the sexual orientation subsamples and their size—
separately for each gender. The final sample contained 35,326
facial images of 14,776 gay and heterosexual (50/50%) men and

2 We believe that no face can be truly “neutral.” People may systemat-
ically differ in the expression that they adopt when instructed to “adopt a
neutral expression.” Furthermore, even an image of a perfectly neutral face
(e.g., taken under anesthesia) would still contain traces of typically adopted
expressions (e.g., laugh lines), grooming style (e.g., skin health), and one’s
environment (e.g., tan).

3 Face!! can be accessed at http://www.faceplusplus.com.
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Another	question	we	suggested	in	the	last	video	is	whether	
the	target	label	you’ve	chosen	is	saying	what	you	think	it’s	
saying.	

Here,	the	authors	inferred	sexuality	from	the	stated	
preference	in	the	dating	pro8ile.	This	is	clearly	correlated	
with	sexuality,	but	not	the	same	thing.	Firstly,	sexuality	is	
one	of	those	attributes	(like	movie	genre)	that	can	only	be	
crudely	approximated	by	a	set	of	8inite	categories.	
Moreover,	for	many	people	it’s	not	a	8ixed	attribute,	and	it	is	
subject	to	some	evolution	throughout	their	life.	

The	stated	preference	on	a	dating	pro8ile	also	means	that	
you	are	capturing	only	those	gay	people	who	are	willing	to	
live	(relatively)	openly	as	gay.	This	may	be	highly	dependent	
on	social	background.	It’s	certainly	conceivable	that	in	
poorer	subcultures,	people	are	less	likely	to	come	out	as	
gay,	either	to	their	community	or	to	themselves.	

This	means	that	what	we’re	detecting	when	we’re	
classifying	a	face	in	this	dataset	as	“gay”	is	more	likely	a	
combination	of	factors	that	are	correlation	to	that	label.	



Incidentally,	note	the	size	of	the	dataset.	One	thing	the	
authors	can’t	be	accused	of	is	8inding	spurious	correlations.	
It’s	a	question	of	what	the	correlations	that	they	found	
mean,	but	with	this	amount	of	data,	as	we	saw	before,	we	
get	very	small	con8idence	intervals,	so	the	observed	effects	
are	de8initely	there.

What different hypothesis explain the observed effect?

111

sexuality facial hair
Choice of presentation

facial features

sexualitybiological  
mechanism

e.g. prenatal hormone theory

social  
class

gay dating  
profile

jawline roundness

body weight
NB: These are  

only hypo
theses

So,	what	kind	of	hypotheses	can	we	think	of	for	what	is	
causing	the	performance	of	the	classi8ier?	

The	authors	observe	that	in	their	dataset	the	heterosexual	
men	are	more	likely	have	facial	hair.	That’s	most	likely	to	be	
a	grooming	choice,	based	on	the	differences	in	gay	and	
heterosexual	subcultures.		

For	other	correlations,	such	as	that	between	sexuality	and	
nose	length,	the	authors	suggest	the	prenatal	hormone	
theory,	a	theory	that	relates	prenatal	hormone	levels	in	the	
mother	with	the	sexuality	of	the	subject.	In	short,	a	
biological	mechanism	that	is	responsible	for	both	the	
(slight)	variation	in	facial	features	and	the	variation	in	
sexual	preference.	

But	that’s	not	the	only	possibility.	In	the	previous	slide,	we	
saw	that	it’s	dif8icult	to	separate	facial	features	from	facial	
expressions.	However,	even	if	we	somehow	eliminate	the	
expression,	that	doesn’t	mean	that	every	facial	feature	we	
see	is	determined	at	birth.	For	instance,	the	roundness	of	
the	jaw	is	also	in8luenced	by	body	weight,	which	is	strongly	
in8luenced	by	social	class	(for	instance,	whether	somebody	
grows	up	poor	or	rich).	And	while	there’s	no	evidence	that	
social	class	in8luences	the	probability	of	being	gay,	it	most	
likely	does	in8luence	how	likely	a	gay	person	is	to	end	up	
setting	up	a	dating	pro8ile.	

Note	that	these	are	purely	hypotheses,	intended	to	show	
which	kinds	of	causalities	can	cause	these	correlations.	I’m	
not	in	the	least	bit	quali>ied	to	say	which	is	more	likely	to	be	
true.	
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The	authors	plotted	the	four	average	faces	for	the	classes	
male/female	and	gay/heterosexual	in	their	dataset.	Here	
are	the	four	options.	It’s	a	peculiar	property	of	datasets	of	
(aligned)	faces	that	the	mean	is	often	quite	a	realistic	face	
itself.	

Consider	this	plot	with	the	hypotheses	on	the	previous	
slide.	What	differences	do	you	see?	Pay	particular	attention	
to	the	differences	in	skin	tone,	grooming,	body	weight,	and	
the	presence	of	glasses.		

I’ll	leave	you	to	decide	which	you	think	is	the	more	likely	
explanation	for	these	difference:	choice	of	presentation,	
social	class,	or	sexuality.		

performance (AUC)
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however, that facial images posted on a dating website are partic-
ularly revealing of sexual orientation. Perhaps the users selected
the photos that their desired partners might find the most appeal-
ing.

We tested this hypothesis by employing a sexual orientation
classifier of known accuracy: human judges.8 We show that the
accuracy of the human judges, who were presented with the facial
images employed in Study 1a, does not differ from the human
judges’ accuracy reported in the previous studies employing both:
standardized images taken in the lab and dating website profile
pictures.

Method

Facial images. The 35,326 faces from Study 1a were ran-
domly paired, resulting in 50,000 pairs for each gender (each face
could be assigned to multiple pairs).

Human judges. We employed AMT workers from the U.S.,
who had previously completed at least 1,000 tasks and obtained an
approval rate of at least 98%. They were asked to select the facial
image more likely to represent a gay (or, in half of the cases,
heterosexual) person from two, randomly ordered, facial images
(one belonging to a gay individual and one to a heterosexual
individual). Note that the accuracy of human judges on a task
designed in this way is an equivalent of the AUC coefficient used
to express the algorithms’ accuracy. The instructions presented to
the workers are shown in Figure S2 (supplemental materials).

Results

Human judges achieved an accuracy of AUC ! .61 for male
images and AUC ! .54 for female images. This is comparable
with the accuracy obtained in the previous studies, which ranged
from approximately 55% to 65% (Ambady et al., 1999; Lyons et
al., 2014; Rule et al., 2009). It is also compatible with the findings
of Study 1a, which show that female faces are less revealing of
sexual orientation. Finally, it demonstrates that the facial images

used in our study were not unusually revealing of sexual orienta-
tion (at least to humans).

Study 5: Beyond Dating Website Facial Images

This study shows that the accuracy of the DNN-based classifier
trained in Study 1a is not limited to facial images collected on a
dating website, but could also correctly classify facial images
recorded in a different environment: Facebook.

Method

Facial images. We obtained a sample of 14,438 facial images
of 6,075 openly gay men from the myPersonality database (Ko-
sinski et al., 2015). Gay males were identified using two variables.
First, we used the Facebook Audience Insights platform9 to iden-
tify 50 Facebook pages most popular among gay men, including
pages such as: “I love being Gay,” “Manhunt,” “Gay and Fabu-
lous,” and “Gay Times Magazine.” Second, we used the “inter-
ested in” field of users’ Facebook profiles, which reveals the
gender of the people that a given user is interested in. Males that
indicated an interest in other males, and that liked at least two out
of the predominantly gay Facebook pages, were labeled as gay.
Among the gay men identified in this way, and for whom rela-
tionship data was available, 96% reported that their significant
other was male. Unfortunately, we were not able to reliably iden-
tify heterosexual Facebook users.

Preprocessing. Facial images were preprocessed and their
VGG-Face scores extracted using the procedure described in Study
1a. The final sample contained n ! 918 facial images of unique
users, characterized by an average age of 30 and interquartile range

8 We also considered applying the DNN-based classifier to the samples
used in previous studies. We could not, however, convince their authors to
share their samples with us.

9 https://www.facebook.com/ads/audience-insights.

Figure 5. The accuracy of the landmark-based classifiers, when provided with five images per person. The
accuracy of the DNN-based classifier trained in Study 1a is displayed on top of the figure for comparison.
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from pixels

from facial landmarks

women (53/47%; see Table 1 for details). Facial images were
cropped using the facial frame provided by Face!! (the blue box
in Figure 1), and resized to 224 " 224 pixels.

Extracting facial features using a deep neural network.
Facial features were extracted from the images using a widely
employed DNN called VGG-Face (Parkhi, Vedaldi, & Zisserman,
2015). VGG-Face was originally developed (or trained) using a
sample of 2.6 million images for the purpose of facial recognition
(i.e., recognizing a given person across different images). VGG-
Face is similar to traditional scoring keys accompanying psychomet-
ric tests. A traditional scoring key can be used to convert responses to
test questions into one or more psychometric scores, such as a single
IQ score, or a set of five Big Five personality scores. VGG-Face
translates a facial image into 4,096 scores subsuming its core features.
Unfortunately, unlike psychometric scores, VGG-Face scores are not
easily interpretable. A single score might subsume differences in
multiple facial features typically considered to be distinct by humans
(e.g., nose shape, skin tone, or eye color).

VGG-Face offers two main advantages in the context of this study.
First, successful facial recognition depends on the DNN’s ability to
detect facial features that are unlikely to vary across images. Thus,
VGG-Face aims at representing a given face as a vector of scores that
are as unaffected as possible by facial expression, background, light-
ing, head orientation, image properties such as brightness or contrast,
and other factors that can vary across different images of the same
person. Consequently, employing VGG-Face scores enabled us to
minimize the role of such transient features when distinguishing
between gay and heterosexual faces. Second, employing a DNN
trained on a different sample and for a different purpose reduces the
risk of overfitting (i.e., discovering differences between gay and
heterosexual faces that are specific to our sample rather than univer-
sal). We also tried training a custom DNN directly on the images in
our sample; its accuracy was somewhat higher, but it exposed us to
the risk of overfitting.

Training classifiers. We used a simple prediction model,
logistic regression, combined with a standard dimensionality-
reduction approach: singular value decomposition (SVD). SVD is

similar to principal component analysis (PCA), a dimensionality-
reduction approach widely used by social scientists. The models
were trained separately for each gender.

Self-reported sexual orientation (gay/heterosexual) was used as
a dependent variable; 4,096 scores, extracted using VGG-Face,
were used as independent variables. To prevent overfitting, we
used a 20-fold cross-validation when estimating the predictions.
The users were split into 20 subsamples; one of the subsamples
(test set) was put aside, while the remaining 19 subsamples (train-
ing sets) were used to train the prediction model. As the number of
independent variables was relatively large (4,096) when compared
with the number of cases (7,083 in the smallest training set), we
used SVD to extract n # 500 dimensions4 from the independent
variables. This helped to reduce the number of independent vari-
ables and eliminate redundant information.

A logistic regression model was trained to classify sexual ori-
entation (a dependent variable) using 500 singular values extracted
from VGG-Face scores (independent variables). Least absolute
shrinkage and selection operator (LASSO; Hastie, Tibshirani, &
Friedman, 2009) was used for variable selection and regularization
when training the regression model. The LASSO penalty param-
eter $ was set to 1; the regularization parameter % was automati-
cally estimated using 10-fold cross-validation.

Finally, the model built on the training set, combining the SVD
dimensionality reduction and logistic regression, was used to pre-
dict the sexual orientation of the participants in the test set. This
procedure was repeated 20 times to assign a probability (ranging
from 0 to 1) of being gay to all images in the sample.

For many users, more than one facial image was available. This
enabled us to examine how the accuracy changes with the number
of facial images available. To produce an aggregate probability of
being gay based on n images, the probabilities associated with a
randomly selected set of n images (ranging from 1 to 5) of a given
participant were averaged.5 Thus, a participant with three facial
images was described by three probabilities of being gay: one
based on a single randomly selected image, one based on two
randomly selected images, and one based on all three images.

Results

The accuracy of predicting sexual orientation from facial images
is presented in Figure 2. Across this article, the accuracy is
expressed using the area under receiver operating characteristic
curve (AUC) coefficient. AUC represents the likelihood of a
classifier being correct when presented with the faces of two
randomly selected participants—one gay and one heterosexual.
The AUC # .50 (or 50%) indicates that the classifier is correct
only half of the time, which is no better than a random draw. The
AUC # 1.00 (or 100%) indicates that the classifier is always
correct. AUC is an equivalent of the Wilcoxon signed-ranks test
coefficient, used more widely in social sciences.

4 Dimensions extracted by SVD are referred to as singular values; they
are an equivalent of principal components in the context of PCA.

5 Logit transformation is used whenever the probabilities are averaged in
this work. This means that the probabilities are logit transformed and
averaged, and the resulting values are converted back into probabilities
using an inverse-logit transformation.

Figure 1. Graphical illustration of the outcome produced by Face!!.
Panel A illustrates facial landmarks (colored dots, n # 83) and facial frame
(blue box). Panel B illustrates pitch, roll, and yaw parameters that describe
the head’s orientation in space.
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The	authors	repeated	their	experiments	by	classifying	
based	purely	on	facial	landmarks.	The	idea	is	that	we	can	
detect	landmarks	very	accurately,	and	classifying	on	these	
alone	removes	a	lot	of	sources	for	potential	Clever	Hans	
effects.	

We	see	that	all	subsets	of	the	face	landmarks	allow	for	some	
predictive	performance,	but	there	is	a	clear	difference	
between	them.	Note	that	just	because	we	are	isolating	
landmarks,	doesn’t	mean	that	we	are	focusing	only	on	
biological	causes.	As	we	saw	earlier,	the	shape	of	the	mouth	
is	determined	more	by	expression	than	by	facial	features,	
and	the	roundness	of	the	jaw	is	partly	determined	by	body	
weight,	which	is	correlated	with	social	class.	

We	will	discuss	the	AUC	metric	in	the	third	lecture.	For	now,	
you	can	think	of	a	classi8ier	with	81%	AUC	as	one	that,	
given	a	random	pair	of	gay	and	heterosexual	instances	from	
the	data,	will	successfully	select	the	gay	instance	81%	of	the	
time.	

Let’s	assume	that	the	shape	of	the	nose	is	mostly	unaffected	
by	grooming	and	expression.	I	have	no	idea	whether	this	
assumption	is	valid,	but	say	that	it	is.	Focusing	purely	on	the	
shape	of	the	nose,	we	see	that	performance	drops	to	0.65	
AUC	for	men	and	0.56	AUC	for	women.	This	is	still	better	
than	chance	level.		

Can	we	say	that	homosexuality	can	be	detected	based	on	the	
shape	of	the	nose?	Can	we	conclude	a	biological	relation	
based	on	this	correlation?	



What does 0.56, 0.65 AUC mean?
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Guessing sex or gender based on:
Accuracy 
proportion of incorrect 
classifications

AUC 
chance of correctly ordering a 
random male/female pair

Age 
Dutch census data 0.51 0.52

Age for people aged 80 and over 
Dutch census data

0.61 0.57

Age 
ANSUR II data

0.65 0.59

Waist circumference 
ANSUR II data                             

0.68 0.74

Stature (height) 
ANSUR II data

0.84 0.92

To	interpret	numbers	like	these,	it’s	good	to	get	some	points	
of	reference.	If	we	try	to	guess	somebody’s	gender	or	sex	
(the	distinction	doesn’t	matter	much	for	such	a	crude	
guess),	while	knowing	nothing	about	them	except	their	
age,	the	best	we	can	expect	to	do	is	slightly	better	than	
chance	level	(51%	of	our	guesses	will	be	correct).	The	
reason	we	can	get	better	than	chance	level	is	that	women	
tend	to	live	longer	than	men.	This	means	that	if	we	guess	
“female”	for	older	people,	we	are	a	little	bit	more	likely	to	
be	correct.	

If	we	restrict	ourselves	to	older	people,	the	effect	becomes	
more	pronounced	and	we	can	get	to	the	level	the	sexuality	
classi8ier	achieved	(based	purely	on	noses	in	the	female	
part	of	the	data).	This	can	help	us	to	interpret	the	AUC	the	
authors	managed	to	achieve.	Note	that	this	accuracy	is	
achieved	by	calling	everybody	female,	and	the	AUC	is	
achieved	by	guessing	that	the	older	person	in	a	pair	is	
always	female.	Think	about	that.	If	you	walk	into	a	care	
home	blindfolded	and	simply	call	everybody	female,	
can	you	really	claim	to	be	detecting	their	gender?	

If	we	look	purely	at	people’s	height,	we	get	an	accuracy	and	
AUC	that	is	comparable	to	what	the	authors	achieved	from	
the	pixel	data.	This	is	also	an	important	point	to	consider.	
Height	and	gender	are	correlated,	but	that	doesn’t	mean	
that	there	are	no	tall	women	or	short	men.	It	also	doesn’t	
make	tall	women	“masculine”,	or	short	men	“feminine”.	It’s	
just	a	slight	correlation	that	allows	us	to	make	an	educated	
guess	for	certain	parts	of	the	range	of	heights.	

This	is	how	you	should	always	interpret	accuracy	and	AUC	
values	in	the	range	0.8	to	0.95:	it's	as	impressive	as	
guessing	somebody's	sex	or	gender	based	purely	on	their	
height.	Yes,	it	can	be	done	better	than	chance	level,	and	yes	
there	is	a	de8inite	correlation,	but	it	doesn't	much	more	
than	that	there	is	a	very	subtle	correlation.	

NB:	In	the	ANSUR	II	data,	the	subjects	are	soldiers.	It’s	
possible	that	some	sex	differences	are	more	pronounced	in	
this	population	due	to	selection	effects	or	physical	training.	
We	balanced	the	ANSUR	data	by	subsampling	to	make	the	
numbers	of	male	and	female	subjects	equal.
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buttock circumference

neck circumference

To	provide	some	points	of	references	for	ROC	curves,	here	
are	all	the	curves	you	can	achieve	for	sex/gender	
classi8ication	based	on	a	single	physical	measurement.	For	
some	of	these	we	get	very	impressive	looking	curves.	But	is	
the	word	"detection"	really	appropriate	when	you	are	
making	one	physical	measurement	and	predicting	sex	or	
gender	based	on	that?	

The	lowest	AUC	comes	from	using	buttock	circumference	as	
a	feature,	and	the	highest	from	using	neck	circumference.	
Since	these	are	soldiers,	it's	likely	that	differences	due	to	
muscle	volume	are	more	pronounced	here	than	they	would	
be	generally.	This	plot	is	for	the	complete,	unbalanced	data	
so	there	is	a	4:1	class	imbalance	(male:female).



116

Here	are	the	histograms	per	sex/gender	for	the	ANSUR	
data.	There	is	a	big	discrepancy,	but	notice	also	how	big	the	
area	of	overlap	is.		

This	is	always	what	we	should	imagine	when	people	say	
that	property	A	is	predictive	for	attribute	B.	Just	because	
there’s	some	difference	between	the	populations	doesn’t	
mean	that	there	are	no	short	men	or	tall	women.	And	most	
importantly	it	doesn’t	mean	that	being	short	makes	you	in	
some	way	more	feminine	or	being	tall	makes	you	in	some	
way	more	masculine.

Are you detecting something?

117quote source: https://docs.google.com/document/d/11oGZ1Ke3wK9E3BtOFfGfUQuuaSMR8AO2WfWH3aVke6U/edit#

So,	are	we	really	justi8ied	in	calling	this	a	detector?	

Are	you	really	detecting	gender	when	you	call	somebody	
male	just	because	they’re	tall?	The	authors	compare	their	
classi8iers	to	medical	diagnostic	tools	to	provide	an	
interpretation	of	the	AUC	scores.	

This	is	where	we	must	make	a	clear	distinction	between	
what	a	classi8ier	like	this	does	and	what	a	diagnostic	test	
does.	A	test	like	that	for	breast	cancer	looks	explicitly	only	
at	one	particular	source	of	information.	In	this	case	the	
mammogram.	The	clinician	will	likely	take	the	result	of	this	
test,	and	factor	in	contextual	clues	like	age	and	lifestyle	if	
the	test	is	unclear.	The	test	can	be	said	to	detect	something,	
because	it	is	strictly	con8ined	to	look	at	only	one	thing.		

The	clinician	is	then	predicting	or	guessing	something	
based	on	different	factors.	One	of	which	is	the	test.	

The	diagnosis	of	Parkinson’s	is	different.	It’s	much	more	
similar	to	the	way	this	classi8ier	works,	there	is	no	
unambiguous	diagnostic	tool	like	a	blood	test,	so	the	
diagnostician	can	only	look	at	contextual	clues	like	
symptoms,	medical	history,	age	and	risk	factors.		

There	is	still	a	difference,	however,	in	that	the	features	are	
made	more	explicit.	The	pixel-based	sexuality	classi8ier	may	
be	inferring	social	class	from	the	image,	but	it’s	not	telling	
us	that	it’s	doing	this.	A	doctor	may	be	guilty	of	such	
subconscious	inferences	as	well,	but	we	can	expect	a	
greater	level	of	interpretability	from	them.	

NB:	The	authors	use	the	word	accuracy	to	refer	to	ROC-AUC.

https://docs.google.com/document/d/11oGZ1Ke3wK9E3BtOFfGfUQuuaSMR8AO2WfWH3aVke6U/edit#


Should this research have been performed and published?

Note that: 

• The authors stumbled onto these results. 

• The main aim is to warn of privacy concerns.  
Not to make claims about the biological mechanisms underlying homosexuality 

• Prenatal Hormone Theory is often mentioned. 

• The classifier is stated to detect sexuality. 
A prediction or a guess is closer to the truth.
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After	all	that,	it’s	natural	to	ask	whether	this	research	
project	was	a	mistake.	In	short,	were	the	authors	wrong	to	
do	this,	and	if	so	in	what	way?	This	is	a	question	of	values	
rather	than	science,	so	it’s	up	to	you	to	decide.	I’ll	just	note	
some	important	points	to	consider.	

Firstly,	the	authors	weren’t	looking	to	prove	this	point	one	
way	or	another,	and	they	initially	stumbled	on	to	their	
8indings.	Given	that	a	result	has	been	established,	it’s	most	
often	unethical	not	to	report	it.	So	long	as	that	reporting	is	
done	carefully	and	responsibly,	of	course.	

The	stated	aim	of	the	paper	is	not	to	make	any	claims	about	
causal	mechanisms.	The	authors	are	less	interested	in	
whether	the	classi8ier	picks	up	on	grooming	choices	of	
biological	features,	than	in	whether	the	guess	can	be	made	
with	some	success	at	all.		

If	we	decide	that	the	result	did	need	to	be	reported,	we	may	
consider	whether	the	authors	were	guilty	of	poor	framing.	
The	use	of	the	word	detecting	is	subject	to	
misinterpretation.	To	be	fair,	that’s	something	I	only	became	
aware	of	when	looking	into	this	matter	including	all	the	
fallout	from	this	particular	paper,	so	for	me	at	least	it	would	
be	hypocritical	to	be	too	judgemental	of	poor	word	choice.	

Another	odd	thing,	is	that	in	both	the	paper	and	the	
explanatory	notes,	prenatal	hormone	theory	a	suggested	
biological	causal	mechanism	for	homosexuality,	is	often	
mentioned.	As	we	have	seen	the	experiments	shown	here	
provide	no	evidence	for	one	causal	hypothesis	over	another,	
so	it	would	probably	have	been	better	to	make	no	claims	
about	causal	effect	whatsoever.

How do you frame your research?

Consider which features you are using. 

Consider multiple hypotheses. Social, biological, personal. 
Train yourself to always come up with different explanations for a given set of facts. 

Distinguish between detecting, predicting and guessing. 
Even 0.91 AUC is more guessing than predicting. It’s only detecting if you strictly control 
your features. 
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always read the paper

If	you	8ind	yourself	in	the	unfortunate	situation	of	having	to	
publish	something	controversial	like	this,	or	having	to	
interpret	somebody	else's	work	on	a	controversial	topic,	
keep	these	tips	in	mind.		

Finally,	and	this	is	a	personal	opinion,	so	make	of	it	what	
you	will:	if	you	read	about	research	like	this	in	a	newspaper,	
or	on	social	media,	remember	that	you	are	an	academic	(or	
at	least	you	will	be	when	you	graduate).	That	comes	with	a	
certain	responsibility	to	dig	into	the	primary	research	
before	you	make	a	judgment.	Don't	just	trust	the	journalists,	
or	worse,	the	commenters	on	Twitter.	If	you	really	want	to	
give	your	opinion	on	a	situation	like	this,	dig	out	the	
original	paper	and	read	it.	If	you	don't,	the	most	honest	
thing	to	do	is	to	withhold	judgment.	

What	you	you	will	8ind	when	you	dig	down,	is	almost	always	
that	the	truth	is	much	more	subtle	than	the	news	and	social	
media	make	it	look.	In	this	speci8ic	case,	the	majority	of	
criticism	leveled	at	the	authors	was	simply	inaccurate.	
There	are	valid	and	serious	criticisms	of	the	paper,	but	you	



really	need	to	dig	down	to	get	past	a	lot	of	invalid	criticisms.	
The	truth,	as	is	so	often	the	case	is	subtle	and	complex.	Our	
job	as	academics	is	to	embrace	that	complexity,	and	to	
simplify	it	as	much	as	possible,	but	no	further.
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there’s no free lunch We	end	with	a	very	short,	but	important	discussion.			

A	question	that	often	arises	is:	which	classi>ier,	model,	search	
method,	etc.	is	the	best,	independent	of	the	data?	Before	we	
see	the	data,	can	we	make	a	best	guess	for	which	
approaches	to	try?	Are	there	some	methods	that	always	
work	really	well?

The no-free-lunch theorem(s)

Wolpert & MacReady 1997 

“… any two optimization algorithms are equivalent when 
their performance is averaged across all possible 
problems”

123source: Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67-82.

In	the	90s	two	researchers,	named	Wolpert	and	MacReady	
published	a	proof	of	an	important	theorem.	The	details	are	
technical,	but	it	basically	stated	that	if	we	look	at	
optimization	algorithms	(of	which	machine	learning	
algorithms	are	a	speci8ic	instance),	by	averaging	their	
performance	over	all	possible	tasks,	they	all	perform	
exactly	the	same.		That	is,	if	we	want	to	know	which	
algorithm	is	the	best	independent	of	the	task,	we	cannot	tell	
them	apart	by	their	performance.

gradient descent and gradient ascent
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Let's	look	at	some	examples	of	what	this	means	in	practice.	
For	instance,	gradient	descent	is	a	pretty	intuitive	
algorithm,	and	we've	seen	already	that	there	are	many	tasks	
for	which	it	works	well.	Let's	imagine	the	polar	opposite	
algorithm:	gradient	ascent.	We	are	still	looking	for	the	
lowest	point	on	the	loss	surface,	but	instead	of	descending,	
we	climb.	Intuitively,	this	is	a	ridiculous	algorithm,	

However,	according	to	the	no	free	lunch	theorem,	both	
gradient	descent	and	gradient	ascent	should	work	equally	
well	when	their	performance	is	averaged	over	all	problems.	
This	means	that	for	every	task	on	which	gradient	descent	
works	well,	and	gradient	ascent	works	terribly,	we	should	
be	able	to	8ind	a	task	where	the	roles	are	reversed.		

The	slide	shows	the	kind	of	landscape	that	might	result	in	
this	situation.	On	the	left	we	have	a	typical	loss	landscape,	
with	a	lowest	point	that	gradient	descent	should	easily	8ind.	
On	the	right	we	have	the	opposite.	A	reverse	loss	landscape	
that	you	need	to	climb	to	get	near	the	lowest	point.	
Gradient	descent	would	go	nowhere	near	the	optimimum.	



Gradient	ascent,	with	just	the	right	hyperparameters,	will	
climb	all	the	way	to	the	top,	and	in	its	last	step	fall	into	the	
crevice	and	get	stuck	on	the	plateau	at	the	bottom.

Given some data X and basic methods A and B. 

Meta-methods: 

• method C: Use a data split, choose whichever performs 
the best. 

• method D: Use a data split, choose whichever performs 
the worst. 

According to the NFL theorem, there are as many datasets 
X for which C beats D as there are for which D beats C. 
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Here	is	another	example,	that	should	show	you	what	a	
strange	result	the	no	free	lunch	theorem	is.	The	common	
practice	of	dataset	splitting	and	choosing	a	model	by	its	test	
set	performance	is	also	an	algorithm.	We	do	it	manually,	but	
we	could	also	program	it	into	a	computer.	Let's	say	we	want	
to	choose	between	two	methods	A	and	B.	We	can	follow	the	
normal	approach:	split	the	data,	apply	both	and	choose	
whichever	performs	best.	Call	this	method	C.	

We	can	also	do	a	ridiculous,	counter-intuitive	thing	and	
choose	the	method	that	performs	worst.	Call	this	method	D.	

The	no	free	lunch	theorem	says	that	method	D	should	
outperform	method	C	just	as	often	as	the	other	way	around.		

The	kind	of	datasets	where	this	happens	are	the	ones	where	
the	test	set	happens	to	behave	very	differently	from	the	
training	set.	Since	we	usually	make	the	split	randomly,	these	
would	be	very	unusual	or	unlikely	datasets,	and	we	feel	
justi8ied	in	using	method	C.	Still,	this	only	works	because	
we	are	able	to	make	certain	assumptions	about	our	data.
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the problem of induction again In	a	way,	we’re	back	to	the	problem	of	induction.	For	any	
given	situation	where	a	learning	method	works,	there’s	a	
situation	where	it	doesn’t.	Induction	(aka.	learning	from	
experience)	works	in	practice,	but	there	are	exceptions,	and	
we	can't	tell	just	by	looking	at	the	data	when	it	will	and	
won't	work.	

Note	that	if	there	were	some	algorithm	that	could	tell	us	
which	situation	we	were	in,	we	could	just	use	this	algorithm	
to	select	our	learning	method,	and	beat	the	NFL	theorem.	

In	short,	we	need	to	make	some	assumptions	about	the	
nature	of	whatever	it	was	that	created	our	data.	Without	
such	assumptions,	learning	doesn't	work.



inductive bias

The aspects of a learning algorithm, which implicitly or 
explicitly make it suitable for certain learning problems 
and unsuitable for others. 

A linear method has an inductive bias for linear relations. 
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This	is	an	increasingly	important	phrase	in	machine	
learning.	The	inductive	bias	of	a	method	or	model	are	those	
assumptions	about	the	domain	that	are,	explicitly	or	
implicitly,	hardcoded	into	the	model.	

For	instance,	in	a	linear	regression	model,	the	assumption	is	
that	all	instances	lie	on	a	line	(or	the	higher-dimensional	
equivalent).	If	this	assumption	isn't	violated	too	much,	the	
model	is	a	good	8it	for	the	data.	If	the	assumption	is	violated	
very	badly,		we	need	to	look	for	ways	to	change	the	
inductive	bias,	for	instance	by	picking	a	different	model,	or	
by	enriching	the	linear	model	with	extra	features,	like	we	
will	do	in	the	next	lecture.	

We	can	summarize	the	business	of	machine	learning	and	
data	science	as	follows.	The	business	of	the	machine	
learning	researcher	is	to	create	a	variety	of	models	with	
helpful	inductive	biases.	The	business	of	the	data	scientist	is	
to	8igure	out	which	of	the	available	inductive	biases	is	
helpful	for	any	given	problem.

the universal distribution

Not all datasets are created equal. The datasets for which 
our method works, are the likely ones. 

The universe “generates” data for which our methods work 

• Compressible data 

• Simple data 

The datasets that don’t work aren’t selected, because they 
look random to us. 
We only understand those parts of the universe that generate understandable data
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One	“out”	to	the	NFL	Theorem,	is	that	there	is	a	“universal	
distribution”	governing	all	processes	that	create	data.	

The	NFL	Theorem	implicitly	assumes	that	all	datasets	are	
equally	likely.	Since	this	is	not	the	case,	there	is	some	other,	
non-uniform	distribution	that	tells	us	which	datasets	are	
more	likely	than	others,	averaged	over	all	possible	settings.	

Using	such	a	universal	data	distribution,	we	could	(in	
theory)	work	out	a	universally	best	learning	algorithm.	

Occam’s razor

“The simplest explanation is often the best” 

We should bias our algorithms towards simple models. 

• Reduces overfitting, helps generalization.

129

We	don't	have	too	many	practical	ideas	about	the	properties	
of	such	a	universal	distribution,	but	one	thing	that	crops	up	
a	lot	is	that	simple	data	is	necessarily	more	likely	than	
complex	data.	

This	suggests	that	in	learning	we	should	have	a	simplicity	
bias.	If	there	are	two	models	that	both	8it	the	data,	one	very	
simple,	like	a	linear	model,	and	one	very	complex,	like	a	
very	big	decision	tree,	then	it's	more	likely	that	the	simple	
model	generated	the	data.	

Such	simplicity	biases	can	be	implemented	in	many	
different	ways,	and	we'll	see	some	concrete	examples	as	the	
course	progresses.



the no-free-lunch principle

There is no single best learning method. Whether 
an algorithm is good, depends on the domain.
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Whether	or	not	the	NFL	theorem	means	anything	for	us	in	
practice,	it	has	also	given	rise	to	a	general	principle,	
commonly	followed	in	machine	learning	practice.	The	
principle	is	that	we	should	choose	our	method	to	deal	with	
the	task	at	hand,	and	not	look	for	a	universally	best	method.	

Note	that	this	is	distinct	from	the	NFL	theorem,	because	
everybody	still	uses	data	splitting	universally	to	evaluate	
which	of	these	many	methods	is	the	best.	And	by	the	NFL	
theorem,	model	selection	by	data	splitting	is	also	not	a	
universal	algorithm.	So	the	NFL	theorem	and	the	NFL	
principle	are	really	two	very	different	things.	

In	practice,	the	NFL	theorem	shouldn't	keep	you	awake	at	
night.	It's	an	interesting	thought	to	return	to	occasionally,	
and	a	reminder	that	by	choosing	a	model,	we	are	making	
assumptions	about	the	source	of	our	data.	

The	NFL	principle	is	an	important	concept	to	keep	in	mind	
when	selecting	models.	Don't	just	run	gradient	boosted	
decision	trees	by	default,	just	because	somebody	
somewhere	said	it	was	the	best	approach.	Investigate	your	
task.	8igure	out	what	makes	it	special,	try	different	
approaches	and	tailor	your	approach	to	the	problem	at	
hand.	


