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offline machine learning: the basic recipe

Abstract (part of ) your problem to a standard task. 
Classification, Regression, Clustering, Density estimation, Generative Modeling, Online learning, 
Reinforcement Learning, Structured Output Learning 

Choose your instances and their features.  
For supervised learning, choose a target.  

Choose your model class. 
Linear models, Decision Trees, kNN,  

Search for a good model. 
Usually, a model comes with its own search method. Sometimes multiple options are available.
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today: 
  Evaluate y

our model

lecture 5: 

  Prepare yo
ur data

Here is the basic recipe for machine learning again. This 
week, we’ll discuss what happens before and after. Today: 
once you’ve trained some models, how do you figure out 
which of them is best?

binary classification

Positive class 

Negative class 

The classifier is a detector for 
the positive class.
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error: 3/14  
proportion of misclassifications 

accuracy: 11/14 
proportion of correct classifications

We’ll focus mostly on binary classification today (two-
class classification). In this case, we can think of the 
classifier as a detector for one of the classes (like spam, or a 
disease). We tend to call this class positive. As in “testing 
positive for a disease.”	

In classification, the main metric of performance is the 
proportion of misclassified examples (which we’ve already 
seen). This is called the error. The proportion of correctly 
classified examples is called the accuracy.	

http://mlvu.github.io


comparing models
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linear vs. decision tree vs. kNN

different values of the hyperparameter k

You compare models to figure out which is the best. 
Ultimately, to choose which model you want to use in 
production. 	

This could be literally the production version of a piece of 
software, or just the model whose predictions you decide to 
use in the future.	

Sometimes you are comparing different model types (a 
decision tree vs a linear model), but you might also be 
comparing different ways of configuring the same model 
type. For instance in the kNN classifier, how many 
neighbours (k) should we look at to determine our 
classification?	

With the 2D dataset, we can look at the decision boundary, 
and make a visual judgment. Usually, that’s not the case: our 
feature space will have hundreds of dimensions, and we’ll 
need to measure the performance of a model.	

performing an experiment

Train classifier A, train classifier B 

Compute the error of A, compute the error of B 
error = proportion of mistakes 

The lower the error, the better the model
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On which data do we compute the error? 

How do we eliminate random effects? 

Is error/accuracy the best metric to use?

Here is the simplest, most straightforward way to compare 
two classifiers. You just train them both, so see how many 
examples they get wrong, and pick the one that made 
fewest mistakes. This is a very simple approach, but it’s 
basically what we do. 	

We just need to consider a few questions, to make sure 
that we can trust our results.

Overfitting We’ve already seen what happens when you evaluate on the 
training data. A model that fits the training data perfectly 
may not be much use when it comes to data you haven't 
seen before.



Never judge your 
performance on the 

training data
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the test set

The proportion is not important, the absolute size of the 
test data is. 

We should aim to have at least 500 examples in the test 
data (10 000 or more is ideal).
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test datatraining data

So the first thing we do in machine learning is withhold 
some data. We train our classifiers on the training data and 
test on the test data. That way, if we get good performance, 
we know that we’re likely to get a good performance on 
future data as well, and we haven’t just memorised random 
fluctuations in the training data.	

How should we split our data? The most important factor is 
the size in instances of the test data. The bigger this 
number, the more precise our estimate of our model’s error. 
Ideally, we separate 10 000 test instances, and use 
whatever we have left over as training data. Unfortunately, 
this is not always realistic. We’ll look at this a little more 
later.

what if you need to  test many models?
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?

But even if we withhold some test data, we can still go 
wrong. We’ll use k nearest neighbours (kNN) as a running 
example. Remember, kNN assigns the class of the k nearest 
points. 	

k is what is called a hyperparameter. We need to choose 
its value in some way before we run the algorithm. The 
algorithm doesn't specify how it should be chosen. One way 
of choosing k is to try a few values, and to see for which k 
we get the best performance.
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We will use the data from the first lecture as an example. 
We will take a small subsample of the dataset, so that the 
effects that we want to illustrate become exaggerated.

Here we’ve tested 12 different values of k on the same test 
data (using quite a small test set to illustrate the idea). We 
can see that for k=1, we get the best performance. We 
plotted the test data (with the training data in low opacity).	

best model
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Here is the best run. Should we conclude that k=1 is 
definitely a better setting than k=2 or k=3? Should we 
conclude that we can expect an error of 0.16 on any future 
data from the same source?



rerun: same models, new test set
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In this case, we have some more data from the same source, 
so we can evaluate the classifiers again on a fresh test set. 
This is a luxury we don't normally have (we normally use all 
the data we are given). 	

What we see is that k=1 no longer gives us the best 
performance. In fact, we get a radically different best value 
of k, and k=1 now gives us the highest error in the run.
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Here is one of the the new best runs.
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The same models, different test sets and the conclusions are 
entirely different. We were diligent in splitting our dataset 
and evaluating only on withheld data, and yet if we had 
done only one run on one dataset, as we normally would, 
we would have concluded that k=1 is the best setting and 
that an error of 0.16 can be expected with that value. 	

If we look at the k=1 model from the second run (the one 
we chose), we will see that the performance on the new test 
set is terrible. If we select a model in this way and take it 
into production, we will find that it performs terribly.	

So what's happening here?	



conclusion: we’re overfitting again

16source: xkcd.com/882

This is essentially the overfitting problem again. Our 
method of choosing the hyperparameter k is just another 
learning algorithm. By testing so many values of k on such a 
small amount of test data, we are overfitting our choice of k 
on the test data. The model we choose fits well because of 
random fluctuations in the data. When we resample the 
data, these fluctuations disappear and the performance 
drops.	

This is an instance of the multiple testing problem in 
statistics. We’re testing so many things, that the likelihood 
of a noticeable effect popping up by chance increases. We 
are in danger of ascribing meaning to random fluctuations. 	

Specifically, in our case, the k=1 classifier got lucky on a 
few examples, that just happened to fall on the right side of 
the decision boundary. If we draw some new data, the same 
classifier won't be lucky again. The more different values of 
k we try, the more we are in danger of this kind of random 
luck determining which hyperparameters come out as 
good.	

The simple answer to the problem of multiple testing is not 
to test multiple times.	

see also: https://www.explainxkcd.com/wiki/
index.php/882:_Significant	

evaluation: the modern recipe

Split your data into train and test data. 
Sample randomly. At least 500 examples in your test set. In ML benchmarks the test data is often 
given. 

Choose your model, hyperparameters, etc. only using the 
training set. 
Save your test set until the very last minute. Don’t use it for anything. 

State your hypothesis 
i.e. kNN with k=7 beats existing model X, or kNN with k=7 is better than kNN with k = 12 

Test your hypothesis once on the test data 
This is usually at the very end of your project when you write your report or paper.
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There are many different approaches to machine learning 
experimentation, and not every paper you see will follow 
this approach, but this is the most common one. 	

It’s important to mention in your paper that you followed 
this approach, since the reader can’t usually see it from the 
presented results.	



Don’t re-use your test data

Just to emphasize the important point: the more you use 
the test data, the less reliable your conclusions become. 
Figure out what the end of your project is, and do not touch 
the test data until the end.	

In really important and long-term projects, it’s not a bad 
idea to withhold multiple test sets. This allows you to still 
test your conclusions in case you’ve ended up using the 
original test data too often.

reusing your test data

Causes you to pick the wrong model 

Inflates your performance estimate 
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Not only does reusing test data mean that you pick the 
wrong model, it also means that the error estimate you get 
is probably much lower than the error you would actually 
get if you gathered some more test data. 

validation set

During model and hyperparam. selection: 

• train on: 

• test on: 

Final run: 

• train on: 

• test on:
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testtraining validation

validation

training

training validation

test

<- us
ually

This means that you need to test which model to use, which 
hyperparameters to give it, and how to extract your 
features only on the training data. In order not to evaluate 
on the training data for these evaluations, you usually split 
the training data again: into a (new) training set and a 
validation set.	

Ideally, your validation data is the same size as your test set, 
but you can make it a little smaller to get some more 
training data.	

This means that you need to carefully plan your research 
process. If you start out with just a single split and keep 
testing on the same test data, there’s no going back (you 
can’t unsee your test data). And usually, you don’t have the 
means to gather some new dataset.	

It’s usually fine in the final run to append the validation 
data to your training data. This is not always the case 
however, so if you use a standard benchmark you should 
check if this is allowed, and if you use your own dataset, you 
should describe carefully whether you do this.	



Note that this approach by itself doesn't prevent multiple 
testing. It just provides for a final failsafe to detect it. Before 
you make the decision to try your model on the test data, 
you should first convince yourself that the results you see 
are not down to multiple testing. You can do this by not 
testing too many hyperparameter values, or if you fear that 
you have, by rerunning your experiment on a different 
train/validation split to double-check.	

There's always a bit of a tense moment when you run the 
experiment on the test data, and you get to find out how 
close the real numbers you'll get to report are to the 
numbers you've seen for the validation. However, if your 
datasets are large, and you haven't done anything strange in 
the hyperparameter tuning phase, they will usually be very 
close together.

not this
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dataset 1 dataset 2 dataset 3

other method 1 0.15 0.08 0.27

other method 2 0.11 0.10 0.29

ours (k=1) 0.89 0.45 0.23

ours (k=2) 0.09 0.23 0.70

ours (k=3) 0.08 0.45 0.57

ours (k=4) 0.15 0.56 0.32

ours (k=5) 0.57 0.09 0.88

ours (k=6) 0.58 0.07 0.89

This may seem like a simple principle to follow, but it goes 
wrong a lot. Not just in student papers, also in published 
research.	

Here’s what you might come across in a bad machine 
learning paper. In this (fictional) example, the authors are 
introducing a new method (labeled ours) which has a 
hyperparameter k. They are claiming that their model beats 
every baseline, because their numbers are higher (for 
specific hyperparameters).	

These numbers create three impressions that are not 
actually validated by this experiment:	

• That the authors have a better model than the two other 
methods shown. 	

• That if you want to run the model on dataset 1,  you 
should use k=3	

• That if you have data like dataset 1, you can then expect 
an error of 0.08.	

None of these conclusions can be drawn from this 
experiment, because we have not ruled out multiple testing.	



but this
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dataset 1 dataset 2 dataset 3

other method 1 0.15 0.08 0.27

other method 2 0.11 0.10 0.29

k 3 5 2

ours 0.11 0.11 0.24

“The hyperparameter k was chosen based on a validation set 
split off from the training data. The test data was used only 

once.”

Here is what we should do instead. We should use the 
training data (with validation withheld) to select our 
hyperparameters, make a single choice for k for each 
different dataset, and then estimate the accuracy of only 
that model. 	

Note that the numbers have changed, because in the 
previous example the authors gave themselves an 
advantage by multiple testing. With a proper validation 
split, that advantage disappears. These numbers are worse, 
but more accurate. (I made these numbers up, but this is 
the sort of thing you might see)	

Now, we can actually draw the conclusions that the table 
implies:	

• On dataset 3, the new method is the best.	

• If we want to use the method on dataset 3 (or similar 
data) we should use k=2	

• If our data is similar to that of dataset 3, we could expect 
a performance around 0.24	

Even though most people now use this approach, you 
should still mention exactly what you did in your report (so 
people don’t assume you got it wrong).

cross-validation
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training

val.

val.

val.

val.

val.

average

0.3

0.4

0.1

0.3

0.4

0.3

After you’ve split off a test and validation set, you may be 
left with very little training data. If this is the case, you can 
make better use of your training data by performing cross-
validation. You split your data into 5 chunks (“folds”) and 
for each specific choice of hyperparameters that you want 
to test, you do five runs: each with one of the folds as 
validation data. You then average the scores of these runs.	

This can be costly (because you need to train five times as 
many classifiers), but you ensure that every instance has 
been used as a training example once.	

After selecting your hyperparameters with crossvalidation, 
you still test once on the test data.	

You may occasionally see papers that estimate error of their 
finally chosen model by cross validation as well (splitting 
off multiple test sets), but this is a complicated business, 
and has fallen out of fashion. We won’t go into in this 
course.



temporal data
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training data

time

test

If your data has special attributes, like a meaningful 
temporal ordering of the instances, you need to take this 
into account. In the case of temporal data, training on 
samples that are in the future compared to the test set is 
unrealistic, so you can’t sample your test set randomly. You 
need to maintain the ordering.	

Sometimes data has a timestamp, but there’s no meaningful 
information in the ordering (like in email classification, 
seeing emails from the future doesn’t usually give you much 
of an unfair advantage in the task). In such cases, you can 
just sample the test set randomly.	

temporal data: walk-forward validation
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training data

time

train v 0.4

0.1train v

0.3train v

average
0.4

0.3

train v

… …

If you want to do cross-validation in such time sensitive 
data, you’ll have to slice the dataset like this.	

Evaluation is a simulation of production.  

Validation is a simulation of evaluation.
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In general, don’t just apply split testing and cross validation 
blindly. Think about how you will ultimately train and use 
your model “in production”. Production may be an actual 
software production environment, or some other place 
where you intend to employ your model. Your evaluation on 
the test set is essentially a simulation of that setting. 	

If you're doing something in evaluation that you won't be 
able to do in production (like training on instances from the 
future), then you are cheating your evaluation. 	

Your validation is essentially a simulation of the evaluation. 
If you want validation results that accurately predict your 
evaluation results, then your validation should mimic the 
evaluation as closely as possible. 	

Here, however, you are allowed to deviate a little. For 
instance, you can make your validation data a little smaller 
than your test data. This is a tradeoff: you are reducing the 
certainty of your validation results, but you are gaining a 
little extra training data, which will improve your results in 
the end. Such tradeoffs are fine, so long as you are honest in 



your final evaluation on the test data.	

In general, when in doubt make sure that the evaluation 
setting accurately simulates production, and that the 
validation setting accurately simulates the evaluation 
setting.

which hyperparameters to try?

Up to you: 

• trial-and-error (intuition) 
probably the most common approach 

• grid search 
define a finite set of values per hyperparameter and try all combinations. 

• random search (remember?)
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So, now that we know how to experiment, what 
experiments should we run? Which values should we try for 
the hyperparameters? So long as we make sure not to look 
at our test set, we can do what we like. We can try a few 
values, we can search a grid of values exhaustively, or we 
can even use methods like random search, or simulated 
annealing. 	

We should only be cautious not to try too many different 
hyperparameter values if our test and validation sets are 
small.	

It’s important to mention: trial and error is fine, and it’s 
the approach that is most often used. It’s usually the 
most effective, because you (hopefully) have an intuitive 
understanding of what your hyperparameters mean. You 
can use this understanding to guide your search in a way 
that automated methods can’t.

random samples vs. grid search

28source: Random search  for hyper-parameter optimization, Bergstra and Bengio JMLR 2012 
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.
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If you are going to use some kind of automated search, 
trying a bunch of different combinations of hyperparameter 
values, and then trying random samples in the hyper 
parameter space is often better than exhaustively checking 
a grid. This picture neatly illustrates why. If one parameter 
turns out not to be important, and another does, a grid 
search restricts us to only three samples over the important 
parameter, at the cost training nine different models.	

If we randomize the samples, we get nine different values of 
each parameter at the same cost.	

source: http://www.jmlr.org/papers/volume13/
bergstra12a/bergstra12a.pdf (recommended reading)	

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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Machine Learning vs. Statistics

Stats but not ML: Analyzing research results. Experiment 
design. Courtroom evidence. 
More ML than Stats: Spam classification, movie 
recommendation,.
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Statistics ML

As noted in the first lecture, statistics and ML are very 
closely related. It’s surprising then, that when we perform 
ML experiments, we use relatively little of the statistics 
toolkit. We don’t often do significance tests, for instance.

should we do statistical tests at all?

• Makes ML experimentation difficult. Lots of 
disagreement. 

• People overestimate the value of statistical analyses. 

• Does not promote the best methods 

• The ultimate validation of research is REPLICATION 

On the appropriateness of statistical tests in machine learning, Janez Demšar, 2008 
Machine Learning as an Experimental Science (Revisited), Chris Drummond, 2006
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Should we be doing more statistics on our own 
experiments?	

There is a lot of disagreement. Hypothesis testing comes 
with a lot of downsides. Given that we usually have very big 
sample sizes (10 000 instances in the test set), our efforts 
may be better spent elsewhere.	

Another consideration is that the ultimate validation of 
research is replication, not statistical significance. 
Somebody else should repeat your research and get the 
same results. Because all of our experimentation is 
computer code, a basic replication could be as simple as 
downloading and running a docker image. After that it’s 
easy to try the same on new data, or check the model for 
bugs.	

In practice, replication can be a real nightmare, even in our 
field.	

Since the community is so divided on the question, we 
won’t emphasize statistical testing too much in this course. 

http://mlvu.github.io


However, there are a few important statistical concepts to 
be aware of, even if we don't use the whole statistical 
toolbox to interrogate them rigorously.

true metric vs. estimate

data distribution: p(x, t) 
one instance x and its class t 

true accuracy of C 
probability that C(x) = t under p
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unobservable observable

dataset 

sample accuracy of C 
proportion of test set that C classifies correctly

 - sample ->

e.g. the mean height 
of a Dutch person

the mean height of 100 
randomly sampled 
Dutch people

->

The first is the difference between the true metric of a 
problem or task, and the value you measure. This is a very 
basic principle in statistics. For instance, we can’t observe 
the mean height of all Dutch people currently living, but we 
can take a random sample of 100 Dutch people, and use 
their average height as an estimate of the true average 
height.  	

To translate this to machine learning, let’s take 
classification accuracy as an example.	

We usually imagine that the data is sampled from some 
distribution p(x). In this view, we're not really interested in 
training a classifier that does well on the dataset we have, 
even on the test data. What we really want is a classifier 
that does well on any data sampled from p(x).	

Imagine sampling one instance from the data distribution 
and classifying it with some classifier C. If you do this, there 
is a certain probability that C will be correct. This is called 
the true accuracy. It is not something we can ever know or 
compute (except in very specific cases). The only thing we 
can do is take a large number of samples from p(x), classify 
them with C, and approximate the true accuracy with the 
relative frequency of correct classifications in our sample. 
This is what we are doing when we compute the accuracy of 
a classifier on the test set or the validation set: we are 
estimating the true accuracy. To explicitly distinguish this 
estimate from the true accuracy, we sometimes call this the 
sample accuracy.	

The accuracy is just the simplest example. We can apply the 
same idea to any metric, like the MSE loss of a regression 
model, or the many metrics for classifiers we will see in the 
following videos. They all have a true value defined on the 
data distribution, which we can't observe, and an estimate 
which we can compute from the test set.



statistical testing
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Can the observed results be 
attributed to real characteristics of 

the models under scrutiny or are 
they observed by chance?

This brings us to the main question that statistical analysis 
is meant to answer. If we do things properly, and we have a 
large dataset, our estimate will be close to the true value. 
Often, we can even prove how close it is likely to be. But 
there will be some difference, which will be entirely 
random.	

So, when we estimate the test accuracy of models A and B 
and we see that classifier A is better than classifier B 
because their estimated accuracies on the test set are .997 
and .998 respectively, can we really trust that statement? 
Maybe this random noise we get when we compute the 
estimate of the accuracy caused this difference. In other 
words, how sure can we be, from these values, that the 
true accuracy of A is also higher than the true accuracy 
of B?	

quote source: http://www.icmla-conference.org/icmla11/
PE_Tutorial.pdf

showing confidence: accuracy
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One way of doing this is to compute a confidence interval. 
Here we see the process of computing a sample accuracy in 
a simple animation: we start with the true accuracy (for 
some given classifier, on the data distribution) which is 
somewhere between 0 and 1. We sample a bunch of points 
from the data distribution (our test set), and take the 
relative frequency of correctly classified instances as the 
sample accuracy.	

Here, in the top half of the slide we model the process of 
taking one instance of our test set and seeing whether the 
classifier classifies it correctly as a single random draw 
resulting in the outcome correct or incorrect. We'll see in 
the next lecture that this type of distribution is called a 
Bernoulli distribution.	

The whole process of sampling the entire test set and 
computing the sample accuracy is also a random process. If 
we were to repeat it, sampling a new test set, we'd get a 
different value for the sample accuracy. To simplify this, we 
can look at the total number of instances in our sample that 
the classifier classified correctly (so we don't divide by N). 
In that case, it turns out we can work out the distribution of 
this process as well: the number of "correct"s we get in N 
samples from a Bernoulli distribution forms what is known 
as a Binomial distribution.	

The technical details aren't important. The main message is 
that we can define precisely what distribution we can 
expect on the value of the sample accuracy of we keep the 
classifier and the true accuracy fixed, but resample the test 
data. In this case, we see that for a true accuracy of 0.8, and 
a test set of N=10 instances, we are most likely to see that 
the classifier correctly classifies 7 instances in our sample 
(as we did in the top half of the slide). However, it's also 
perfectly possible to see 5, 6, or 8 instances classified 
correctly.	

This is a complicated picture with multiple random processes 
going on. Take a little time to wrap your head around this 
before moving on.	

Imagine that if we have two classifiers, and we compute 
sample accuracies for both on a test set of 10 instances. We 
get 5/10 correct for one classifier and 8/10 correct for the 



other. Can we conclude that the first is definitely worse than 
the second? What we see here is that if they both have a 
true accuracy of 0.8, it would be perfectly likely to see these 
numbers. In short, with such little test data, we have much 
uncertainty around our estimate of the true accuracy.	

One way to quantify this uncertainty is to draw a 
confidence interval. This is simply any interval on the 
values of our sample accuracy that captures a given 
proportion of the probability mass, usually 95%. You can 
draw the confidence interval anywhere you like so long as 
you decide how to draw it before seeing the data. The most 
common approach is symmetrically around the mean, but 
you can also start at the mean and extend it to the right as 
far as possible or to the left as far as possible.	

The confidence interval captures our uncertainty. We don't 
know the true value of the accuracy, and we can't estimate it 
very accurately, but we know it's most likely one of these 
values.	

confidence intervals
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accuracy
0.0 1.0

test set size
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The size of this confidence interval depends on two factors: 
the true accuracy and the size of the test set. Here are some 
examples for different accuracies and test set sizes.	

This tells us that if the true success probability (accuracy) 
of a classifier is 0.5, and the test set contains 100 examples, 
our confidence interval has size 0.2. This means that even if 
we report 0.5 as the accuracy, we may well be wrong by as 
much as 0.1 either side.	

Even if these confidence intervals are usually not reported, 
you can easily work them out (or look them up) yourself. 
So, if you see someone say that classifier A is better than 
classifier B because A scored 60% accuracy and and B score 
59%, on a test set of 100 instances, you have reason to be 
sceptical.	

In short, this is why large test sets are important. Without 
at least 1000 instances in your test data, you cannot reliably 
tell the difference between two classifiers.

36accuracy

Here are the full curves, in case you ever need to look it up.



Confidence depends on the size of the test set. 

Avoid small test sets.  

 
If you can’t, look into Alpaydin’s 5x2 F test  
https://www.cmpe.boun.edu.tr/~ethem/files/papers/
NC110804.PDF 

37

If you don’t have the luxury of a large test set, you may need 
to do some statistical testing to see whether the effect 
you’ve observed (classifier A is better than classifier B) is 
genuine or down to random chance. It’s generally accepted 
that Alpaydin’s 5x2 cross validation is the best test for this 
purpose. It’s out of scope for this course, but follow the link 
if you run into this problem.

standard error
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mean

If we are computing a continuous value, like the mean 
squared error loss of a regression model, the same principle 
applies. For now, let's forget about the details and assume 
that we are computing some number representing the 
difference between the true regression value of an instance 
and the predicted regression value. We'll call this number 
m. 	

In this case m is the error of a model, but it could be any 
measurement of any phenomenon. 	

We can often assume that m, computed for a single 
randomly sampled instance, is normally distributed. The 
likely values are clustered around a mean value, or 
expectation of m. This is the distribution drawn in the top 
half of the slide.	

If we sample a test set and compute the mean of m for all 
instances in the test data, we get an estimate for the true 
expectation of m. This is an estimate of the mean of the 
distribution at the top. Note that the estimated mean is 
slightly different from the true mean.	

This, again, is a random process. If we sample another test 
set, keeping the model and the true mean fixed, we get a 
slightly different estimate for the mean. The distribution on 
the values we get for the sample mean is drawn at the 
bottom. Note that its mean is the same as the true mean, 
but its peak is more narrow. 	

This is not a normal distribution, but a so called Student's t 
distribution. For test sets larger than ~30 instances, the 
difference becomes negligable. 	

The standard deviation of the distribution at the bottom is 
the variance of the one at the top, divided by the square of 
the number of instances in our test set. The more instances, 
the narrower the peak becomes, and the less uncertainty 
we have around our estimate. This standard deviation is 
called the standard error of the mean (sem). 

https://www.cmpe.boun.edu.tr/~ethem/files/papers/NC110804.PDF
https://www.cmpe.boun.edu.tr/~ethem/files/papers/NC110804.PDF


95% confidence interval

mean +/- 1.96 sem is a 95% confidence interval
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As you may know, the region of four standard deviations 
around the mean of a normal distribution contains roughly 
95% of the probability mass. This means that the interval 
from two standard errors to the left of your mean to two 
standard errors to the right of your mean is a 95% 
confidence interval.

confidence interval estimates
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data distribution: p(x, t) 
instances x and classes t 

true accuracy of C 
probability that C(x) = t under p 

true confidence interval

unobservable observable

dataset 

sample accuracy of C 
proportion of test set that C classifies correctly 

estimated confidence interval

These are good concepts to help us think about what we are 
measuring when we compute metrics on our test data. But 
it's important to realize that these are unobservable values. 
We can only work out the true confidence interval for the 
sample accuracy if we know the true accuracy. This puts the 
confidence intervals we've talked about so far in the 
unobservable column.	

So what about all those confidence intervals you see 
reported in the literature? These are estimated confidence 
intervals. They are usually computed in the same way as the 
true confidence interval, but wherever we need the true 
value of some metric, we replace it by its estimate. This 
gives us a confidence interval that isn't as correct as the 
true confidence interval, and one that would change slightly 
if we were to resample the test set, but we can at least 
compute it, and it generally behaves in roughly the same 
way as the true confidence interval.

about confidence interval estimates

Don’t say: the probability that the true mean is in this 
confidence interval is 95%. 

Do say: If we repeat the experiment many times, 
computing the confidence interval each time; the true 
mean would be inside the interval in 95% of those 
experiments. 
The confidence interval changes from experiment to experiment, not the true mean. 

The estimated confidence interval for the mean is a 
statistic on the data, just like the mean itself or the 
standard deviation. 
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When we use the phrase confidence interval to refer to this 
kind of estimate, it's important to speak about it correctly. 	

There is no probability associated with the true mean at all. 
It is simply an objective, determined value (which we don’t 
know). The probability comes from sampling, and from 
computing the interval from a sample.	

So instead of having a fixed interval, with the true mean 
jumping around probabilistically, we have a fixed true mean 
around which we get an interval that jumps around if we 
resample the data. The probability of it jumping so much 
that it no longer contains the true mean is 5%.	

This is typical frequentist agonizing over what the phrase 
“probability” means. Confidence intervals are a uniquely 
frequentist tool. If the distinction on the slide doesn’t make 
sense to you, look back to the probability video in the 
preliminaries.



error bars
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A very relevant question is how do you interpret error 
bars?	

If you see a picture like this, showing the mean runtime of 
an experiment, measured for three models, and averaged 
over a number of runs, what would you imagine the error 
bars denote? We've seen standard deviations, standard 
errors and confidence intervals. What do error bars 
represent?
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The truth is that there is no standard definition for what 
error bars denote, and if the authors didn’t specify what 
their error bars indicate, the authors messed up.	

These are the three most common options. If you didn't 
quite get all the details of the previous slides, this slide 
illustrates the most important distinction: If we sample 
more data, the estimate of our standard deviation 
becomes more accurate. It’s an estimate of a property of our 
data distribution. The error bars representing standard 
deviation don't get smaller, they just get closer to their 
correct size (which may be very wide around the head of 
the bar).	

The standard error and the confidence interval are 
indicators of how confident we are about our estimate of 
the mean of our data. For these, the more data we have, the 
smaller they get. As we saw earlier, under the right 
assumptions, the 95% confidence interval is roughly twice 
the standard error.

standard deviation:  

• measure of spread, variance 

standard error, confidence interval:  

• measures of confidence
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overlap

45

standard  
error

confidence 
interval
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sign. difference  
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A B A B

Under certain assumptions, the standard error of two 
estimates can tell you whether a Student's t test allows you 
to reject the null hypothesis that the two distributions are 
the same. This would allow you to say, for instance, that 
there is a statistically significant difference between the 
accuracy estimates on two classifiers. As we said before, 
such testing is not very popular in machine learning, so we 
won't go into it in detail, but this can offer an additional 
perspective on error bars.	

We won’t discuss the Student’s t test in detail, but it’s a 
common test for comparing two normally distributed values.	

Say you plot the mean squared error for regression models 
A and B, together with some error bars. Does the the fact 
that the error bars overlap or not tell you whether the 
measured difference between the two models is statistically 
significant? That is, does it indicate whether we can 
conclude that A is a better model than B?	

Yes, but we have to be careful. For standard error bars, the 
existence of overlap implies that there is no significant 
difference between the two effects. That is, the possibility 
that the difference is due to random chance is high, and a 
repeat of the experiment on new data may show a different 
result. If you plot confidence interval error bars, and there 
is no overlap, you may conclude that the difference between 
the models is significant. If you repeat the experiment on 
fresh data, it is very likely that model A would beat model B 
again.	

In both cases, the converse does not hold. If the SEM error 
bars do not overlap, there may or may not be a significant 
difference. If the confidence interval error bars do overlap, 
there may still be a significant difference, depending on 
how much they overlap.	

All of this requires the assumption that the original values for 
which the bar indicates the mean are normally distributed.

why use statistics in ML

• to show confidence 

• to show spread 

Confidently show the performance of the best model you 
found, and then measure the variance of the method you 
used to find it.

46

All of this was about showing confidence: showing how 
reliable our numbers are as estimates of the true values that 
we can’t observe.	

Showing spread is more about providing insight to the 
reader. Say I train a classifier by gradient descent. If I have a 
big test set, I can very confidently measure and report the 
accuracy of this particular classifier. However, gradient 
descent uses random initialization. If I repeat the training 
process, I may end up in a different local minimum, and get 
a different classification performance. It’s likely that I also 
want to communicate how much the measured 
performance is dependent on this randomness. In short, 
how lucky did we get in our choice of classifier?



showing spread

Sources of randomness: 

• Data sampling 

• Search algorithm (i.e. initializing gradient descent) 

Report standard deviation, describe what you repeat. 

• How do you repeat data sampling? 
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If we have a large enough test set, we know that the 
confidence interval for our measurement of the 
performance is small enough. But we also want to know 
how much the randomness in our process affects the result. 
What is the probability that repeating the process (on the 
same data, or on new data) produces wildly different 
results?	

For factors like the initialisation of gradient descent, this is 
easy to test: you just rerun a few times on the same data. 
But how do you test how robust the results are against 
sampling a new dataset?

resampling

Cross validation again, on the whole data set. 

Stratified cross-validation (keeps the class proportions the 
same in all folds). 

Leave-one-out cross-validation, a.k.a. the jackknife method. 

Slight bias: smaller datasets. 
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The cross validation that we have already seen provides 
some indication of spread. If we do five-fold cross 
validation, we are repeating our training five times on 
slightly different datasets. This provides some indication of 
how differently the algorithm may perform if we repeat on 
new data.	

Note, however that it's not quite a perfect simulation of 
resampling our data: the datasets are slightly smaller, and 
there is a lot of overlap between the five different datasets. 
If we want more repeats, we get more overlap and a smaller 
test set, making this bias hard to control.

bootstrapping

Sample, with replacement, a dataset of the same size as the 
whole dataset. 
On average, about 63.2% of the dataset will be included. The rest will be duplicated instances. 

Each bootstrapped sample lets you repeat your 
experiment. 

Note that some classifiers will respond poorly to presence 
of duplicate instances. 

Better than cross validation for small datasets.
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A different approach is bootstrapping. Here, we resample 
the data with replacement. This allows us to sample a 
dataset that is exactly the same size as the original data. We 
can also resample as often as we'd like, without affecting 
the size of the test data or the amount of overlap between 
the datasets.	

We will see in a later lecture that bootstrapping 
approximates the data distribution in a very precisely 
defined way.



statistics: summary

Don’t worry too much about it (until you have to). 
Even in top ML conferences, rigorous statistical analysis is relatively rare. 

Distinguish between showing confidence, and showing 
spread. 

Think about what you want to claim, and what analysis 
would make your claim as strong as possible. 
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If you’re interested in the difference between machine 
learning and statistics, I can recommend this paper by Leo 
Breiman. It shows the difference between the two cultures. 
It makes clear that the machine learning approach of 
measuring models purely for predictive accuracy on a large 
test set, has a lot of benefits and makes the business of 
statistics a lot simpler and more effective. 

Model Evaluation 
Part 3: Evaluation metrics 

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

In this video we'll look at how to evaluate regression and 
classification experiments. There will be a few pointers on 
regression, but the main topic will be classification 
experiments.	

|section|Metrics|	
|video|https://surfdrive.surf.nl/files/index.php/s/
TrR5TrtLDZLBs08/download|

http://mlvu.github.io


regression

loss function: (mean) squared errors 

evaluation function: root mean 
squared error
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One thing to pay attention to is that if you use MSE loss, you 
may want to report the square root (the RMSE). The RMSE 
is minimised at the same places as the MSE, but it’s easier 
to interpret, because it has the same units as the original 
output value.	

For instance, if your outputs are in meters, then your MSE is 
measured in square meters, but your RMSE is also 
measured in meters.

bias and variance
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Bias and variance are good concepts to keep in mind when 
thinking about regression performance. The bias is the 
difference between your optimal MSE and the true MSE. 
This is the part of your error that is down to fundamental 
problems with your model: for instance, you are fitting a 
line trough data with a parabolic pattern. This part stays the 
same if you resample your data.	

The variance is the difference between the true MSE and 
the measured MSE. This is the part of your error that is 
down to aspects of the random sampling of the data. This 
part changes when you resample your data.	

Normally, we train a regression model once, and get one 
MSE value. This gives us one dot on the axis above. Without 
repeating the process on freshly sampled data, we can't tell 
how our error falls apart in bias and variance. However, we 
can usually get some contextual clues, or investigate using 
resampling.

bias and variance

low bias, low variance
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low bias, high variance 

high bias, low variance 



bias and variance

56image source: http://scott.fortmann-roe.com/docs/BiasVariance.html (recommended reading)

Here is a metaphor that is often used to describe bias and 
variance: a dartboard.	

Remember, this is a metaphor for our RMSE error estimate. 
That means that normally, we have only one dart and we 
can’t tell whether our error is due to high bias or high 
variance. 	

image source: http://scott.fortmann-roe.com/docs/
BiasVariance.html (recommended reading)	

the bias-variance tradeof

High bias: model doesn’t fit the generating distribution. 
Poor assumptions, poor capacity. Aka underfitting.
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High bias tends to happen when the model is too simple to 
follow the true "shape" of the data. Linear models in low-
dimensional spaces often have this problem. Here, we see 
that the data has a slight curve, which is clearly part of its 
natural pattern, and something the model should learn. 
Since it's restricted to a line, however, it cannot make this 
shape.

the bias-variance tradeof

High variance: high model capacity, sensitivity to random 
fluctuations. aka overfitting
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High variance happens when the model has the capacity to 
follow the shape of the data perfectly, but it does it so 
perfectly that it tends to get thrown off by small 
fluctuations. 	

Here, the model doesn't just follow the natural curve of the 
data, it goes in and out of every random fluctuation to 
model every single point perfectly.	

Even though this model (a regression tree) fits the data 
perfectly, if we resample the data, we are stuck with all 
sorts of weird peaks that won’t fit the new data. This is 
where the variance comes from. The true error varies 
wildly, because the model captures every single random 
fluctuation in the training data. These fluctuation will cause 
a large error in the test data, which we put down to 
variance rather than bias.

http://scott.fortmann-roe.com/docs/BiasVariance.html


making the tradeof

Reducing bias: increase model capacity, increase features. 

Reducing variance: reduce model capacity, add 
regularization, reduce tree depth. 

k-NN regression: increase k to increase bias, decrease 
variance.
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We will see techniques for all of these in the coming weeks. 
Note that often, it really is a tradeoff: reducing the bias, 
increases the variance and vice versa.	

For some algorithms, there is a single parameter that allows 
us to make the bias/variance tradeoff. kNN is one example: 
low k values give us high variance, high k values give us 
high bias. 	

In the strictest definition of bias and variance, these concepts 
only apply to the mean squared error, where they explictly 
appear as terms if you rewrite the error in a certain way. 
However, in general machine learning parlance, the terms 
are applied to any regression error, and they are roughly 
synonymous with under- and overfitting.

lecture 10: ensembling
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Combining models for variance reduction and for bias reduction.

image source: https://www.toptal.com/machine-learning/ensemble-methods-machine-learning

In a later lecture, we'll look at ensembling. This is a 
method that allows us to combine different models, so as to 
control the problems of high bias and high variance.	

image source: https://www.toptal.com/machine-
learning/ensemble-methods-machine-learning	

evaluating classification

Class imbalance, cost imbalance 

Confusion matrix 

True positive rate, True negative rate 
More in the next video 

Precision, recall 
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Let's now move to classification. We'll start by explaining 
these four topics.

https://www.toptal.com/machine-learning/ensemble-methods-machine-learning


example: breast cancer screening
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Here's one example domain: breast cancer screening	

A recurring discussion in the Dutch media is the question 
whether all women over 50 be screened for breast cancer. 
This is an analogy for classification: the instances are 
people and the target label is “has cancer” or “has no 
cancer.” You may think that this is a no-brainer: the more 
tests we do, the more lives saved. But we need to take into 
account how good the classifier is, and how bad the 
consequences are of it making a mistake.	

The first problem this example illustrates is class 
imbalance. Unlike the classifiers we've seen so far, this 
example has, thankfully, far more negatives than positives. 
In a given year the people in this age group for whom breast 
cancer will manifest is about half a percent. This includes 
men, for whom breast cancer is rare (but not impossible), 
so when we talk about screening for women over 50, we 
should probably assume about 1% positives.	

This means that we need to be very careful when 
interpreting the reported performance of any breast cancer 
detection method. We may think that an accuracy of 99% 
sounds impressive, but this is the accuracy we would get if 
we just called everything negative: that is, if we just 
diagnosed all women with no cancer.	

source: https://www.volkskrant.nl/wetenschap/redt-
preventieve-screening-op-borstkanker-
levens~a3761451/	
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Is an error of 0.01 good?

Imagine that somebody tells you about a machine learning 
project they’re doing, and they proudly state that they get a 
classification error (on their validation set) of 0.01 (1% of 
the validation set is misclassified). Should you be 
impressed? 	

The answer is it depends. The first thing it depends on is 
the class imbalance in the data.
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So the next time you see a headline like this, your first 
question should be: what was the class distribution in the 
training data? If 90% of the cases in the training data are 
acquittals, this is not a very impressive result.	

As it happens, in this case the classes were balanced 50/50, 
so 80 percent is at least notable. However, now we have a 
classifier trained on artificially balanced data. In a 
production environment (whatever that means here), the 
classes are likely not balanced 50/50, so this specific 
classifier will be of no further use.	

Here is the original paper: https://peerj.com/articles/
cs-93/#fn-6 There are some issues with this  research 
beyond the class balance. 

is 1% error good? it depends

Class imbalance How much more likely is a Positive 
example than a Negative example? 

Cost imbalance How much worse is a mislabeled Positive 
example than a mislabeled Negative example?
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Another reason to mistrust accuracy is cost imbalance. In 
breast cancer screening are two types of misclassification: 
diagnosing a healthy person with cancer and diagnosing a 
person with cancer as healthy. Both come with a cost but 
not the same cost. 	

We can either miss a cancer diagnosis (a false negative), 
which means the cancer will be caught much later and be 
much harder to treat. However, diagnosing a healthy person 
with cancer (a false positive) means they will be sent for 
unnecessary invasive testing and suffer great psychological 
stress. The cost of this is much less than the cost of missing 
a positive, but it isn't zero.	

This is what the discussion in the media centers on. If the 
screening causes many more false negatives than false 
positives, it may mean that the cost to human lives balances 
out, and the net effect of the screening isn't to save more 
lives.	

There is of course, also the financial cost of screening a 
large part of the population. Most people would put any 
financial cost far below the cost of a human life, but if it 
turns out that the classifier is weak enough that the gains in 
human lives saved are negligible, we'd look at the financial 
cost and say the program would need to end.



cost imbalance

disease diagnosis Sending a sick person home vs 
applying invasive tests to a healthy person 

spam classification Deleting a valid email vs showing the 
user a single spam email 

detecting financial fraud Having an expert review a non-
fraudulent transaction vs missing a fraud in progress 

Domain-specific evaluation function: dollars lost, time lost,  
lives lost, etc. 
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Here are some examples of problems with cost imbalance	

In all these cases, one misclassification one way costs much 
more than a misclassification the other way. But both cost 
something. The time of an expert reviewer is not free, even 
though five minutes of his time may be much cheaper than 
the cost of letting a single fraud go unchecked. In such a 
case, you may decide that missing one fraud is as costly as 
having an expert review 500 harmless transactions. This is 
then the general balance you are hoping for: one false 
negative for every 500 false positives.	

If you’re lucky, both types of misclassification have the same 
unit, and you can turn your error (an estimate of the 
number of misclassifications) into a domain specific 
evaluation function (like estimated dollars lost, or time 
saved). You simply assign a cost to each type if 
misclassification, and multiply it by how often that 
misclassification occurs in the test set. The total is the 
evaluation function you want to minimize.	

If the units are not the same (money saved vs. lives saved) 
making such a choice can seem very unethical if you're 
literally equating a human life with an amount of money. On 
the other hand, any classifier you decide to deploy will 
implicity make such a choice even if you don't do the sums 
yourself. Even if you decide not to use machine learning, the 
alternative (a doctor using their own judgement) is also a 
“classifier”, with its own cost balance.

social impact
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Cost imbalance is particularly important when we consider 
matters of social impact. If we predict a person’s sex from 
their physical appearance perfectly, and we use that as a 
prediction for their gender, we may easily achieve 99% 
accuracy. 	

However the 1% we then misclassify is precisely that part 
of the population for which gender is likely to be a sensitive 
attribute. Just because our classifier has high accuracy, 
doesn’t mean it can do no harm. In a large part because the 
mistakes it makes are not uniformly distributed. They are 
focused squarely on the vulnerable part of the population.



class imbalance
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Here is a pretty imbalanced dataset (though still not as 
imbalanced as the cancer/not cancer problem). It looks 
pretty difficult. What would be a good performance on this 
task?

class imbalance

Majority class classifier Assigns all instances the class that 
is most prevalent in your data. 

Example of a baseline.
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other method 1 0.15

other method 2 0.1

majority class 0.05

ours 0.05

As we've seen, even though an error of 0.05 might sound 
pretty good, but on an imbalanced dataset like this, there is 
a very simple classifier that gets that performance easily. 
The classifier that assigns anything the class with the most 
instances. We call this the majority class classifier.	

The majority class classifier is an example of a baseline, a 
simple method that is not meant to be used as a real model, 
but that can help you calibrate the performance scores. In 
this case, it tells you that you’re really only interested in in 
the error range from 0  to 0.05. Any higher error than that is 
pretty useless.

class imbalance
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Here is another way that class imbalance can screw things 
up for you. You might think you have a pretty decent 
amount of data with 10 000 instances. However if you split 
off a test set of 1 000 instances, you'd be left with just 50 
instances of the positive class in your data. Practically, your 
final evaluation will just be a question of how many of these 
50 positives you detect. This means that you can really only 
have 50 “levels of performance” that you can distinguish 
between.	

You can make a bigger test set of course (and you probably 
should) but that leads to problems in your training data. 
Since you’re essentially building a detector for positives, it 
doesn’t help if you can only give it 100 examples of what a 
positive looks like.	

In the next lecture, we’ll look at some tricks we can use to 
boost performance on such imbalanced data.



other performance metrics

Confusion matrix 

Precision, recall 

True positive rate, false positive rate 

ROC plot, Coverage matrix, Area under the curve 
Next video
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The best thing to do under class and cost imbalance, is to 
look at your performance in more detail. We’ll look at six 
different ways to measure classifier performance.	

Most of these are only relevant if you have class or cost 
imbalance. If you have a nice, balanced dataset, it’s likely 
that error or accuracy is all you need.

confusion matrix
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6 1

2 5

This is a confusion matrix (also known as a contingency 
table). It's simply a table with the actual classes on the 
rows, and the predicted classes on the columns, and a tally 
in each cell of how often each actual class is given a 
particular prediction. On the diagonal we tally all the 
correct classifications and off the diagonal we tally all the 
possible mistakes. 	

A confusion matrix doesn’t give you a single number, so it’s 
more difficult to compare two classifiers by their confusion 
matrices, but it’s a good way to get insight into what your 
classifier is actually doing. 	

Note that for a binary classification problem, we are getting 
the two types of mistakes (false positives and false 
negatives) along the second diagonal. If we have cost 
imbalance, the balance between these two values gives us a 
quick insight into how well the classifier is aligned with our 
estimate for the misclassification costs.	

You can plot the confusion matrix for either the training, 
validation or test data. All three can be informative.	

The margins of the table give us four totals: the actual 
number of each class present in the data, and the number of 
each class predicted by the classifier.	
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true 
positives

false 
negatives

false 
postives

true 
negatives

false positives

false negatives
true negatives

true positives

We  call accurately classified instances true positives and 
true negatives. Misclassifications are called false positives 
and false negatives.	

with class imbalance
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predicted

pos neg

pos 385 0 385

neg 15 0 15

400 0
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Here we see the confusion matrix for the majority class 
baseline (the classifier that calls everything positive) in a 
problem with high class imbalance.

precision and recall

precision   
     TP/(TP+FP) 

recall aka true positive rate 
     TP/(TP+FN)

75
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pos neg

pos TP FN

neg FP TN
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Precision and recall are two metrics that express a tradeoff 
between the two types of mistakes.	

Precision: what proportion of the returned positives are 
actually positive?	

Recall: what proportion of the existing positives did we 
find?	

The idea is that we usually want to find as many positives as 
possible, so we should be eager to label things positive, 
increasing the recall, but if we are too eager, we will label 
lots of negatives as positive as well, which will hurt our 
precision. Our main challenge in designing a classifier in the 
face of cost and class imbalance, is to find the right tradeoff 
between precision and recall.



76source: By Walber - own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36926283

It always takes me a minute to figure out what precision 
and recall mean in any given situation, and I usually consult 
this diagram from Wikipedia to help me out. 	

The idea is that the goal of the classifier is to select the 
positives in the dataset. The more it selects, the higher its 
recall, but the lower its precision, as more negatives end up 
in the selection.	

source: By Walber - own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?
curid=36926283	

77source: https://en.wikipedia.org/wiki/Confusion_matrix

There are many more metrics which you can derive from 
the confusion matrix. Wikipedia provides a helpful table, in 
case you ever come across them. For most purposes, 
precision, recall, accuracy and balanced accuracy are 
sufficient.	

Note that some terms, like recall, go by many different 
names.

which dataset?

test accuracy  
final test of model performance 

validation accuracy 
to choose hyperparameters 

training accuracy 
??? 
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All of these metrics can be applied to different datasets. 
When we compute (say) accuracy on the test set, we talk 
about test accuracy. This is computed—only once—at the 
very end of our project, to show that our conclusions are 
true.	

When we compute it on the validation set we call it 
validation accuracy. We compute this to help us choose 
good hyperparameters.	

And, predictably, when we compute it on the training data, 
we call it training accuracy. Remember that in the first 
lecture I said, emphatically, that you should never judge 
your model on how it performs on the training set. Why 
then, would you ever want to compute the training accuracy 
(or any other metrics on the training data)?

https://commons.wikimedia.org/w/index.php?curid=36926283
https://en.wikipedia.org/wiki/Confusion_matrix


generalization error
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or any other hyperparameter

generalization gap

The answer is that the difference between your validation 
accuracy and your training accuracy, will tell you whether 
or not your model is overfitting (matching the data too 
well) or underfitting (not matching the data well enough).	

The difference between the training and validation sets is 
called the generalization gap. As in, it's the amount of 
performance that won't generalize to data that isn't your 
training data.
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source: Jim Unger, Herman.

Model Evaluation 
Part 4: PR, ROC and AUC

Machine Learning 
mlvu.github.io 

Vrije Universiteit Amsterdam

|section|PR, ROC and AUC|	
|video|https://surfdrive.surf.nl/files/index.php/s/
p6Atngg3Q5AzMiz/download|

http://mlvu.github.io
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Let's return to the metrics of precision and recall. We often 
have to make a tradeoff between high precision and high 
recall. We can boost our recall by calling more things 
positive. The drawback is that our precision will go down if 
this means including more negatives among the things we 
call positive. We can boost our precision by calling fewer 
things positive, which will hurt our recall. 	

How exactly we make the tradeoff depends on our cost 
imbalance, and our class imbalance. To help us investigate, 
we can plot the precision and recall we get from different 
classifiers.	

source: By Walber - own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?
curid=36926283	

precision/recall space
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The points in the corners represent our most extreme 
options. We can easily get a 1.0 recall by calling everything 
positive (ensuring that all true positives are among the 
selected elements). We can get a very likely 1.0 precision by 
calling only the instance we’re most sure about positive. If 
we’re wrong we get a precision of 0, but if we’re right we 
get 1.0.	

Whether we prefer the left or the right green classifier 
depends on our preferences. However, whatever our 
preference, we should always prefer either green classifier 
to the blue classifier since both have better precision and 
recall than the blue classifier.	

TPR and FPR

accuracy 
  (TP + TN)/ total 

true positive rate 
   TP/(TP + FN) 
   TP/actual pos 

false positive rate 
   FP/(FP + TN) 
   FP/actual neg
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Another pair of metrics that provides this kind of tradeoff 
are the true positive and false negative rate.	

true positive rate: what proportion of the actual positives 
did we get right. The higher the better. I.e. How many of the 
people with cancer did we detect.	

false positive rate: what proportion of the actual negatives 
did we get wrong (by labelling them as positives). The 
lower the better. I.e. How many healthy people did we 
diagnose with cancer.	

The 

https://commons.wikimedia.org/w/index.php?curid=36926283


ROC space
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We want to get the TPR as high as possible, and the FPR as 
low as possible. That means the TPR/FPR space has the 
best classifier in the top left corner. This space is called ROC 
space.	

Again, the orange points are the extremes, and easy to 
achieve. 	

ROC stands for receiver-operating characteristic.  Like so 
many names in machine learning , this is a historical artifact, 
a leftover from its invention in WWII to improve the detection 
of Japanese aircraft from radar signals.

ROC curves
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So far we’ve thought of FPR/TPR and precision/recall as a 
way to analyze a given set of models.	

However, what if we had a single classifier, but we could 
control how eager it was to call things positive? If we made 
it entirely timid, it would classify nothing as positive and 
start in the bottom left corner. As it grew more brave, it 
would start classifying some things as positive, but only if it 
was really sure, and its true positive rate would go up. If we 
made it even more daring, it would start getting some 
things wrong and both the TPR and the FPR would increase. 
Finally, it would end up classifying everything as positive, 
and end up on the top right corner. 	

The curve this classifier would trace out, would give us an 
indication of its performance, independent of how brave or 
how timid we make it. How can we build such a classifier?

ranking classifiers
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We can achieve this by turning a regular classifier into a 
ranking classifier (also known as a scoring classifier). A 
ranking classifier doesn’t just provide classes, it also gives a 
score of how negative or how positive a point is. We can use 
this to rank the points from most negative to most positive.	

How to do this depends on the type of model we use. Here’s 
how to do it for a linear classifier. We simply measure the 
distance to the decision boundary. We can now scale our 
classifier from timid to bold by moving the decision 
boundary from left to right.	

After we have a ranking, we can scale the eagerness of the 
classifier to make things positive. by moving the threshold 
(the dotted line) from left to right, the classifier becomes 
more eager to call things negative. This allows us to trade 
off the true positive rate and the false positive rate.



ranking error
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Now, we can’t test a ranking on our test data, because we 
don’t know what the correct ranking is. We don’t get a 
correct ranking, just a correct labeling. 	

However, we can indicate for specific pairs that they are 
ranked the wrong way around: all pairs of different labels. 
For instance, t and f form a ranking error: t is ranked as 
more negative than f, even though t is positive and f is 
negative.	

Note: a ranking error is a pair of instances that is ranked the 
wrong way around. A single instance can be part of multiple 
ranking errors.

coverage matrix
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We can make a big matrix of all the pairs for which we know 
how they should be ranked: negative points on the 
horizontal axis, positive on the vertical. The more sure we 
are that a point is positive, the closer we put it to the 
bottom left corner. This is called a coverage matrix. We 
color a cell green if the corresponding points are ranked the 
right way round, and red if they are ranked the wrong way 
round.	

Note that the proportion of this table that is red, is the 
probability of making a ranking error.

t
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The coverage matrix shows us exactly what happens to the 
true positive rate and the false positive rate if we move the 
threshold from the right to the left. We get exactly the kind 
of behaviour we talked about earlier. We move from the all-
positive classifier step by step to the all-negative classifier.



warning: exam question
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This is one of the question types on the exam. People very 
often make mistakes in this question, so make sure you 
understand what a ranking error is. It's not a misclassified 
example. It's a property of a pair of examples.	

There are more details in the third homework.

achievable rates
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If we draw a line between two classifiers we know we can 
create, we can also create a classifier for every point on that 
line simply by picking the output of one of the classifiers at 
random. If we pick with 50/50 probability we end up 
precisely halfway between the two.	

If we vary the probability we can get closer to either 
classifier.

area under the curve
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This means we can create any classifier in this green area, 
called the convex hull of the set of green dots. This is called 
the area under the (ROC) curve.	

The AUC is a good indication of the quality of the classifier. 	

Every point in the green shaded area is a classifier we now 
how to make, so the bigger this area, the more classifiers we 
can make (although the ones on the boundary are the only 
ones we’d ever want to use).	

If we have no idea of how we want to make the tradeoff 
between the TPR and the FPR, the AUC may be a good way 
to compare classifiers in general. 	
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As we saw before: normalizing the coverage matrix gives us 
the ROC space (barring some small differences that 
disappear for large datasets). The area under the ROC curve 
is an estimate of the green proportion of the coverage 
matrix. This gives us a good way to interpret the AUC. 	

The AUC (in ROC space) is an estimate of the probability 
that a ranking classifier puts a randomly drawn pair of 
positive and negative examples in the correct order. 
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f > 1.9?

b > 4.5? b > 5.3?

male malefemale female

yes no

yes no yes no

Let's look at how this works for another type of classifier. To 
reiterate, how we get a ranking from a classifier 
depends entirely on the model class.	

The decision tree is an example of a partitioning classifier. Is 
splits the feature space into partitions, and assigns each 
partition, also known as a segment, a class. All instances in 
the segment get the same class.

ranking decision tree
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In this example we have an instance space that has been 
split into four segments by a decision tree. We rank the 
segments by the proportion of positive points. We then put 
all points in one region on the same level in the ranking.	

In this example, b is more negative than a, because b’s 
segment contains only negative examples, whereas a’s 
segment contains a mix of positive and negative examples.
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This means that for some pairs (like f,z), the classifier ranks 
them as “the same”. We’ll color these cells orange in the 
coverage matrix. 	

For large datasets, these regions will not contribute much 
to the  total area under the curve.
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ROC vs precision-recall

source: https://twitter.com/timtriche/status/1022472947963969536 

An alternative to the ROC is the precision/recall curve. It 
works in exactly the same way, but has precision and recall 
on the axes.	

As you can see in this tweet, in many settings the PR curve 
can be much more informative, especially when you’re a 
plotting the curves. Practically, it’s little effort to just plot 
both, and judge which one is more informative. 	

ROC has the benefit of an intuitive interpretation for the 
AUC (the probability of ordering a random pair the right 
way round). I haven’t yet found a similar interpretation for 
the PR-AUC.

important points

The confusion matrix and all metrics derived from it are 
metrics for a single classifier. 

AUC is a metric for a collection of classifiers, usually derived 
from a ranking classifier. 

How to turn a classifier into a ranking classifier, depends on 
the type of classifier.  
For linear classifiers, take the distance to the decision boundary 
For tree classifiers, sort by class proportion in each segment 

AUC is a good metric if we don’t know the relative 
importance of the classes, or if the classes are unbalanced.
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To interpret the AUC, you should know not just what 
classifier was used, but how it was made into a collection of 
classifiers. You should also know whether it’s the area 
under an ROC curve, or a precision/recall curve.

https://twitter.com/timtriche/status/1022472947963969536


setting the threshold

Show the user the ROC/PR curve, let them choose 
This can be difficult to do accurately. 

Estimate cost of misclassifications. Factor into the loss 
function. Minimize the expected cost. 
In sklearn, this is done by setting class weights. If a false negative costs as much as three false 
positives, we set the positive weight to 3 and the negative weight to 1. 
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To put a classifier into production, a ranking may not be 
enough. Sometimes, you just need to produce a single 
answer. In that case, you can still use the ROC and PR curves 
to tune your hyperparameters and choose your model, but 
ultimately, you’ll need to choose a threshold as well: the 
point at which you decide to call something a positive.	

This is more of a software development issue than a 
scientific choice. Often, you have to look carefully at the 
curves, perhaps together with the end users, to make a 
decision.	

The second approach works best with probabilistic 
classifiers, which we’ll discuss next lecture.

recap so far

split your data into train/val/test 

accuracy is great, unless you have class imbalance or cost 
imbalance 

if you do, look at your: 
   confusion matrix 
   precision/recall space 
   ROC space 

if you need a single number: try ROC-AUC or PR-AUC 
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Part 5: Social Impact 2
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|section|Social Impact 2|	
|video|https://surfdrive.surf.nl/files/index.php/s/
6o4T6Xzi8EAc1x5/download|	

Model evaluation is not just about showing how well your 
model works. It’s also about working out what it means to 
get a certain performance. And more importantly, what it 
doesn’t mean.

http://mlvu.github.io


interpreting results
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Wang, Y., & Kosinski, M. (2018). Deep neural networks are more accurate than humans at 
detecting sexual orientation from facial images. Journal of personality and social 

psychology, 114(2), 246.

In this video, we will use the following research as a 
running example. In 2017 researchers from Stanford built a 
classifier that predicted sexual orientation (restricted to the 
classes “heterosexual” and “gay”) from profile image taken 
from a dating site. They reported 91% ROC-AUC on men 
and 83% ROC-AUC on women.	

The results were immediately cited as evidence of a 
biological link between biology and sexual orientation. The 
following important caveats were largely overlooked in 
media reports:	

• Some of the performance came from facial landmarks 
(roundness, length of nose, distance between eyes, etc), 
but some came from superficial details like hairstyle, 
lighting and grooming.	

• The results were true when averaged over a large 
population. It’s true that women live longer than men on 
average, but that doesn’t mean that there are no old men. 
Likewise,  the fact that you can guess orientation based 
on, say, the length of the nose, with better than chance 
accuracy, may only be due to a very small difference 
between the two distributions, with plenty of overlap.	

• ~90% ROC-AUC may sound impressive, but it basically 
means that you will make 1 ranking error for every 10 
attempts.	

The study authors make many of these points themselves, 
but that didn’t stop the paper from being wildly 
misrepresented: https://docs.google.com/document/d/
11oGZ1Ke3wK9E3BtOFfGfUQuuaSMR8AO2WfWH3aVk
e6U/edit#	

• Consider history 

• Are you looking at what you think you’re looking at? 

• Are you predicting what you think you’re predicting? 

• What different hypotheses explain the observed effect? 

• What do positive results mean?
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Like in the previous video, we’ll look at some important 
questions to ask yourself when you come up against a topic 
like this. Let’s ask the same questions again (with some new 
ones thrown in for good measure).



Consider history

105source : https://commons.wikimedia.org/wiki/File:Physiognomy_of_Russian_Female_Offenders_Wellcome_L0074898.jpg

In these cases, it’s important to know your history. 
Physiognomy is the study which attempts to infer character 
from facial features.	

In this case there’s is a long history of scientists claiming to 
be able to divine personal attributes (most often 
“criminality”) from the structure of a subject’s face. This is 
called physiogmony and almost any claim made has been 
conclusively disproven, and based on poor scientific 
practice and spurious correlations.	

That doesn’t mean, of course, that the entire idea of 
physiognomy is conclusively disproven. Just because people 
got it wrong in the past doesn’t mean there couldn’t still be 
a link. But it does mean that when we are stumbling into 
the same area with new tools, we should be aware of the 
mistakes made in the past, so that we can be careful not to 
repeat them.

Are you looking at what you think you’re looking at?
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sources:  
https://jrzech.medium.com/what-are-radiological-deep-learning-models-actually-learning-f97a546c5b98 
https://arxiv.org/abs/1807.00431

The next thing to be aware of is what you’re looking at. This 
is especially important with modern systems that can look 
at raw image data without extracting specific, interpretable 
features.	

Here a visualization of a classifier looking at a chest x-ray 
and making a prediction of whether the patient has 
Cardiomegaly (an enlarged heart). The positive values in 
the heat map indicate that those regions are important for 
the current classification. The largest values are near the 
heart, which is what we expect. 	

The colors are a bit misleading, since the black background 
washes them out. Pay more attention to the actual numbers.	

However, the classifier is also getting a positive 
contribution from the “PORTABLE” label in the top right 
corner and the marker on the right. These indicate that the 
x-ray was taken with a portable scanner. Such scanners are 
only used when a patient’s condition has progressed so far 
that they can’t leave their house. In such cases it’s a safe bet 
that they have Cardiomegaly.	

Note that the visualization of the attention is minimal for the 
erroneous point of attention. The center of the image gets 
much higher values. You have to notice a very small effect to 
see that anything is wrong.

https://commons.wikimedia.org/wiki/File:Physiognomy_of_Russian_Female_Offenders_Wellcome_L0074898.jpg
https://jrzech.medium.com/what-are-radiological-deep-learning-models-actually-learning-f97a546c5b98
https://arxiv.org/abs/1807.00431


Clever Hans
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These problems are often called “Clever Hans” effects. 
Clever Hans, or der Kluge Hans, was an early-20th century 
German horse, who appeared to be able to do arithmetic.	

As it turned out, Hans was not doing arithmetic, but just 
reading the body language of its handler, to see whether it 
was moving towards the right answer. This is impressive in 
itself,  of course, but it does mean that Hans didn’t show the 
kind of intelligence that was being attributed to him. 	

Crucially, this was not a hoax. The handler truly believed that 
Hans was able to do arithmetic, and had no idea that he was 
guiding him subconsciously. This, incidentally is also why 
double-blind experiments are so important in other fields.	

For us, Hans serves as a powerful reminder that just 
because we’re seeing the performance we were hoping for, 
doesn’t mean we’re seeing it for the reasons we were hoping 
for.

What’s the causal direction?

108source: Automated Inference on Criminality using Face Images, Wu and Zhang 2016

(a) Three samples in criminal ID photo set Sc.

(b) Three samples in non-criminal ID photo set Sn

Figure 1. Sample ID photos in our data set.

2. Data preparation
In order to conduct our experiments and draw conclu-

sions with strict control of variables, we collected 1856 ID
photos that satisfy the following criteria: Chinese, male,
between ages of 18 and 55, no facial hair, no facial scars
or other markings, and denote this data set by S. Set S is
divided into two subsets Sn and Sc for non-criminals and
criminals, respectively. Subset Sn contains ID photos of
1126 non-criminals that are acquired from Internet using the
web spider tool; they are from a wide gamut of professions
and social status, including waiters, construction workers,
taxi and truck drivers, real estate agents, doctors, lawyers
and professors; roughly half of the individuals in subset Sn

have university degrees.
Subset Sc contains ID photos of 730 criminals, of which

330 are published as wanted suspects by the ministry of
public security of China and by the departments of public
security for the provinces of Guangdong, Jiangsu, Liaoning,
etc.; the others are provided by a city police department in
China under a confidentiality agreement. We stress that the
criminal face images in Sc are normal ID photos not police
mugshots. Out of the 730 criminals 235 committed violent
crimes including murder, rape, assault, kidnap and robbery;
the remaining 536 are convicted of non-violent crimes, such
as theft, fraud, abuse of trust (corruption), forgery and rack-
eteering. Some sample ID photos in Sc and Sn are dis-
played in Figure 1. The individuals in Sc and Sn are resi-
dents of a very large geographical areas, stretching from the
northeast all the way to the far south of China and including
poor and very rich provinces of the country.

In all selected ID photos, only the region of the face and
upper neck is extracted and the background is removed. All
the extracted faces are normalized in size and aligned into
an 80 ⇥ 80 image. Although all test face images are ID
photos acquired with uniform frontal lighting, we still take

extra measures to neutralize any possible effects of varied
illumination conditions. Only the luminance component of
all color face images is used to factor out the spectrum of
the lighting and the skin color. Moreover, all resulting grey
scale images are normalized to have the same intensity dis-
tribution or the same overall tone production. This is done
by matching the histogram of every input image to the aver-
age histogram for the entire data set of 1856 grey scale face
images.

All ID photos in S are JPEG compressed with QP factor
of 90 or higher. Still we applied JPEG soft decoding tech-
niques [23, 28] to remove small (perceptually transparent)
compression noises; in the process any device-dependent,
signal-level signatures are destroyed as well.

3. Validity of Face Classifiers on Criminality
As argued in the introduction, one way of assessing the

accuracy of the automated inference on criminality based
solely on still face images is to build and test classifiers with
modern machine learning techniques. This section presents
the design and results of the classification experiments.

3.1. Methods

In order to prove or disprove the hypothesis that still face
images suffice to distinguish criminals and non-criminals,
we try to make our investigations as thorough as possible.
We run four different classification methods, logistic regres-
sion, KNN, SVM and CNN, on the image data set S pre-
pared as above.

As the first three classification methods work on image
features, we run them and evaluate their performances on a
wide range of features, including 1. Facial landmark points
like eye corners, mouth corners and tip of the nose, etc.;
2. Facial feature vector generated by modular PCA [18]; 3.
Facial feature vector based on Local Binary Pattern (LBP)
histograms [1]; 4. The concatenation of the above three fea-
ture vectors. We stress that the landmark points are defined
of strategic positions on a face, hence they are features that
are beyond signal level and invariant to source cameras.

Our convolutional neural network is constructed by re-
training the parameters of every layer in AlexNet [21] while
retaining its architecture.

Define the criminal subset Sc as the positive class and
the non-criminal subset Sn as the negative class. We per-
form 10-fold cross validation for all possible combinations
of the three feature-driven classifiers and the four types of
feature vectors, plus data-driven CNN without explicit fea-
ture vector; altogether thirteen cases (3 classifiers ⇥ 4 fea-
ture vectors plus CNN) of 10-fold cross validation type. In
the interest of statistic significance we repeated the cross
validation for each of the thirteen cases ten times with dif-
ferent random seeds. In each of these (13 cases ⇥ 10 runs)
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A related question you should ask when you find that you 
can successfully predict X from Y is which causes which?	

The image on the left, from [1], shows a feature that 
researchers found when attempting to predict criminality 
based on a dataset of faces of criminals and non-criminals. 
One of their  findings is that the angle made by the corners 
of the mouth and the tip of the nose is a highly predictive 
feature. The authors suggest that such facial features are 
indicative of criminality	

However, when we look at the dataset we see that it’s not 
the features of the face, so much as the expression that 
differs. In the “non-criminal” photographs, the subjects hold 
a light smile, as is common, whereas in the criminal set the 
expressions have a more explicitly relaxed jaw. What we’re 
seeing here are not facial features, so much as facial 
expressions.	

This is important, because it changes the interpretation of 
the results completely. The physiognomical interpretation is 
that there is a biological mechanism that causes both 
criminality and a particular wideness of the mouth, and 
that this is determined at birth. The alternative explanation 
is that when people with a criminal background have their 
photographs taken, they are more likely to prefer a 
menacing expression than the average person is.	

Note, incidentally, that the photos of criminals are not arrest 
photos. They are described as “normal ID photos” by the 
authors.	

Further discussion: https://www.callingbullshit.org/
case_studies/
case_study_criminal_machine_learning.html	

[1] Wu, X., & Zhang, X. (2016). Automated inference on 
criminality using face images. arXiv preprint 
arXiv:1611.04135, 4038-4052.	
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DEEP NEURAL NETWORKS CAN DETECT SEXUAL ORIENTATION FROM FACES 

 18 

probability of being gay, resulting from masking a given area of the image, was used as a proxy 336 

for the importance of a given area to the prediction of sexual orientation.  337 

Results 338 

The results are presented in Figure 3 as heat maps showing the degree to which masking 339 

a given part of an image changes the classification outcome. The color scale ranges from blue 340 

(no change) to red (substantial change). Heat maps reveal that, for both genders, classification 341 

mainly relied on the facial area and ignored the background. The most informative facial areas 342 

among men included the nose, eyes, eyebrows, cheeks, hairline, and chin; informative areas 343 

among women included the nose, mouth corners, hair, and neckline. The heat maps are not 344 

symmetrical because duplicated facial features, such as eyes, may prompt the classifier to focus 345 

on only one of them and ignore the other as redundant. 346 

The results presented here confirm that the VGG-Face scores extracted here focus on the facial 347 

features rather than on other parts of the image. 348 

  
Figure 3. Heat maps showing the degree to which masking a given part of an image changes the 349 

(absolute) classification outcome, which is a proxy for the importance of that region in 350 

women (53/47%; see Table 1 for details). Facial images were
cropped using the facial frame provided by Face!! (the blue box
in Figure 1), and resized to 224 " 224 pixels.

Extracting facial features using a deep neural network.
Facial features were extracted from the images using a widely
employed DNN called VGG-Face (Parkhi, Vedaldi, & Zisserman,
2015). VGG-Face was originally developed (or trained) using a
sample of 2.6 million images for the purpose of facial recognition
(i.e., recognizing a given person across different images). VGG-
Face is similar to traditional scoring keys accompanying psychomet-
ric tests. A traditional scoring key can be used to convert responses to
test questions into one or more psychometric scores, such as a single
IQ score, or a set of five Big Five personality scores. VGG-Face
translates a facial image into 4,096 scores subsuming its core features.
Unfortunately, unlike psychometric scores, VGG-Face scores are not
easily interpretable. A single score might subsume differences in
multiple facial features typically considered to be distinct by humans
(e.g., nose shape, skin tone, or eye color).

VGG-Face offers two main advantages in the context of this study.
First, successful facial recognition depends on the DNN’s ability to
detect facial features that are unlikely to vary across images. Thus,
VGG-Face aims at representing a given face as a vector of scores that
are as unaffected as possible by facial expression, background, light-
ing, head orientation, image properties such as brightness or contrast,
and other factors that can vary across different images of the same
person. Consequently, employing VGG-Face scores enabled us to
minimize the role of such transient features when distinguishing
between gay and heterosexual faces. Second, employing a DNN
trained on a different sample and for a different purpose reduces the
risk of overfitting (i.e., discovering differences between gay and
heterosexual faces that are specific to our sample rather than univer-
sal). We also tried training a custom DNN directly on the images in
our sample; its accuracy was somewhat higher, but it exposed us to
the risk of overfitting.

Training classifiers. We used a simple prediction model,
logistic regression, combined with a standard dimensionality-
reduction approach: singular value decomposition (SVD). SVD is

similar to principal component analysis (PCA), a dimensionality-
reduction approach widely used by social scientists. The models
were trained separately for each gender.

Self-reported sexual orientation (gay/heterosexual) was used as
a dependent variable; 4,096 scores, extracted using VGG-Face,
were used as independent variables. To prevent overfitting, we
used a 20-fold cross-validation when estimating the predictions.
The users were split into 20 subsamples; one of the subsamples
(test set) was put aside, while the remaining 19 subsamples (train-
ing sets) were used to train the prediction model. As the number of
independent variables was relatively large (4,096) when compared
with the number of cases (7,083 in the smallest training set), we
used SVD to extract n # 500 dimensions4 from the independent
variables. This helped to reduce the number of independent vari-
ables and eliminate redundant information.

A logistic regression model was trained to classify sexual ori-
entation (a dependent variable) using 500 singular values extracted
from VGG-Face scores (independent variables). Least absolute
shrinkage and selection operator (LASSO; Hastie, Tibshirani, &
Friedman, 2009) was used for variable selection and regularization
when training the regression model. The LASSO penalty param-
eter $ was set to 1; the regularization parameter % was automati-
cally estimated using 10-fold cross-validation.

Finally, the model built on the training set, combining the SVD
dimensionality reduction and logistic regression, was used to pre-
dict the sexual orientation of the participants in the test set. This
procedure was repeated 20 times to assign a probability (ranging
from 0 to 1) of being gay to all images in the sample.

For many users, more than one facial image was available. This
enabled us to examine how the accuracy changes with the number
of facial images available. To produce an aggregate probability of
being gay based on n images, the probabilities associated with a
randomly selected set of n images (ranging from 1 to 5) of a given
participant were averaged.5 Thus, a participant with three facial
images was described by three probabilities of being gay: one
based on a single randomly selected image, one based on two
randomly selected images, and one based on all three images.

Results

The accuracy of predicting sexual orientation from facial images
is presented in Figure 2. Across this article, the accuracy is
expressed using the area under receiver operating characteristic
curve (AUC) coefficient. AUC represents the likelihood of a
classifier being correct when presented with the faces of two
randomly selected participants—one gay and one heterosexual.
The AUC # .50 (or 50%) indicates that the classifier is correct
only half of the time, which is no better than a random draw. The
AUC # 1.00 (or 100%) indicates that the classifier is always
correct. AUC is an equivalent of the Wilcoxon signed-ranks test
coefficient, used more widely in social sciences.

4 Dimensions extracted by SVD are referred to as singular values; they
are an equivalent of principal components in the context of PCA.

5 Logit transformation is used whenever the probabilities are averaged in
this work. This means that the probabilities are logit transformed and
averaged, and the resulting values are converted back into probabilities
using an inverse-logit transformation.

Figure 1. Graphical illustration of the outcome produced by Face!!.
Panel A illustrates facial landmarks (colored dots, n # 83) and facial frame
(blue box). Panel B illustrates pitch, roll, and yaw parameters that describe
the head’s orientation in space.
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Let’s go back to the sexuality classifier. What might a Clever 
Hans effect look like here? In the most extreme case, you 
might expect a classifier just to look at the background of 
the image. The authors were more careful here than you 
might expect:	

• The background of the image was blurred and the the 
facial features (eyes, nose, mouth) were detected and 
aligned. 	

• The focus of the classifier was investigated with saliency 
maps (indicators of where the model is looking). This is a 
fallible method, but it does show a general focus on the 
face. (Still, remember how small the effect was in the 
saliency map for the chest X-ray.)	

• A second classifier was fed only facial landmarks: the 
position of the eyes, roundness of the jaw, etc. That is, the 
photo was translated to a series of explicit features. The 
suggestion being that this prevents Clever Hans effects.	

• The deep neural network used to extract features from 
pixels was not trained on this data, but on another facial 
dataset. Only its features were fed to a shallow classifier 
that learned from these labels. This limits the ability of 
the classifier to pick up on surface detail.	

Are you predicting what you think you’re predicting?
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some cultures, gay men and women still suffer physical and
psychological abuse at the hands of governments, neighbors, and
even their own families. Perhaps due to discrimination and stig-
matization, gay people are also at a higher risk of depression,
suicide, self-harm, and substance abuse (King et al., 2008). Con-
sequently, their well-being and safety may depend on their ability
to control when and to whom to reveal their sexual orientation.
Press reports suggest that governments and corporations are de-
veloping and deploying face-based prediction tools aimed at inti-
mate psycho–demographic traits, such as the likelihood of com-
mitting a crime, or being a terrorist or pedophile (Chin & Lin,
2017; Lubin, 2016). The laws in many countries criminalize same-
gender sexual behavior, and in eight countries—including Iran,
Mauritania, Saudi Arabia, and Yemen—it is punishable by death
(United Nations Human Rights Council, 2015). It is thus critical to
inform policymakers, technology companies and, most impor-
tantly, the gay community, of how accurate face-based predictions
might be.

This work examines whether an intimate psycho–demographic
trait, sexual orientation, is displayed on human faces beyond what
can be perceived by humans. We address this question using a
data-driven approach. A DNN was used to extract features from
the facial images of 35,326 gay and heterosexual men and women.
These features were entered (separately for each gender) as inde-
pendent variables into a cross-validated logistic regression model
aimed at predicting self-reported sexual orientation. The resulting
classification accuracy offers a proxy for the amount of informa-
tion relevant to the sexual orientation displayed on human faces.
We also explore the features employed by the classifier and
examine whether, as predicted by the PHT, the faces of gay men
and women tend to be gender atypical. Furthermore, we compare
the accuracy of the computer algorithm with that of human judges.
Human accuracy does not only provide a baseline for interpreting
the algorithm’s accuracy, but it also helps to examine whether the
nonstandardized facial images used here are not more revealing of
sexual orientation than standardized facial images taken in a con-
trolled environment. Finally, using an independent sample of gay
men’s facial images, we test the external predictive validity of the
classifier developed here.

Study 1a: Using Deep Neural Networks to Detect
Sexual Orientation

In Study 1a, we show that a DNN can be used to identify sexual
orientation from facial images. Previous studies linking facial
features with sexual orientation used either images of neutral2

faces taken in a laboratory (e.g., Skorska et al., 2015; Valentova et
al., 2014) or self-taken images obtained from online dating web-
sites (e.g., Hughes & Bremme, 2011; Lyons et al., 2014; Rule &
Ambady, 2008; Rule, Ambady, Adams, & Macrae, 2008). We
employed the latter approach, as such images can be collected in
large numbers, from more representative samples, and at a lower
cost (from the perspective of both the participants and researchers).
Larger and more representative samples, in turn, enable the dis-
covery of phenomena that might not have been apparent in the
smaller, lab-based samples. Additionally, using self-taken, easily
accessible digital facial images increases the ecological validity of
our results, which is particularly important given their critical
privacy implications.

Images taken and uploaded by the participants have a number of
potential drawbacks. They may vary in quality, facial expression,
head orientation, and background. Furthermore, given that they
were originally posted on a dating website, they might be espe-
cially revealing of sexual orientation. We take several steps to
mitigate the influence of such factors. First, the facial features are
extracted using a DNN that was specifically developed to focus on
nontransient facial features, disregarding the head’s orientation
and the background. Second, Study 1b investigates the areas of the
face employed by the classifier and shows that the classifier
focuses on the face and does not rely on the background. Third,
Studies 1c and 2 explore the facial features used by the classifier
and shows that they are consistent with PHT, a widely accepted
theory explaining the origins of sexual orientation. Fourth, Studies
3 and 4 show that the images used here were not substantially more
revealing of sexual orientation than images of neutral faces taken
in a controlled setting or images obtained from Facebook.

Method

Facial images. We obtained facial images from public pro-
files posted on a U.S. dating website. We recorded 130,741 images
of 36,630 men and 170,360 images of 38,593 women between the
ages of 18 and 40, who reported their location as the United States.
Gay and heterosexual people were represented in equal numbers.
Their sexual orientation was established based on the gender of the
partners that they were looking for (according to their profiles).

The location of the face in the image, outlines of its elements,
and the head’s orientation were extracted using a widely used
face-detection software: Face!!.3 Figure 1 shows the output of
Face!! in a graphical format. The colored dots (Panel A) indicate
the location of the facial landmarks outlining the contour and
elements of the face. Additionally, Face!! provided the estimates
of the head’s yaw, pitch, and roll (Panel B).

Based on the Face!! results, we removed images containing
multiple faces, partially hidden faces (i.e., with one or more
landmarks missing), and overly small faces (i.e., where the dis-
tance between the eyes was below 40 pixels). We also removed
faces that were not facing the camera directly (i.e., with a yaw
greater than 15 degrees and a pitch greater than 10 degrees).

Next, we employed Amazon Mechanical Turk (AMT) workers
to verify that the faces were adult, Caucasian, fully visible, and of
a gender that matched the one reported on the user’s profile. We
limited the task to the workers from the U.S., who had previously
completed at least 1,000 tasks and obtained an approval rate of at
least 98%. Only faces approved by four out of six workers were
retained (see Figure S1 in supplemental materials, for the instruc-
tions presented to the workers).

Finally, we randomly removed some users to balance the age
distribution of the sexual orientation subsamples and their size—
separately for each gender. The final sample contained 35,326
facial images of 14,776 gay and heterosexual (50/50%) men and

2 We believe that no face can be truly “neutral.” People may systemat-
ically differ in the expression that they adopt when instructed to “adopt a
neutral expression.” Furthermore, even an image of a perfectly neutral face
(e.g., taken under anesthesia) would still contain traces of typically adopted
expressions (e.g., laugh lines), grooming style (e.g., skin health), and one’s
environment (e.g., tan).

3 Face!! can be accessed at http://www.faceplusplus.com.
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some cultures, gay men and women still suffer physical and
psychological abuse at the hands of governments, neighbors, and
even their own families. Perhaps due to discrimination and stig-
matization, gay people are also at a higher risk of depression,
suicide, self-harm, and substance abuse (King et al., 2008). Con-
sequently, their well-being and safety may depend on their ability
to control when and to whom to reveal their sexual orientation.
Press reports suggest that governments and corporations are de-
veloping and deploying face-based prediction tools aimed at inti-
mate psycho–demographic traits, such as the likelihood of com-
mitting a crime, or being a terrorist or pedophile (Chin & Lin,
2017; Lubin, 2016). The laws in many countries criminalize same-
gender sexual behavior, and in eight countries—including Iran,
Mauritania, Saudi Arabia, and Yemen—it is punishable by death
(United Nations Human Rights Council, 2015). It is thus critical to
inform policymakers, technology companies and, most impor-
tantly, the gay community, of how accurate face-based predictions
might be.

This work examines whether an intimate psycho–demographic
trait, sexual orientation, is displayed on human faces beyond what
can be perceived by humans. We address this question using a
data-driven approach. A DNN was used to extract features from
the facial images of 35,326 gay and heterosexual men and women.
These features were entered (separately for each gender) as inde-
pendent variables into a cross-validated logistic regression model
aimed at predicting self-reported sexual orientation. The resulting
classification accuracy offers a proxy for the amount of informa-
tion relevant to the sexual orientation displayed on human faces.
We also explore the features employed by the classifier and
examine whether, as predicted by the PHT, the faces of gay men
and women tend to be gender atypical. Furthermore, we compare
the accuracy of the computer algorithm with that of human judges.
Human accuracy does not only provide a baseline for interpreting
the algorithm’s accuracy, but it also helps to examine whether the
nonstandardized facial images used here are not more revealing of
sexual orientation than standardized facial images taken in a con-
trolled environment. Finally, using an independent sample of gay
men’s facial images, we test the external predictive validity of the
classifier developed here.

Study 1a: Using Deep Neural Networks to Detect
Sexual Orientation

In Study 1a, we show that a DNN can be used to identify sexual
orientation from facial images. Previous studies linking facial
features with sexual orientation used either images of neutral2

faces taken in a laboratory (e.g., Skorska et al., 2015; Valentova et
al., 2014) or self-taken images obtained from online dating web-
sites (e.g., Hughes & Bremme, 2011; Lyons et al., 2014; Rule &
Ambady, 2008; Rule, Ambady, Adams, & Macrae, 2008). We
employed the latter approach, as such images can be collected in
large numbers, from more representative samples, and at a lower
cost (from the perspective of both the participants and researchers).
Larger and more representative samples, in turn, enable the dis-
covery of phenomena that might not have been apparent in the
smaller, lab-based samples. Additionally, using self-taken, easily
accessible digital facial images increases the ecological validity of
our results, which is particularly important given their critical
privacy implications.

Images taken and uploaded by the participants have a number of
potential drawbacks. They may vary in quality, facial expression,
head orientation, and background. Furthermore, given that they
were originally posted on a dating website, they might be espe-
cially revealing of sexual orientation. We take several steps to
mitigate the influence of such factors. First, the facial features are
extracted using a DNN that was specifically developed to focus on
nontransient facial features, disregarding the head’s orientation
and the background. Second, Study 1b investigates the areas of the
face employed by the classifier and shows that the classifier
focuses on the face and does not rely on the background. Third,
Studies 1c and 2 explore the facial features used by the classifier
and shows that they are consistent with PHT, a widely accepted
theory explaining the origins of sexual orientation. Fourth, Studies
3 and 4 show that the images used here were not substantially more
revealing of sexual orientation than images of neutral faces taken
in a controlled setting or images obtained from Facebook.

Method

Facial images. We obtained facial images from public pro-
files posted on a U.S. dating website. We recorded 130,741 images
of 36,630 men and 170,360 images of 38,593 women between the
ages of 18 and 40, who reported their location as the United States.
Gay and heterosexual people were represented in equal numbers.
Their sexual orientation was established based on the gender of the
partners that they were looking for (according to their profiles).

The location of the face in the image, outlines of its elements,
and the head’s orientation were extracted using a widely used
face-detection software: Face!!.3 Figure 1 shows the output of
Face!! in a graphical format. The colored dots (Panel A) indicate
the location of the facial landmarks outlining the contour and
elements of the face. Additionally, Face!! provided the estimates
of the head’s yaw, pitch, and roll (Panel B).

Based on the Face!! results, we removed images containing
multiple faces, partially hidden faces (i.e., with one or more
landmarks missing), and overly small faces (i.e., where the dis-
tance between the eyes was below 40 pixels). We also removed
faces that were not facing the camera directly (i.e., with a yaw
greater than 15 degrees and a pitch greater than 10 degrees).

Next, we employed Amazon Mechanical Turk (AMT) workers
to verify that the faces were adult, Caucasian, fully visible, and of
a gender that matched the one reported on the user’s profile. We
limited the task to the workers from the U.S., who had previously
completed at least 1,000 tasks and obtained an approval rate of at
least 98%. Only faces approved by four out of six workers were
retained (see Figure S1 in supplemental materials, for the instruc-
tions presented to the workers).

Finally, we randomly removed some users to balance the age
distribution of the sexual orientation subsamples and their size—
separately for each gender. The final sample contained 35,326
facial images of 14,776 gay and heterosexual (50/50%) men and

2 We believe that no face can be truly “neutral.” People may systemat-
ically differ in the expression that they adopt when instructed to “adopt a
neutral expression.” Furthermore, even an image of a perfectly neutral face
(e.g., taken under anesthesia) would still contain traces of typically adopted
expressions (e.g., laugh lines), grooming style (e.g., skin health), and one’s
environment (e.g., tan).

3 Face!! can be accessed at http://www.faceplusplus.com.
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Another question we suggested in the last video is whether 
the target label you’ve chosen is saying what you think it’s 
saying.	

Here, the authors inferred sexuality from the stated 
preference in the dating profile. This is clearly correlated 
with sexuality, but not the same thing. Firstly, sexuality is 
one of those attributes (like movie genre) that can only be 
crudely approximated by a set of finite categories. 
Moreover, for many people it’s not a fixed attribute, and it is 
subject to some evolution throughout their life.	

The stated preference on a dating profile also means that 
you are capturing only those gay people who are willing to 
live (relatively) openly as gay. This may be highly dependent 
on social background. It’s certainly conceivable that in 
poorer subcultures, people are less likely to come out as 
gay, either to their community or to themselves.	

This means that what we’re detecting when we’re 
classifying a face in this dataset as “gay” is more likely a 
combination of factors that are correlation to that label.	



Incidentally, note the size of the dataset. One thing the 
authors can’t be accused of is finding spurious correlations. 
It’s a question of what the correlations that they found 
mean, but with this amount of data, as we saw before, we 
get very small confidence intervals, so the observed effects 
are definitely there.

What different hypothesis explain the observed effect?
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sexuality facial hair
Choice of presentation

facial features

sexualitybiological  
mechanism

e.g. prenatal hormone theory

social  
class

gay dating  
profile

jawline roundness

body weight
NB: These are  

only hypo
theses

So, what kind of hypotheses can we think of for what is 
causing the performance of the classifier?	

The authors observe that in their dataset the heterosexual 
men are more likely have facial hair. That’s most likely to be 
a grooming choice, based on the differences in gay and 
heterosexual subcultures. 	

For other correlations, such as that between sexuality and 
nose length, the authors suggest the prenatal hormone 
theory, a theory that relates prenatal hormone levels in the 
mother with the sexuality of the subject. In short, a 
biological mechanism that is responsible for both the 
(slight) variation in facial features and the variation in 
sexual preference.	

But that’s not the only possibility. In the previous slide, we 
saw that it’s difficult to separate facial features from facial 
expressions. However, even if we somehow eliminate the 
expression, that doesn’t mean that every facial feature we 
see is determined at birth. For instance, the roundness of 
the jaw is also influenced by body weight, which is strongly 
influenced by social class (for instance, whether somebody 
grows up poor or rich). And while there’s no evidence that 
social class influences the probability of being gay, it most 
likely does influence how likely a gay person is to end up 
setting up a dating profile.	

Note that these are purely hypotheses, intended to show 
which kinds of causalities can cause these correlations. I’m 
not in the least bit qualified to say which is more likely to be 
true.	



112

The authors plotted the four average faces for the classes 
male/female and gay/heterosexual in their dataset. Here 
are the four options. It’s a peculiar property of datasets of 
(aligned) faces that the mean is often quite a realistic face 
itself.	

Consider this plot with the hypotheses on the previous 
slide. What differences do you see? Pay particular attention 
to the differences in skin tone, grooming, body weight, and 
the presence of glasses. 	

I’ll leave you to decide which you think is the more likely 
explanation for these difference: choice of presentation, 
social class, or sexuality. 	

performance (AUC)
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however, that facial images posted on a dating website are partic-
ularly revealing of sexual orientation. Perhaps the users selected
the photos that their desired partners might find the most appeal-
ing.

We tested this hypothesis by employing a sexual orientation
classifier of known accuracy: human judges.8 We show that the
accuracy of the human judges, who were presented with the facial
images employed in Study 1a, does not differ from the human
judges’ accuracy reported in the previous studies employing both:
standardized images taken in the lab and dating website profile
pictures.

Method

Facial images. The 35,326 faces from Study 1a were ran-
domly paired, resulting in 50,000 pairs for each gender (each face
could be assigned to multiple pairs).

Human judges. We employed AMT workers from the U.S.,
who had previously completed at least 1,000 tasks and obtained an
approval rate of at least 98%. They were asked to select the facial
image more likely to represent a gay (or, in half of the cases,
heterosexual) person from two, randomly ordered, facial images
(one belonging to a gay individual and one to a heterosexual
individual). Note that the accuracy of human judges on a task
designed in this way is an equivalent of the AUC coefficient used
to express the algorithms’ accuracy. The instructions presented to
the workers are shown in Figure S2 (supplemental materials).

Results

Human judges achieved an accuracy of AUC ! .61 for male
images and AUC ! .54 for female images. This is comparable
with the accuracy obtained in the previous studies, which ranged
from approximately 55% to 65% (Ambady et al., 1999; Lyons et
al., 2014; Rule et al., 2009). It is also compatible with the findings
of Study 1a, which show that female faces are less revealing of
sexual orientation. Finally, it demonstrates that the facial images

used in our study were not unusually revealing of sexual orienta-
tion (at least to humans).

Study 5: Beyond Dating Website Facial Images

This study shows that the accuracy of the DNN-based classifier
trained in Study 1a is not limited to facial images collected on a
dating website, but could also correctly classify facial images
recorded in a different environment: Facebook.

Method

Facial images. We obtained a sample of 14,438 facial images
of 6,075 openly gay men from the myPersonality database (Ko-
sinski et al., 2015). Gay males were identified using two variables.
First, we used the Facebook Audience Insights platform9 to iden-
tify 50 Facebook pages most popular among gay men, including
pages such as: “I love being Gay,” “Manhunt,” “Gay and Fabu-
lous,” and “Gay Times Magazine.” Second, we used the “inter-
ested in” field of users’ Facebook profiles, which reveals the
gender of the people that a given user is interested in. Males that
indicated an interest in other males, and that liked at least two out
of the predominantly gay Facebook pages, were labeled as gay.
Among the gay men identified in this way, and for whom rela-
tionship data was available, 96% reported that their significant
other was male. Unfortunately, we were not able to reliably iden-
tify heterosexual Facebook users.

Preprocessing. Facial images were preprocessed and their
VGG-Face scores extracted using the procedure described in Study
1a. The final sample contained n ! 918 facial images of unique
users, characterized by an average age of 30 and interquartile range

8 We also considered applying the DNN-based classifier to the samples
used in previous studies. We could not, however, convince their authors to
share their samples with us.

9 https://www.facebook.com/ads/audience-insights.

Figure 5. The accuracy of the landmark-based classifiers, when provided with five images per person. The
accuracy of the DNN-based classifier trained in Study 1a is displayed on top of the figure for comparison.
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from pixels

from facial landmarks

women (53/47%; see Table 1 for details). Facial images were
cropped using the facial frame provided by Face!! (the blue box
in Figure 1), and resized to 224 " 224 pixels.

Extracting facial features using a deep neural network.
Facial features were extracted from the images using a widely
employed DNN called VGG-Face (Parkhi, Vedaldi, & Zisserman,
2015). VGG-Face was originally developed (or trained) using a
sample of 2.6 million images for the purpose of facial recognition
(i.e., recognizing a given person across different images). VGG-
Face is similar to traditional scoring keys accompanying psychomet-
ric tests. A traditional scoring key can be used to convert responses to
test questions into one or more psychometric scores, such as a single
IQ score, or a set of five Big Five personality scores. VGG-Face
translates a facial image into 4,096 scores subsuming its core features.
Unfortunately, unlike psychometric scores, VGG-Face scores are not
easily interpretable. A single score might subsume differences in
multiple facial features typically considered to be distinct by humans
(e.g., nose shape, skin tone, or eye color).

VGG-Face offers two main advantages in the context of this study.
First, successful facial recognition depends on the DNN’s ability to
detect facial features that are unlikely to vary across images. Thus,
VGG-Face aims at representing a given face as a vector of scores that
are as unaffected as possible by facial expression, background, light-
ing, head orientation, image properties such as brightness or contrast,
and other factors that can vary across different images of the same
person. Consequently, employing VGG-Face scores enabled us to
minimize the role of such transient features when distinguishing
between gay and heterosexual faces. Second, employing a DNN
trained on a different sample and for a different purpose reduces the
risk of overfitting (i.e., discovering differences between gay and
heterosexual faces that are specific to our sample rather than univer-
sal). We also tried training a custom DNN directly on the images in
our sample; its accuracy was somewhat higher, but it exposed us to
the risk of overfitting.

Training classifiers. We used a simple prediction model,
logistic regression, combined with a standard dimensionality-
reduction approach: singular value decomposition (SVD). SVD is

similar to principal component analysis (PCA), a dimensionality-
reduction approach widely used by social scientists. The models
were trained separately for each gender.

Self-reported sexual orientation (gay/heterosexual) was used as
a dependent variable; 4,096 scores, extracted using VGG-Face,
were used as independent variables. To prevent overfitting, we
used a 20-fold cross-validation when estimating the predictions.
The users were split into 20 subsamples; one of the subsamples
(test set) was put aside, while the remaining 19 subsamples (train-
ing sets) were used to train the prediction model. As the number of
independent variables was relatively large (4,096) when compared
with the number of cases (7,083 in the smallest training set), we
used SVD to extract n # 500 dimensions4 from the independent
variables. This helped to reduce the number of independent vari-
ables and eliminate redundant information.

A logistic regression model was trained to classify sexual ori-
entation (a dependent variable) using 500 singular values extracted
from VGG-Face scores (independent variables). Least absolute
shrinkage and selection operator (LASSO; Hastie, Tibshirani, &
Friedman, 2009) was used for variable selection and regularization
when training the regression model. The LASSO penalty param-
eter $ was set to 1; the regularization parameter % was automati-
cally estimated using 10-fold cross-validation.

Finally, the model built on the training set, combining the SVD
dimensionality reduction and logistic regression, was used to pre-
dict the sexual orientation of the participants in the test set. This
procedure was repeated 20 times to assign a probability (ranging
from 0 to 1) of being gay to all images in the sample.

For many users, more than one facial image was available. This
enabled us to examine how the accuracy changes with the number
of facial images available. To produce an aggregate probability of
being gay based on n images, the probabilities associated with a
randomly selected set of n images (ranging from 1 to 5) of a given
participant were averaged.5 Thus, a participant with three facial
images was described by three probabilities of being gay: one
based on a single randomly selected image, one based on two
randomly selected images, and one based on all three images.

Results

The accuracy of predicting sexual orientation from facial images
is presented in Figure 2. Across this article, the accuracy is
expressed using the area under receiver operating characteristic
curve (AUC) coefficient. AUC represents the likelihood of a
classifier being correct when presented with the faces of two
randomly selected participants—one gay and one heterosexual.
The AUC # .50 (or 50%) indicates that the classifier is correct
only half of the time, which is no better than a random draw. The
AUC # 1.00 (or 100%) indicates that the classifier is always
correct. AUC is an equivalent of the Wilcoxon signed-ranks test
coefficient, used more widely in social sciences.

4 Dimensions extracted by SVD are referred to as singular values; they
are an equivalent of principal components in the context of PCA.

5 Logit transformation is used whenever the probabilities are averaged in
this work. This means that the probabilities are logit transformed and
averaged, and the resulting values are converted back into probabilities
using an inverse-logit transformation.

Figure 1. Graphical illustration of the outcome produced by Face!!.
Panel A illustrates facial landmarks (colored dots, n # 83) and facial frame
(blue box). Panel B illustrates pitch, roll, and yaw parameters that describe
the head’s orientation in space.
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The authors repeated their experiments by classifying 
based purely on facial landmarks. The idea is that we can 
detect landmarks very accurately, and classifying on these 
alone removes a lot of sources for potential Clever Hans 
effects.	

We see that all subsets of the face landmarks allow for some 
predictive performance, but there is a clear difference 
between them. Note that just because we are isolating 
landmarks, doesn’t mean that we are focusing only on 
biological causes. As we saw earlier, the shape of the mouth 
is determined more by expression than by facial features, 
and the roundness of the jaw is partly determined by body 
weight, which is correlated with social class.	

We will discuss the AUC metric in the third lecture. For now, 
you can think of a classifier with 81% AUC as one that, 
given a random pair of gay and heterosexual instances from 
the data, will successfully select the gay instance 81% of the 
time.	

Let’s assume that the shape of the nose is mostly unaffected 
by grooming and expression. I have no idea whether this 
assumption is valid, but say that it is. Focusing purely on the 
shape of the nose, we see that performance drops to 0.65 
AUC for men and 0.56 AUC for women. This is still better 
than chance level. 	

Can we say that homosexuality can be detected based on the 
shape of the nose? Can we conclude a biological relation 
based on this correlation?	



What does 0.56, 0.65 AUC mean?
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Guessing sex or gender based on:
Accuracy 
proportion of incorrect 
classifications

AUC 
chance of correctly ordering a 
random male/female pair

Age 
Dutch census data 0.51 0.52

Age for people aged 80 and over 
Dutch census data

0.61 0.57

Age 
ANSUR II data

0.65 0.59

Waist circumference 
ANSUR II data                             

0.68 0.74

Stature (height) 
ANSUR II data

0.84 0.92

To interpret numbers like these, it’s good to get some points 
of reference. If we try to guess somebody’s gender or sex 
(the distinction doesn’t matter much for such a crude 
guess), while knowing nothing about them except their 
age, the best we can expect to do is slightly better than 
chance level (51% of our guesses will be correct). The 
reason we can get better than chance level is that women 
tend to live longer than men. This means that if we guess 
“female” for older people, we are a little bit more likely to 
be correct.	

If we restrict ourselves to older people, the effect becomes 
more pronounced and we can get to the level the sexuality 
classifier achieved (based purely on noses in the female 
part of the data). This can help us to interpret the AUC the 
authors managed to achieve. Note that this accuracy is 
achieved by calling everybody female, and the AUC is 
achieved by guessing that the older person in a pair is 
always female. Think about that. If you walk into a care 
home blindfolded and simply call everybody female, 
can you really claim to be detecting their gender?	

If we look purely at people’s height, we get an accuracy and 
AUC that is comparable to what the authors achieved from 
the pixel data. This is also an important point to consider. 
Height and gender are correlated, but that doesn’t mean 
that there are no tall women or short men. It also doesn’t 
make tall women “masculine”, or short men “feminine”. It’s 
just a slight correlation that allows us to make an educated 
guess for certain parts of the range of heights.	

This is how you should always interpret accuracy and AUC 
values in the range 0.8 to 0.95: it's as impressive as 
guessing somebody's sex or gender based purely on their 
height. Yes, it can be done better than chance level, and yes 
there is a definite correlation, but it doesn't much more 
than that there is a very subtle correlation.	

NB: In the ANSUR II data, the subjects are soldiers. It’s 
possible that some sex differences are more pronounced in 
this population due to selection effects or physical training. 
We balanced the ANSUR data by subsampling to make the 
numbers of male and female subjects equal.
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buttock circumference

neck circumference

To provide some points of references for ROC curves, here 
are all the curves you can achieve for sex/gender 
classification based on a single physical measurement. For 
some of these we get very impressive looking curves. But is 
the word "detection" really appropriate when you are 
making one physical measurement and predicting sex or 
gender based on that?	

The lowest AUC comes from using buttock circumference as 
a feature, and the highest from using neck circumference. 
Since these are soldiers, it's likely that differences due to 
muscle volume are more pronounced here than they would 
be generally. This plot is for the complete, unbalanced data 
so there is a 4:1 class imbalance (male:female).
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Here are the histograms per sex/gender for the ANSUR 
data. There is a big discrepancy, but notice also how big the 
area of overlap is. 	

This is always what we should imagine when people say 
that property A is predictive for attribute B. Just because 
there’s some difference between the populations doesn’t 
mean that there are no short men or tall women. And most 
importantly it doesn’t mean that being short makes you in 
some way more feminine or being tall makes you in some 
way more masculine.

Are you detecting something?

117quote source: https://docs.google.com/document/d/11oGZ1Ke3wK9E3BtOFfGfUQuuaSMR8AO2WfWH3aVke6U/edit#

So, are we really justified in calling this a detector?	

Are you really detecting gender when you call somebody 
male just because they’re tall? The authors compare their 
classifiers to medical diagnostic tools to provide an 
interpretation of the AUC scores.	

This is where we must make a clear distinction between 
what a classifier like this does and what a diagnostic test 
does. A test like that for breast cancer looks explicitly only 
at one particular source of information. In this case the 
mammogram. The clinician will likely take the result of this 
test, and factor in contextual clues like age and lifestyle if 
the test is unclear. The test can be said to detect something, 
because it is strictly confined to look at only one thing. 	

The clinician is then predicting or guessing something 
based on different factors. One of which is the test.	

The diagnosis of Parkinson’s is different. It’s much more 
similar to the way this classifier works, there is no 
unambiguous diagnostic tool like a blood test, so the 
diagnostician can only look at contextual clues like 
symptoms, medical history, age and risk factors. 	

There is still a difference, however, in that the features are 
made more explicit. The pixel-based sexuality classifier may 
be inferring social class from the image, but it’s not telling 
us that it’s doing this. A doctor may be guilty of such 
subconscious inferences as well, but we can expect a 
greater level of interpretability from them.	

NB: The authors use the word accuracy to refer to ROC-AUC.

https://docs.google.com/document/d/11oGZ1Ke3wK9E3BtOFfGfUQuuaSMR8AO2WfWH3aVke6U/edit#


Should this research have been performed and published?

Note that: 

• The authors stumbled onto these results. 

• The main aim is to warn of privacy concerns.  
Not to make claims about the biological mechanisms underlying homosexuality 

• Prenatal Hormone Theory is often mentioned. 

• The classifier is stated to detect sexuality. 
A prediction or a guess is closer to the truth.
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After all that, it’s natural to ask whether this research 
project was a mistake. In short, were the authors wrong to 
do this, and if so in what way? This is a question of values 
rather than science, so it’s up to you to decide. I’ll just note 
some important points to consider.	

Firstly, the authors weren’t looking to prove this point one 
way or another, and they initially stumbled on to their 
findings. Given that a result has been established, it’s most 
often unethical not to report it. So long as that reporting is 
done carefully and responsibly, of course.	

The stated aim of the paper is not to make any claims about 
causal mechanisms. The authors are less interested in 
whether the classifier picks up on grooming choices of 
biological features, than in whether the guess can be made 
with some success at all. 	

If we decide that the result did need to be reported, we may 
consider whether the authors were guilty of poor framing. 
The use of the word detecting is subject to 
misinterpretation. To be fair, that’s something I only became 
aware of when looking into this matter including all the 
fallout from this particular paper, so for me at least it would 
be hypocritical to be too judgemental of poor word choice.	

Another odd thing, is that in both the paper and the 
explanatory notes, prenatal hormone theory a suggested 
biological causal mechanism for homosexuality, is often 
mentioned. As we have seen the experiments shown here 
provide no evidence for one causal hypothesis over another, 
so it would probably have been better to make no claims 
about causal effect whatsoever.

How do you frame your research?

Consider which features you are using. 

Consider multiple hypotheses. Social, biological, personal. 
Train yourself to always come up with different explanations for a given set of facts. 

Distinguish between detecting, predicting and guessing. 
Even 0.91 AUC is more guessing than predicting. It’s only detecting if you strictly control 
your features. 
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always read the paper

If you find yourself in the unfortunate situation of having to 
publish something controversial like this, or having to 
interpret somebody else's work on a controversial topic, 
keep these tips in mind. 	

Finally, and this is a personal opinion, so make of it what 
you will: if you read about research like this in a newspaper, 
or on social media, remember that you are an academic (or 
at least you will be when you graduate). That comes with a 
certain responsibility to dig into the primary research 
before you make a judgment. Don't just trust the journalists, 
or worse, the commenters on Twitter. If you really want to 
give your opinion on a situation like this, dig out the 
original paper and read it. If you don't, the most honest 
thing to do is to withhold judgment.	

What you you will find when you dig down, is almost always 
that the truth is much more subtle than the news and social 
media make it look. In this specific case, the majority of 
criticism leveled at the authors was simply inaccurate. 
There are valid and serious criticisms of the paper, but you 



really need to dig down to get past a lot of invalid criticisms. 
The truth, as is so often the case is subtle and complex. Our 
job as academics is to embrace that complexity, and to 
simplify it as much as possible, but no further.
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there’s no free lunch We end with a very short, but important discussion.  	

A question that often arises is: which classifier, model, search 
method, etc. is the best, independent of the data? Before we 
see the data, can we make a best guess for which 
approaches to try? Are there some methods that always 
work really well?

The no-free-lunch theorem(s)

Wolpert & MacReady 1997 

“… any two optimization algorithms are equivalent when 
their performance is averaged across all possible 
problems”

123source: Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE transactions on evolutionary computation, 1(1), 67-82.

In the 90s two researchers, named Wolpert and MacReady 
published a proof of an important theorem. The details are 
technical, but it basically stated that if we look at 
optimization algorithms (of which machine learning 
algorithms are a specific instance), by averaging their 
performance over all possible tasks, they all perform 
exactly the same.  That is, if we want to know which 
algorithm is the best independent of the task, we cannot tell 
them apart by their performance.

gradient descent and gradient ascent
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Let's look at some examples of what this means in practice. 
For instance, gradient descent is a pretty intuitive 
algorithm, and we've seen already that there are many tasks 
for which it works well. Let's imagine the polar opposite 
algorithm: gradient ascent. We are still looking for the 
lowest point on the loss surface, but instead of descending, 
we climb. Intuitively, this is a ridiculous algorithm,	

However, according to the no free lunch theorem, both 
gradient descent and gradient ascent should work equally 
well when their performance is averaged over all problems. 
This means that for every task on which gradient descent 
works well, and gradient ascent works terribly, we should 
be able to find a task where the roles are reversed. 	

The slide shows the kind of landscape that might result in 
this situation. On the left we have a typical loss landscape, 
with a lowest point that gradient descent should easily find. 
On the right we have the opposite. A reverse loss landscape 
that you need to climb to get near the lowest point. 
Gradient descent would go nowhere near the optimimum. 



Gradient ascent, with just the right hyperparameters, will 
climb all the way to the top, and in its last step fall into the 
crevice and get stuck on the plateau at the bottom.

Given some data X and basic methods A and B. 

Meta-methods: 

• method C: Use a data split, choose whichever performs 
the best. 

• method D: Use a data split, choose whichever performs 
the worst. 

According to the NFL theorem, there are as many datasets 
X for which C beats D as there are for which D beats C. 
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Here is another example, that should show you what a 
strange result the no free lunch theorem is. The common 
practice of dataset splitting and choosing a model by its test 
set performance is also an algorithm. We do it manually, but 
we could also program it into a computer. Let's say we want 
to choose between two methods A and B. We can follow the 
normal approach: split the data, apply both and choose 
whichever performs best. Call this method C.	

We can also do a ridiculous, counter-intuitive thing and 
choose the method that performs worst. Call this method D.	

The no free lunch theorem says that method D should 
outperform method C just as often as the other way around. 	

The kind of datasets where this happens are the ones where 
the test set happens to behave very differently from the 
training set. Since we usually make the split randomly, these 
would be very unusual or unlikely datasets, and we feel 
justified in using method C. Still, this only works because 
we are able to make certain assumptions about our data.
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the problem of induction again In a way, we’re back to the problem of induction. For any 
given situation where a learning method works, there’s a 
situation where it doesn’t. Induction (aka. learning from 
experience) works in practice, but there are exceptions, and 
we can't tell just by looking at the data when it will and 
won't work.	

Note that if there were some algorithm that could tell us 
which situation we were in, we could just use this algorithm 
to select our learning method, and beat the NFL theorem.	

In short, we need to make some assumptions about the 
nature of whatever it was that created our data. Without 
such assumptions, learning doesn't work.



inductive bias

The aspects of a learning algorithm, which implicitly or 
explicitly make it suitable for certain learning problems 
and unsuitable for others. 

A linear method has an inductive bias for linear relations. 
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This is an increasingly important phrase in machine 
learning. The inductive bias of a method or model are those 
assumptions about the domain that are, explicitly or 
implicitly, hardcoded into the model.	

For instance, in a linear regression model, the assumption is 
that all instances lie on a line (or the higher-dimensional 
equivalent). If this assumption isn't violated too much, the 
model is a good fit for the data. If the assumption is violated 
very badly,  we need to look for ways to change the 
inductive bias, for instance by picking a different model, or 
by enriching the linear model with extra features, like we 
will do in the next lecture.	

We can summarize the business of machine learning and 
data science as follows. The business of the machine 
learning researcher is to create a variety of models with 
helpful inductive biases. The business of the data scientist is 
to figure out which of the available inductive biases is 
helpful for any given problem.

the universal distribution

Not all datasets are created equal. The datasets for which 
our method works, are the likely ones. 

The universe “generates” data for which our methods work 

• Compressible data 

• Simple data 

The datasets that don’t work aren’t selected, because they 
look random to us. 
We only understand those parts of the universe that generate understandable data
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One “out” to the NFL Theorem, is that there is a “universal 
distribution” governing all processes that create data.	

The NFL Theorem implicitly assumes that all datasets are 
equally likely. Since this is not the case, there is some other, 
non-uniform distribution that tells us which datasets are 
more likely than others, averaged over all possible settings.	

Using such a universal data distribution, we could (in 
theory) work out a universally best learning algorithm. 

Occam’s razor

“The simplest explanation is often the best” 

We should bias our algorithms towards simple models. 

• Reduces overfitting, helps generalization.
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We don't have too many practical ideas about the properties 
of such a universal distribution, but one thing that crops up 
a lot is that simple data is necessarily more likely than 
complex data.	

This suggests that in learning we should have a simplicity 
bias. If there are two models that both fit the data, one very 
simple, like a linear model, and one very complex, like a 
very big decision tree, then it's more likely that the simple 
model generated the data.	

Such simplicity biases can be implemented in many 
different ways, and we'll see some concrete examples as the 
course progresses.



the no-free-lunch principle

There is no single best learning method. Whether 
an algorithm is good, depends on the domain.
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Whether or not the NFL theorem means anything for us in 
practice, it has also given rise to a general principle, 
commonly followed in machine learning practice. The 
principle is that we should choose our method to deal with 
the task at hand, and not look for a universally best method.	

Note that this is distinct from the NFL theorem, because 
everybody still uses data splitting universally to evaluate 
which of these many methods is the best. And by the NFL 
theorem, model selection by data splitting is also not a 
universal algorithm. So the NFL theorem and the NFL 
principle are really two very different things.	

In practice, the NFL theorem shouldn't keep you awake at 
night. It's an interesting thought to return to occasionally, 
and a reminder that by choosing a model, we are making 
assumptions about the source of our data.	

The NFL principle is an important concept to keep in mind 
when selecting models. Don't just run gradient boosted 
decision trees by default, just because somebody 
somewhere said it was the best approach. Investigate your 
task. figure out what makes it special, try different 
approaches and tailor your approach to the problem at 
hand.	


