Data pre-processing

Missing values and outliers

|section|Missing values and outliers|
|video|https://surfdrive.surf.nl/files/index.php/s/
v4BiYSB6CIEjvpk/download|

To motivate this lecture, let’s look at a famous historical
case of operations research. In the second World War, the
allies executed many bombing runs, and often, their planes
came back looking like this.

To investigate where they should reinforce their planes,
investigators made a tally of the most common points on
the plane they were seeing damage.

don’t take your data at face value

By McGeddon - Own work, CC BY-SA 40, 5: 3

The initial instinct was to reinforce those places that
registered the most hits.

However, it was soon pointed out (by a man called Abraham
Wald) that this ignores a crucial aspect of the source of the
data. They weren'’t tallying where planes were most likely to
be hit, they were tallying where planes were most likely to
be hit and come back.

The places where they weren’t seeing any hits were exactly
the places that should be reinforced, since the planes that
were hit there didn’t make it back.

This specific effect is called survivorship bias, and it’s
worth keeping in mind, but the more general lesson for
today, is that you should not take your data at face value.
Don’t just load your data into an ML model and check the
predictive performance: consider what you're ultimately
trying to achieve, and consider how the source of your data
will affect that goal.

By McGeddon - Own work, CC BY-SA 4.0, https://

http://mlvu.github.io
https://en.wikipedia.org/wiki/Survivorship_bias

commons.wikimedia.org/w/index.php?
curid=53081927

look at your data Imagine that I gave you four datasets, each with two

features x and y. For all datasets all of the following
statistics give the same value: the mean and variance of x,
the mean and variance of y, the correlation between x and y,

correlation

regressio regressio
mean ofx meanofy var.ofx varofy betweenx 9 9

andy . Niinew nlineb " the parameters of the linear regression line that best fits,
dataset 1 9 75 n 4125 0816 05 3 067 and the r2 of the correlation.
dataset2 9 75 11 4125 0816 05 3 067 You would conclude that the datasets must be pretty
similar, right?
dataset 3 9 75 n 4.125 0.816 0.5 3 0.67
dataset 4 9 7.5 1 4.125 0.816 0.5 3 0.67

look at your data One important aspect of not taking the data at face value is

to look at it.
12 ~ 12 -
0 s - " cesee These are the four datasets from the previous slide. They
= e o a/ra . e °® e)
o o of are a common example, called Anscombe’s quartet. Only
T ‘Le when we look at the datasets, do we see how different they
“ * are.
w ° " o] .
" - o _ More importantly, only when we look at the data, do we see
e .
2 Mﬁ"o s j - the patterns that define them. These are the patterns we
N b0 want to get at if we want to understand the data. And none
ter e e ceme e of them are revealed by the descriptive statistics of the
Sty Ascombe St s s v . previous slide.

source: By Schutz: Avenue - Anscombe.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?
curid=9838454

https://commons.wikimedia.org/w/index.php?curid=9838454

X Mean:
Y Mean:
X SD
Y SD
Corr. :

source: httpss

54.28
47.83

: 16.76
: 26.93
-0.06

Here is a more modern variant: the datasaurus dozen.

Recommended reading: https://
www.autodeskresearch.com/publications/samestats

scatter plot matrix

source: RIDC NeuroMat, CC BY-5A 4.0 <https:/creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

In machine learning and data science, our datasets are
rarely two-dimensional, so we don’t have the luxury of
simply doing a scatter plot. Looking at our data, in a way
that provides insight almost always requires a lot of
ingenuity and creativity.

For high-dimensional, multivariate data, of the kind we’ve
been dealing with so far, a good place to start is to produce
a scatter plot matrix. This is simply a large grid of every
scatter plot you can produce between any two features in
your data. Often, only the plots below or above the diagonal
are shown. The scatterplot matrix gives you a good idea of
how the features relate to each other.

If you have a target value (a class or a regression target), it’s
a good idea to include it among the features for the scatter
plot matrix. That way, you can see what relation each
feature has with the target in isolation from the other
features.

On the right, we see the data as a 3D point cloud (in blue),
together with the three projections to 2d (in yellow red and
green) that the scatterplot matrix gives us.

source: RIDC NeuroMat, CC BY-SA 4.0 https://
creativecommons.org/licenses/by-sa/4.0, via Wikimedia
Commons

https://www.autodeskresearch.com/publications/samestats

cleaning your data

Missing data:
missing labels
missing values

Outliers

Class imbalance

In the rest of this video, we’ll look at ways you can clean up
your data, to make it useable for a classification or a
regression task.

missing values
income status unemployed

32000 married true
single false

89000 true
34000 divorced false
54000 married true
false

21000 true
25000 inale true

We’ll start with missing data. Quite often, your data will
look like this.

You will need to do something about those gaps, before any
machine learning algorithm will accept this data.

income

status

missing labels

unemployed

25000

inale

32000 married true
2000 single

89000 single true
34000 divorced false
54000 married

34000 married false
21000 divorced

true

What approach you should take is different, depending on
whether values from the feature columns are missing, or
values from the target column are missing.

simple solutions If you have missing values in one of your features, the

simplest way to get rid of them is to just remove the
feature(s) for which there are values missing. If you're

Remove the feature ; .
lucky, the feature is not important anyway.

Remove the instances
You can also remove the instances with missing data. Here
) . .)

are the data missing uniformly? you have to be careful. If the data was not corrupted
uniformly, removing rows with missing values will change

your data distribution.

For example, you might have data gathered by volunteers in
the street using some electronic equipment. If the volunteer

in Amsterdam had problems with their hardware, then
their data will contain missing values, and the collected

data will not be representative of Amsterdam.

Another way you might get non-uniformly distributed
missing data is if your data comes from a questionnaire,
where people sometimes refuse to answer certain
questions. For instance, if only rich people refuse to answer
questions about their taxes, removing these instances will
remove a lot of rich people from your data and give you a
different distribution.

How can you tell if data is missing uniformly? There’s no
surefire way, but usually you can get a good idea by plotting
a histogram of how much data is missing against some
other feature. For instance if the number of instance with
missing features against income is very different from the
regular histogram over income, you can assume that your
data was not corrupted uniformly.

Of course it also helps if you can work out why your data
has missing values. Again, don't take the data at face value,
look into where it came from, and what the details of that
process can tell you.

Let’s zoom out a little before we move on. Whenever you
have questions about how to approach something like this,
it’s best to think about the real-world setting where you
might apply your trained model. We often call this
“production”, a term used in software development for the
system that will be running the final deployed version of

Think about the REAL-WORLD use case.

the software. Some machine learning models literally end
up in a production environment, but we might also use
machine learning models to perform business analytics,
clinical decision support or in a scientific experiment.
Wherever your model is meant to end up after you've

finished your experimentation, that's what we’ll call
production.

And production is what you're trying to simulate, when you
train your model and test it on a test set. So the choices you
make, should make your experiment as close of a simulation
of your production setting as you can manage.

For example, in the case of missing values, the big question
is: can you expect missing data in production? Or, will

your production data be clean, and are the test data just
noisy because the production environment isn’t ready yet?

Examples of production systems that should expect missing
data are situations where data comes from a web form with
optional values or situations where data is merged from
different sources (like online forms and phone surveys).

You may even find yourself in a situation where the test
data has no missing values (since it was carefully gathered)
but the production system will have missing values
(because there, the data will come from a web form). In that
case, you may want to introduce missing values artificially
in your test data, to simulate the production setting and
study the effect of missing data.

So remember, whenever you're stuck on how to process
your data: think what the production setting is that you're
trying to simulate, and make your choices based on that.

will you get missing values in production?

YES:

Keep them in the test set, and make a model that can deal
with them them.

NO:

Endeavour to get a test set without missing values, and
test different methods for completing the data in the
training set only.

If you expect to see missing in production, then your model
needs to be able to consume missing values, and you should
keep them in the test set. For categorical features, the
easiest way to do this is to add a category for missing
values. For numerical features, we’ll see some options in the
next slide.

If your production setting won’t have missing values, then
that’s the setting you want to simulate. If at all possible, you
should get a test set without missing values, even if the
training set has them. You can then freely test what method
of dealing with the missing training values gives the best
performance on the test set.

Or rather, on the validation set first, and then later on the test
set. For now, we'll talk about test set performance to keep
things simple, and take it as read, that you will use a
validation set as a proxy to guard against multiple testing.

If you cannot get a test set without missing values, one
thing you can do is to report performance on both the data
that has the instances with missing values removed and the
data that has the missing values filled in by some
mechanism. Neither are ideal simulations of the production
setting, but the combination of both numbers hopefully
gives you some idea.

imputation: guess the missing values

categorical data: use the mode
numerical data: use the mean

make the feature a target value and train a model

KNN, linear regression, etc.

At some point, either in the training data or the test data,
we will probably need to fill in the missing values. This is
called imputation.

A simple way to do this in categorical data is to use the
mode, the most common category. For numerical data, the
mean or median are simple options. We'll look at when
you should use which later in this video.

A more involved, but more powerful way, is to predict the
missing value from the other features. You just turn the
feature column in to a target column and train a classifier
for categoric features, and a regression model for numeric
features.

missing labels

training set

- train only on labeled data

- impute the missing labels

- many missing labels: semi-supervised learning

test set
- don'timpute, don't ignore! incorrectly classified
- report your uncertainty

missing values

correctly classified

bestcase worst case
accuracy accuracy

If your target label has missing values, the story is a little
different. In the training set you are free to do whatever you
think is best. You can remove instances, or impute the
missing labels. If you have a lot of missing labels, this
essentially becomes a semi-supervised learning setting as
we saw in the first lecture.

On the test set however, you shouldn’t impute or ignore the
missing values, since that changes the task, and most likely
makes it easier, which will give you false confidence in the
performance of your model. Instead, you should report the
uncertainty created by the missing values.

In classification, this is easy: you compute the accuracy
under the assumption that your classifier gets all missing
values correct and under the assumption that it gets all
missing values wrong: this gives you a best case and a worst
case scenario, respectively. Your true accuracy on the test
set is somewhere in between.

unnatural outliers

Another problem that we need to worry about, is outliers.
Values in our data that take on unusual and unexpected
values.

Outliers come in different shapes and sizes. The most
important question is whether your outliers are natural or
unnatural.

Here, the six dots to the right are so oddly, mechanically
aligned that we are probably looking at some measurement
error. Perhaps someone is using the value -1 for missing
data.

We can remove these, or interpret them as missing data,
and use the approaches just discussed.

natural outliers

income

In other cases, however, the “outlier” is very much part of
the distribution. This is what we call a natural outlier. Bill
Gates may have a million times the net worth of anybody
you are likely to meet in the street, but that doesn’t mean he
isn’t part of the distribution of income.

If we fit a normal distribution to this data, the outlier would
ruin our fit, but that's because the data isn’t normally
distributed. What we should do is recognize that fact, and
adapt our model, for instance by removing assumptions of
normally distributed data.

Here’s a metaphor for natural and unnatural outliers. If our
instances are image of faces, the image on the left, that of
comedian Marty Feldman, is an extreme of our data
distribution. It looks unusual, but it's crucial in fitting a
model to this dataset. The image on the right is clearly
corrupted data. It tells us nothing about what human faces
might look like, and we’re better off removing it from the
data.

However, remember the real-world use-case: if we can
expect corrupted data in production as well, then we should
either train the model to deal with it, or make the clean-up
automatic, so we can perform it in production as well. This
would require us to have some way to detect automatically,
whether something is an outlier. If the outliers are rare, and
we have a lot of data, it may be easier just to leave them in
and hope the model can learn to work around them, even if
they are unnatural outliers.

Are they mistakes?

- Yes: deal with them.
- No: leave them be. Check your model for strong
assumptions of normality.

Can we expect them in production?
- Yes: Make sure the model can deal with them.

- No: Remove. Get a test set that represents the
production situation.

If you have very extreme values that are not mistakes (like
Bill Gates earlier), your data is probably not normally
distributed. If you use a model which assumes normally
distributed data, it will be very sensitive to these kinds of
“outliers”. It may be a good idea to remove this assumption
from your model (or replace it by an assumption of a heavy-
tailed distribution).

Note that you have to know your model really well to know
if there are assumptions of normality. For instance anything
that uses squared errors essentially has an assumption of
normality.

fitting a central value

m

To illustrate: let’s learn which single value best represents
our data. We choose a value m, compute the distance to all
our data points (the residuals) and try to minimise their
squares.

We can use such a single value for imputation to replace
missing values or outliers, but this is also a kind of
simplified picture of linear regression: if we had a
regression problem with no features, the best we could do
is predict the same single value for all instances. Which
value should we pick to minimize the squared errors?

arg min Z(m —xi)?
m T

Z o(m —xy)? i
om

i

Z A(m —xi)?2 0m — x4

om — xq om
ZZm7xi =0

i
nm— E xi =0
i
2ixi

n

=0

i

m=

We take the derivative of the objective function and set it
equal to zero. No gradient descent required here, we’ll just
solve the problem analytically.

What we find is that the optimum is the mean. The
assumption of squared errors leads directly to the use of
the mean as a representative example of a set of points.

Remember the previous lecture where we showed that the
maximum likelihood objective on the normal distribution led
to a least squares objective for its parameter u? You can tie
that to this derivativation, and conclude that the maximum
likelihood solution for p is the arithmetic mean of the data.

We can now see why the the assumption of squared errors
is so disastrous in the case of the income distribution.

If Bill Gates makes a million times as much as the next
person in the dataset, he is not pulling on the mean a
million times as much, he’s pulling 1012 times as much.

Hence the joke: A billionaire walks into a homeless shelter
and says “What a bunch of freeloaders, the average wealth
in this place is more than a million dollars!”

mean absolute error

arg min E m —x;
m .

1

To get rid of the normality assumption, or rather, replace it
by another assumption, we can use the mean absolute
error instead. We take the residuals, but we sum their
absolute value instead of their squared value. Which is the
most representative value that minimises that error?

Z om—xilom—x;
— Om—x; om
1

Z sign(m —xi) =0

To work this out, we need to know the derivative of the
absolute function. This function is the identity if the
argument is positive (so its derivative is 1) and the negative
identity if the argument is negative

mean absolute error -> median

Z sign(m —xi) =0

We’ve worked out that the value m that minimizes this
error is the one for which the signs of the residuals sum to
zero. This happens if the sum contains as many “-1”s as “+1”
s, that is, if we have as many instances to the left of m as we
have to the right. In other words, the median minimizes
the mean absolute error.

If we use the median, Bill Gates still has a strong pull on the
our representative value m, but it's proportional to his
distance to m, not to the square of the distance.

Arice Tak Road Ed

List of countries by wealth per adult

From Wiipodia, th fee encyciopedia

Moan wealth
poradutt. ~
Us dollars
564653
189258
3 = United States 2365
386058
380868
358,003
304124
207873
204255
24022
280040
29077
26121
274919

212310 2

This mistake, of using the mean when a normal distribution
is not an appropriate assumption, is sadly very common.

For example, you might hear someone say something like
“there’s no poverty in the US, it’s the third richest country
in the world by average personal wealth”.

Wikipedia allows us to fact-check this quickly and it is
indeed true. But remember that Bill Gates and Jeff Bezos
live in the US, and as we saw, such people have a pretty
strong pull on the mean. Luckily, Wikipedia also allows us
to sort the same list by median wealth.

Arice Tak Resd E9

List of countries by wealth per adult

From Wikpad, th foe encyciopedia

22 || = United States 65,904 432,365 245,140

If we do that, we see that the US suddenly drops to 22nd
place. This drop indicates how big the income inequality is.

The Netherlands drops from 12th to 34, incidentally. So
there’s plenty of income inequality over here as well.

Gamesindustry & v
@GIBiz

"There are 220,000 or so people employed in the US
video game business. They make about $100,000 on
average, maybe more. It's hard to imagine what would
motivate that crew to unionize"

Strauss Zelnick talks unions, release planning, next-gen,
E3 and more

Here’s an example of this fallacy in the wild. In 2019, there
was a discussion in the US about unionisation in the games
industry. Here, one of the heads of Take-Two suggests that
because the average yearly salary has six figures, unions are
unlikely.

Whether rich people can benefit from unions is a question
for a different series of lectures, but the fact that the
average wages are high, most likely just means that there is
a small number of very rich people in the industry. We’d
need to know the median to be sure.

source: https://twitter.com/GIBiz/status/
1140900959322804224?s=20

models that can deal with natural outliers

Beware of squared errors (MSE)
They are only justified if your values have well-determined scal ¥
Lecture

Model noise with a heavy-tailed distribution

Choose the median over the mean, MAE over MSE.

The proof is in the pudding.

The performance on the test/validation set will be the deciding factor.

If you want to adapt your model to deal with natural
outliers, beware of hidden assumptions of normality. We
saw a hint last lecture already that assuming normality
leads to squared error objectives. We'll look at this in detail
in a later lecture. For now, keep this link in mind when you
look at the distribution of your outliers.

Consider modelling your noise with a heavy-tailed
distribution instead, in other words, one which makes
outliers more likely. Using the median instead of the mean
is one way to do this.

If you are doing regression and your target label is non-
normally distributed then you can use the sum of absolute
errors as a loss function instead of the sum of squared
errors. This will also implicitly assume a more heavy-tailed
distribution than the normal, but even more heavy tailed
distributions are available. We'll look a little bit more at
modeling data with different distributions in later lectures.

Data pre-processing

Class imbalance and feature design

|section|Class imbalance and feature design|
|video|https://surfdrive.surf.nl/files/index.php/s/
05yQd1mIGCsF8SP/download|

http://mlvu.github.io

class imbalance

——————————————— 10000 instances

1000 instances ——

250 instances —

n

In the last lecture, we saw that class imbalance can be a big
problem. We know what we can do to help our analysis of
imbalanced problems, but how do we actually improve
training?

class imbalance

Use a big test set.

Don't rely on accuracy. Try ROC plots, precision-recall plots,
AUC, etc. Look at the confusion matrix.

Resample your training data.

Use data augmentation for the minority class

5

We will assume that the class imbalance will happen in
production as well as in your experiments. That means your
test set needs to have the class imbalance in it, to be a fair
simulation of the production setting. You can fiddle around
with the training data all you like, but the test data (and by
extension the validation data) needs to represent the
natural class distribution.

As aresult, you'll need to focus on getting a large test set
even more than normal: your problem is essentially that of
detecting instances of the minority class. If you only have 25
of them in your test set, you won't get a very good idea of
how well your classifier can detect them, even if you have
10000 majority class instances.

This is usually a painful step, since withholding a lot of test
data leaves you with very little training data. However, since
you are allowed to manipulate the training data however
you like, you should prioritize the test data. There may be
clever tricks to get more mileage out of the imbalanced
training data, but without a proper test data, you won't be

oversampling

Sample with
replacement

The most common approach is to oversample your
minority class by sampling with replacements. That is, you
create a new dataset that is bigger than the original one, by
adding a number of copies of randomly sampled instances
of the minority class. That way, the class balance is more
even in your new dataset.

The advantage is that this leads to more data. The
disadvantage is that you end up with duplicates in you
dataset. This may increase the likelihood of overfitting,
depending on what algorithm you are using.

undersampling

Sample without
replacement

te: both change the data distribution
note:

You can also undersample your majority class. You create a
copy of your dataset where some randomly selected
instance of the majority class are thrown out.

This doesn’t lead to duplicates, but it does mean you're
throwing away data.

If you have an algorithm that makes multiple passes over
the dataset (like gradient descent) it can help to resample
the dataset again for every pass, so that you don’t lose the
variation in the original data.

Whether you oversample or undersample, you should be
aware that you are changing the class distribution in the
data. If you increase the proportion of the majority class,
the classifier will be more likely to classify things by the
minority class. This will be a tradeoff: you want to
oversample to the point where the classifier begins to pick
up on the features that indicate the minority class, but not
so much that the classifier begins seeing the minority class
when the features do not indicate it.

The simplest way to achieve this is to treat the amount of
resampling as a hyperparameter, and to optimize for
precision/recall or ROC curves.

Another option is to treat the classifier as a ranking classifier,
as we saw in an earlier lecture. That way, we can train on re-
balanced data, and then move the threshold after training to
tune how eager the classifier is to call something positive.

data augmentation

SMOTE: add midpoints between nearby minority class data
points.

Domain specific: rotate or translate images in the minority
class. Add Gaussian noise.

Remember: only on the training data. Keep the test data as
is.

morei on: htps: kaggle.com/raf gies-f
datasets

A more sophisticated approach is to oversample the
minority class with new data derived from the existing
data.

SMOTE is a good example: it finds small clusters of points in
the minority class, and generates their mean as a new
minority class point. This way, the new point is not a
duplicate of any existing point, but it is still in a region that
contains a lot of points in the minority class, to keep it
realistic.

We don’t have time to go into this deeply. If you run into this
problem in your project, click the link for detailed
explanation.

more information: https://www.kaggle.com/rafjaa/
resampling-strategies-for-imbalanced-datasets

https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets
https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets

getting features

phonenr income status unemployed birthdate age
0646785910 32000 married true 4-5-78 41
0207859461 45000 single false 3-6-00 19
0218945958 89000 married true 4-7-91 28
0645789384 34000 divorced false 3-11-94 25
0652438904 54000 married true 21-3-95 24
0309897969 36000 single false 4-12-46 73
0159874645 21000 single true 13-8-52 67

Next, let's look at what we should to with the features in
our dataset.

Even if your data comes in a table, that doesn’t necessary
mean that every column can be used as a feature right away
(or that this would be a good approach). We'll need to look
at the data provided and come up with a good way to
translate it to a form in which the machine learning model
is likely to learn from it. This depends both on what the
data gives you, and on how your chosen model works.

Translating your raw data into features is more an art than
a science, and the ultimate test is the test set performance.
We'll look at a few simple examples, to give you an idea of
the general way of thinking you should adopt.

from: date, phone number, images, status, text, category,
tags, etc...

to: numeric, categoric, both.

Some algorithms (like linear models or kNN) work only on
numeric features. Some work only on categorical features,
and some can accept a mix of both (like decision trees).

to numeric: From integer to real-valued. Not

age A
usually an issue.

41
to categoric: Group data into bins? E.g. above or
19 below the median.

- Information loss is unavoidable.

25
24
73

67

This particular age column is integer valued, while numeric
features are usually real-valued. In this case, we can just
interpret the age as a real-valued number, and most
algorithms won’t be affected.

If our algorithm only accepts categoric features, we’ll have
to group the data into bins. For instance, you can turn the
data into a two-category feature with the categories “below
the median” and “above the median”.

We’ll lose information this way, which is unavoidable, but if
you have a classifier that only consumes categorical
features which works really well on the rest of your
features, it may be worth it.

phone nr
0646785910
0207859461
o2tesasoss
0645789384
0652438904

0309897969

0159874645

to numeric: From integer (?) to real-valued.
Highly problematic.

to categoric: area codes, cell phone vs.
landline

We can represent phone numbers as integers too, so you
might think a direct translation to numeric values is fine.
But here it makes no sense at all. Translating a phone
number to a real value would impose an ordering on the
phone numbers that would be totally meaningless. My
phone number may represent a higher number than yours,
but that has no bearing on any possible target value.

What is potentially useful information, is the area code. This
tells us where a person lives, which gives an indication of
their age, their political leanings, their income, etc. Wether
or not the phone number is for a mobile or a landline may
also be useful. But these are categorical features.

Often in such cases, a single column in your raw data can
yield several features for your machine learning model. For
instance the phone number can give us area codes, but we
can also derive from that whether the person lives in a big
city or in the country side, whether the person has a cell
phone or a landline, which province the person lives in,
whether the person has a phone or not, etc. We could even
extract a rough latitude/longitude in the form of two
numeric features.

Some of these require a little work and creativity, but they
can be extremely informative features. Especially compared
to the raw phone number interpreted as an integer.

categoric to numeric

genre
sci-fi
romance
comedy
thriller
thriller
romance
romance
sci-fi
thriller
comedy

integer coding: one-hot coding:

genre scifi romance comedy thriller

1 1
1

AW 2NN WwWw s N

aka 1-of-N coding

So what if our model only accepts numerical features? This
is very common: most modern machine learning algorithms
are purely numeric. How do we feed it categorical data?
Here are two approaches.

Integer coding gives us the same problem we had earlier.
We are imposing a false ordering on unordered data.

One-hot coding (also called one-of-N coding) avoids this
issue, by turning one categorical feature into several
numeric features. Per genre we can say whether it applies
to the instance or not.

In general, the one-hot coding approach is preferable. For
almost all models, adding extra features does not
substantially affect the runtime, and separating the
different classes like this allows most models to use the
information much more effectively.

sent to pharmacy

LY
DA

-1
“loo 075 -0s0

0.00
mentions drugs

expanding features
e * o+

Once we've turned all our features into data that our model
can handle, we can still manipulate the data further, to
improve performance.

How to get the useful information from your data into your
classifier depends entirely on what your classifier can
handle. The linear classifier is a good example. It’s quite
limited in what kinds of relations it can represent.
Essentially, each feature can only influence the classification
boundary in a simple way. It can push it up or down, but it
can't let its influence depend on the values of the other
features. Here is a (slightly contrived) example of when that
might be necessary.

Imagine classifying spam emails on two features: to what
extent the email mentions drugs, and to what extent the
email is sent to a pharmaceutical company. We'll consider
the simplified case where every email that mentions drugs
is spam, and every email that does not mention drugs is
ham, unless the email is sent to a pharmaceutical company,
in which case the roles are reversed.

With these two features, and this logic, we get the decision
boundary shown here. This problem, called the XOR
problem after the Boolean relation which produces the
same picture, is completely impossible for a linear classifier
to solve.

cross product

d) d*p
0.75 0.98 0.74
-0.66 -0.32 0.21
-0.45 0.84 -0.38
0.93 0.78 0.72
-0.42 0.24 -0.10
-0.02 0.43 -0.01
-0.74 0.58 -0.43
-0.41 -0.41 0.17
nEea nz7o n 4o v

We can switch to a more powerful model, but we can also
add power to the linear classifier by adding extra features
derived from the existing features.

Here, we’ve added the cross-product of d and p (one value
multplied by the other). Note the XOR relationship of the
signs: two negatives or two positives both make positive, a
negative and a positive make a negative.

If we feed this three-feature dataset to a linear classifier, it
can easily solve the problem. All it needs to do is to look at
the sign of the third feature, and ignore the rest. We still
have a simple linear classifier, which can easily and
efficiently be optimally solved, but now it can learn non-
linear relations in the original 2D feature space.

~075
.

_10042
“Too

.
075 050 -025 000 025 050

Here's what the result looks like for our data.

This is a linear classifier that operates in a 3D space. But
since the third dimension is derived from the other two, we
can colour our original 2D space with the classifications.
Projected down to 2D like this, the classifier solves our XOR
problem perfectly.

2000

0.2

~0.50

—LO0 075 050 025 000 025 050 075

X

Here’s one more example. In this dataset points are given
the negative class if the distance to the origin is less than
0.7. Again, this problem is not at all linearly separable.

Using Pythagoras, however, we can express how the classes
are decided: if x12 + x22 < 0.72then we classify as red,
otherwise as blue. This is a linear decision boundary for the
single feature x12 + x22 or for the two features x12 and x22.

-041 -041 0.16

cross product with self

0.17

Here is how that looks in the second case. We add the two
features x12 and x22 to the dataset, making it a 4-
dimensional problem.

If we scatterplot just these two new axes, we see that the
problem becomes linear. This is because deciding whether
the sum of two features is larger than a particular value, is a
linear problem.

So, if we add those features to the data, creating a 4D

dataset, a linear decision boundary in that space solves our

problem perfectly. This classifier can just ignore the two

other features, and make its judgment purely on the values

of the two new features we added.

If we draw the decision boundary in the original space, we
see that it forms a perfect circle.

DATA

REGENERATE

playground.tensorflow.org
000,000 o

00001

FEATURES

+ — 0 HIDDEN LAYERS ouTPUT

Classification

You can try this yourself at playground.tensorflow.org.
The column labeled features contains some extra features
derived from the original two by various functions
(including the cross product).

Note that both the XOR and Circle dataset are present.

regression

output space

100 .

feature space

We can do the same thing with regression. Here, we have a
very non-linear relation.

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.0001®ularizationRate=0&noise=0&networkShape=&seed=0.06879&showTestData=false&discretize=true&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&discretize_hide=true®ularization_hide=true&batchSize_hide=true®ularizationRate_hide=true&percTrainData_hide=true
http://playground.tensorflow.org

output space

feature space

A purely linear classifier does a terrible job.

y=wx+b>b .

o Y =wix+wox2+b

output space

feature space

We can fit a parabola through the data much more closely.
We can see this as a more powerful model (a parabola
instead of a linear model), but we can also see this as a 2D
linear regression problem, where the second feature (x2) is
derived from the first.

This is relevant because linear models are extremely simple
to fit. By adding derived features we can have our cake and
eat it too. A simple model that we can fit quickly and
accurately, and a powerful model that can fit many
nonlinear aspects of the data.

If we don’t have any intuition for which extra features might
be worth adding, we can just add all cross products of all
features with each other and with themselves (like x2).
Other functions like the sine or the logarithm may also help
alot.

adding features

Can make a weak classifier (especially a linear one)
stronger.

Any function of one or more of the existing features can
work.

The problem stays convex: easy to solve, optimal solution
guaranteed.

Common choice: all 2-way cross products, all 3-way cross
products, etc.

2 2 .2 2 3
XY, 2 = X, Y, 2, XY, 24, XY, X2, Y7, 2%, xyz, Xy, X

Adding all 2 and 3 way cross products blows up very
quickly, but it's important to not that linear classifiers are
extremely cheap to fit. We can still do it very quickly and
efficiently, even if we have 100 000 features or more.

|section|Normalization|
|video|https://surfdrive.surf.nl/files/index.php/s/
xfpoE72AzWFIxPy/download|

Data pre-processing
Normalization

normalization For some models, it's important to make sure that all

numeric features have broadly the same minimum and

. . maximum. In other words, that they are normalized.
. . To see why, let’s revisit the k nearest neighbors (kNN)
. classifier from the first lecture.

http://mlvu.github.io

2000

1980 . A,O

cx\ﬁhoﬁwce: .

1960 —

1000 | D @

dist
ANce.
1920 4 . €€ 0,00z

1900 .

year of birth

0.002 0.010
pupil dilation (m)

Imagine we are using a 1-NN classifier (i.e. it only looks at
the nearest example, and copies its class).

In this plot, it looks like the blue and the red dot are the
same distance away.

But note the range of values for the two features: years and
pupil dilation. Because years are measured in bigger units
than pupils, the blue dot will always be much closer. But
this distinction is not meaningful: we cannot compare
durations to distances. The only thing that really matters is
how close the point is to our target comapred to the other
points in the data. The absolute distance in the natural units
doesn't matter.

What we want to look at is how much spread there is in the
data, and use that as our distance. We do that by
normalizing our data before feeding it to the model.

creating a uniform scale

normalization
fitto [0,1]

standardization
fit to 1D standard normal distribution

whitening
fit to multivariate standard normal distribution

We’ll discuss three approaches to solving this problem.
Normalization, which reshapes all values to lie within the
range [0, 1], standardization, which reshapes the data so
that its mean and variance are those of a standard normal
distribution (0 and 1 respectively) and whitening, which
looks at features together, to make sure that as a whole
their statistics are those of a multivariate standard normal
distribution.

These terms are often used interchangeably. We’ll stick to
these definitions for this course, but in other contexts you
should check that they mean what you think they mean.

normalization

range

X1 7 1 & T 09— & —0 0 — &
0 1

—r—z— - ®6 96 ¢

Normalization scales the data linearly so that the smallest
point becomes 0 and the largest becomes 1. Note that
because xmin is negative (in this example), we are actually
moving all data to the right, and then rescaling it. z is the
normalized version of our data.

We do this independently for each feature.

standardization

mean std. dev.

Another option is standardization. We rescale the data so
that the mean becomes zero, and the standard deviation
becomes 1. In essence, we are transforming our data so that
it looks like it was sampled from a standard normal
distribution (or as much as we can with a one dimensional
linear transformation).

“generating” the data reverse
Sample z from N(O, 1) estimate 1 and o

translate to N(u, 0): translate back to N(0, 1):
X=20+ z=(x-p)/o

The standardization operation is pretty simple, and maybe
you can see where it comes from intuitively (it's pretty
similar to the normalization operation), but even so, it's
good to derive it carefully. This will prepare us for
whitening, where we will do the same thing across multiple
features.

For a rigorous derivation, we can think of the data as being
"generated" from a standard normal distribution, followed
by multiplication by o, and and adding (.. The result is the
distribution of the data that we observed. You can think of
all normally distributed data being generated this way:
sampled from a standard normal distribution, and scaled
and translated to fit some non-standard distribution.

If the data isn't normally distributed, we simply pretend that
it is, and usually the results will still be fine. This is a common
trend in machine learning, we care more about whether our

assumptions work, than whether they are true.

If we then compute the mean and the standard deviation of
the data, the formula in the slide is essentially inverting
the transformation. We reverse the order, and replace
addition by subtraction and multiplication by division. This
takes the distribution that we observed and recovers the
“original” data as sampled from the standard normal
distribution.

We will build on this perspective several times throughout
the course.

Of course, in practice our data may not be normally
distributed at all (standard or otherwise), so we should be a
bit careful with these kinds of operations that assume a
normal distribution. Still, if the data is roughly equally
distributed over a finite range, without any extreme
outliers, standardization will work fine for most models.
And, if it really fails, then normalization will probably fail
too, and you'll need to think about trying more exotic
approaches, or even designing your own.

Remember, the proof is in the pudding: if the validation
error is low, you probably did alright.

Here’s what standardization looks like if we apply it to data
with two features. If the data is uncorrelated, we are
reducing it to a nice spherical distribution, centered on the
origin, with the same variance in each direction. Exactly
what data from a multivariate standard normal
distribution looks like.

If, however, our data is correlated, that is; knowing the
value of one feature helps us predict the value of the other,
we get a different result. This is because we standardize
each feature independently, and the features are not
independent. Is there a way to achieve the same effect with
the correlated data? Can we transform the features
somehow so that it looks like they came from a distribution
like the one top right? This is what whitening can do for us.

Note that this is not usually necessary in practice.
Normalizing or standardizing each feature
independently is usually fine, especially if your model is
powerful enough to learn correlations. However, whitening,
normalizing across features, can sometimes give you a little
boost. It will also help us understand the PCA method,
which we will discuss in the next video.

In essence we want to transform the data top right to
something that looks like the data bottom left. Or, the same
question asked differently, can we express the data in
another coordinate system, to that in the new coordinate
system, the features are not correlated and the variance in
the direction of each axis is 1?

In order to show how to do this we need to revise some bits
of linear algebra. Specifically, we need to look at linear
bases (the plural of basis).

We'll go through it a bit quickly, because we assume that
you've already covered basis transformations in linear
algebra. If not, or if your memory of them is hazy, you should
take some time to review them.

summing vectors First, a quick reminder of how summing vectors works. We

3 stick the tail of vector b onto the head of vector a and draw
a+b=c a line from the tail of a to the head of b. The point where we
end up is the tip of the vector a + b.

B up entirely of the two vectors (1 0) and (0 1). To describe a

i 1 0 point in the place, we just sum a number of copies of these
a= (0) = <1> vectors.
3 Every point in the plane is just a linear combination of these
R ° x =3a+2b= (2> two. A coordinate like (3, 2) means: “sum three copies of a

and add them to two copies of b.” We call these basis
vectors: vectors that allow us to describe all points in a

space in terms of a multiple of each of the basis vectors. The
A set of points that can be described in this way is the space
spanned by the basis vectors.

base If we choose different basis vectors, we get a different
b coordinate system to express our data in. But (excepting
‘ some rare choice of basis vectors), we can still express all
\ the same points as a number of copies of one vector, plus a
number of copies of the other.

The blue point, which was at coordinates (3, 2) in our
standard basis, is at coordinates (1.6, 0.4) in this new basis.

Xs

Xp =

If we know the coordinates xp in our non-standard
coordinate system, it’s easy to find the coordinates xs in the
standard basis. We just multiply the first coordinate of x»
with the first basis vector, the second coordinate with the
second basis vector and sum the result.

2 -1 . 3
[c,d] = L xg =1.6c+0.4d = (

Xs = BXb
Xp =]371)(S

If the columns of B are orthogonal unit vectors, then B
represents an orthonormal basis. In that case:

Xp = BTXS

The basis vectors are usually expressed as the columns of a
matrix B. That way, transforming a coordinate x in basis B
to the standard coordinates can be done simply by matrix
multiplying B by x. It also tells us that to go the other way,
to transform a standard coordinate to the basis, you
multiply by the inverse of B.

Since inverting a matrix is an expensive and numerically
unstable business, it's good to focus (if possible) on
orthonormal bases. That is, bases for which the basis
vectors are orthogonal (the angle between any two of them
is 90 degrees) and normal (all vectors have length 1). In
that case the matrix transpose (which is simple to compute
without loss of precision) is equal to the matrix inverse, so
we can switch back and forth between bases quickly,
without losing information.

Here [a,b] represents the matrix created by concatenating
the vectors a and b.

We can now re-phrase what we’re aiming to do: we want to
find a set of new basis vectors so that we can express the
data in a coordinate system where the features are not
correlated, and the variance is 1 in every direction.

Note that the latter means we can’t have an orthonormal
basis (the basis vectors can’t be one).

We can fix this by first computing an orthonormal basis, and
then scaling independently along each axis, but we won't go
into that here. For now, we'll just allow for non-orthonormal
bases.

multivariate normal distribution ()

(
2= (o7 07)

To figure out how to find this basis, we will follow the same
principle as we did with standardisation: we will assume
that the data was generated by a standard multivariate
normal distribution (MVN), followed by a translation and a
change of basis (with the change of basis causing some
features to become correlated). We will attempt to reverse
the process by:

- fitting a (nonstandard) MVN to the data

+ figuring out the transformation that transforms the
standard MVN to this MVN

- applying the inverse of this transformation to the
observed data

A multivariate normal distribution is a generalisation of a
one-dimensional normal distribution. [ts mean is a single
point, and its variance is determined by a symmetric matrix
called a covariance matrix. The values on the diagonal
indicate how much variance there is along each dimension.
The off-diagonal elements indicate how much co-variance

standard normal distribution ()

The standard MVN has its mean at the origin and the
identity matrix as its covariance matrix (i.e. its features are
uncorrelated, and the variance is 1 along every dimension).

fitting an MVN to data

m

:%in
1

= [xl,...,xn] —1m

The maximum likelihood estimators for the sample mean
m and sample covariance S look like this. Computing these
values lets you fit an MVN to your data.

You can derive these by starting with the probability density
function we saw in the last slide, applying the maximum
likelihood objective, setting the derivative equal to zero and
solving for the mean and for the covariance. You don't have to
be able to do this (it gets a bit technical), but you do have to
understand the idea.

MVNs as transformations

(- standard normal

Start with N(0, I)
- LetZ~N(0,1)
- LetX=AZ+t
then:

X ~N(t, AAT)

As before, we will imagine that our data originally came
from a standard MVN, and was then transformed to the data
we observed by multiplying each point by some matrix A
(changing the basis) and then adding some vector t (moving
the mean away from the origin).

We can sample a point z from an n-dimensional standard
MVN by simply filling z with values sampled from a one-
dimensional standard normal distribution.

If we then transform z by multiplying it by some matrix A
and adding some vector t, the result is the same as sampling
from an MVN with mean t and covariance AAT,

Any MVN can be described in this way as a transformation
of the standard normal distribution.

MVNs as transformations

- Az +t

Here’s what that looks like. For our data. We imagine some
data sampled from a standard MVN. We multiply by some
some matrix A to squish and rotate it. And then we apply a
translation vector t to translate it to the right point in space.

whitening: invert this transformation

- Compute S, m from data.

- Find some A such that S = AAT

Cholesky decomposition
Singular Value Decomposition (PCA whitening)
Matrix square root

- Whiten the data:

z=A1(x—m)

Now, we need to invert this. Given some data, we fit an
MVN, find out which A and t match that MVN, and then
invert the transformation from the standard MVN to the
observed data.

In slide 72, we saw that the covariance after our
transformation was AAT, so if we estimate the covariance S
and find some matrix A such that AAT = S, we can then use
that A for the inverse transformation.

Finding this A can be done in many ways. The most stable and
popular one is the singular value decomposition (SVD), which
leads to a method known as PCA whitening, discussed in the
next video.

Since the multiplication by A doesn’t change the mean, we
know that the translation vector t is equal to the mean m.

Once we know A and t, we can reverse the transformation
as shown here.

Compare this to the standardization operation we saw
earlier: there, we subtract the mean, and multiply by the

inverse of the standard deviation. Here we do the same, but
in multiple dimensions

Note that the standard deviation is the square root of the
variance, just like the A matrix squared is the covariance.

Rescale your data so that the relative differences between
instances are emphasized.

Normalization or standardization are usually good
enough.

Whitening is a more powerful method. Usually not
necessary, but it pays to understand it.

|section|Principal Component Analysis|
|video|https://surfdrive.surf.nl/files/index.php/s/
G5jhEGFlwdRgvOw/download|

Data pre-processing

Principal Component Analysis

http://mlvu.github.io

dealing with too many features

Dimensionality reduction:

Map the features to a new smaller set of features. Retain as
much information as possible.

Some datasets have more features than a given model can
handle. Or, maybe the model can handle it, but it's
overfitting on all the noise that so many features introduce.

In that case, there are two things we can do: we can try to
find a subset of the features that is most informative, and
operate on those. This has the benefit that the features
retain their meaning and are still interpretable. This is
called feature selection.

The alternative is to take information from all all features
and to map them to a new (smaller) set of derived features,
which retain as much of the original information as
possible. This is called dimensionality reduction. In this
case, the new features don’t always have an obvious
meaning, but they may still work well for machine learning
purposes.

In this video we will just look at one dimensionality
reduction method: Principal Component Analysis (PCA). We
won't discuss feature selection, but if you're interested, a
good place to start is the methods that come with sklearn:
https://scikit-learn.org/stable/modules/
feature_selection.html

dimensionality reduction

data 2 22 z3

32 3 .0 6 2 15 02 -3 2
a4 0 .3 .0 9 34 4 0 9
6 4 0 ...0 3 5 2 5 -2 5
6 0.1 ...0 4 5 4 0 a5
ﬂ S5 0 3 ... 3 6 21 0 3 6
Hai:3.a. 343 8 3 1 8
2 .0 2 .. 40 2 a0 2 2
3 .8 4 .. 3.0 3 0 -8 4 3
96 6 .0 0 4 4 6 6 2
0 9 3 ... 3 .3 4 2 9 3 4
Bloséo. 6.0 0 6 0 0
E 6 0 3 .. .0 .20 7 -5 3 0
3 6 60 6 3 3 6 3 3
6 .0 .7 .. 0.7 0 1130
28%2¥ pixels = 754 features

Dimensionality reduction is the opposite of the feature
expansion trick we saw earlier. It describes methods that
reduce the number of features in our data (the dimension)
by deriving new features from the old ones, hopefully in
such a way that we capture all the essential information.
There are several reasons you might want to reduce the
dimensionality of your data:

+ Efficiency. Some machine learning methods can only
handle so many features. If you have a very high
dimensional dataset, you may be forced to do some
dimensionality reduction in order to be able to run your
chosen model.

* Reduce variance of the model performance (make the
bias/variance tradeoff). Feature expansion boosts the
power of your model, likely giving it higher variance and
lower bias. Dimensionality reduction does the opposite: it
reduces the power of your model likely giving you higher
bias and lower variance.

* Visualization. If you're lucky (or if you have a very

strong dimensionality reduction method), reducing down
to just 2 or 3 dimensions preserves the important
information in your data. If so, you can do a scatterplot,
and use the power of your visual cortex to analyse your
data (i.e. you can look at it).

We'll use x for the original features and z for the reduced
features. This is the same letter we used in normalization, but
as we will see later, normalization and dimensionality
reduction have a lot in common.

example

4000

3000

2000

monthly salary ()

1000

FA)

0+ :
(‘\/ 2000

4000

6000
quarterly income ($)

8000

10000

12000

Dimensionality reduction makes most sense when there are
correlations between your features. That is, when you can
predict the value of one feature from the value of another
with some success.

Here is a very simple example: imagine a dataset of people's
income that contains their income per quarter and their
salary per month. In this case, one of the features is entirely
redundant. This is apparent from the fact the data forms an
exact line when we plot it.

We can just store the quarterly income and multiply it by 3,
or store the quarterly income and divide it by 3.

Or, we could draw a line through the data, and describe
each instance by how far far along the line it is. So long
as we know what the line is, this one number z; is enough
to perfectly reconstruct both features. This is the basic idea
from which we will develop principal component analysis.

®

monthly salary

w
S
5
3

1000

04 r
0\/000

"
6000
quarterly income (8)

T
8000

T
10000

T
12000

,
example
1000)

In practice, it's quite rare that our data is so perfectly
correlated. But there is often some correlation.

Imagine, for instance, that we take into account that people
have other sources of income beyond their salary (perhaps
bonuses, one-time jobs, or investments paying off). In that
case, the salary will still be the most important source of
income, but we can expect the quarterly income to be a
little different from three times the salary.

The data still lies roughly on a line, but no longer perfectly.
We can't draw a perfect line through all points, but we can
fit a line roughly through them. Then, we can represent
each point by projecting it onto the line and measuring
how far along the line the point is. This time the number z;
won't be enough to perfectly reconstruct both features, we
can only reconstruct points that are exactly on the line, but
if the line is a good fit through the points, our
reconstruction will be pretty close.

Here, z is the reduced feature. If we find a well-fitting line,
we can use the one-dimensional feature z instead of the two

features x1 and x2 and hopefully still retain enough
information for machine learning algorithms to work well
on this reduced data.

linear reduction

data
3
o

0 6

05 01 reduction

21=0.3-2+0.2-1+0.3:0 + 0.0-0.5 + 0.6:0.1

z1=xTc'

ral

reduced
8

We will restrict ourselves to linear reductions. To create
one of the derived features zi, the only thing we are allowed
to do is to pick one number for each feature, multiply them
together and sum the result. These values we multiply by
the original features should be the same for all instances.

If we arrange these multipliers in a vector ¢’ then we can
simply say that the reduced feature is the dot product of the
original features x and the parameter vector c'. The vector
c' determines the direction of the line in the previous slide.

If we want more than one reduced feature, we can add
additional parameter vectors. However, to keep things
simple, we start with just one.

The question is, how do we choose the elements of ¢'?

reduction to 1 dimension

reduce
X —
z=x'c¢
S e
°
[] ° o
[]
® o
[J
e .

reconstruct /
—l X
x =zc
&
K J
0

Since we're focusing on a single feature for now, we'll drop

the subscript and call this feature "z". This is a single scalar
value representing our entire instance x.

The way we’ll find the parameters ¢’ for our reduction is by
optimizing the reconstruction error. We’ll come up with
some function that reconstructs our data from the reduced
point z. The closer this reconstruction is to the original
point, the better. It hopefully makes some intuitive sense
that the better we can reconstruct x from z, the more
information from x has been retained in z.

To keep things simple, both the function that reduces the
data and the function that reconstructs the data should be
linear. This means that our reconstruction is just some
second vector ¢, which we also get to choose, multiplied by
the reduced feature z. We'll also assume that the data is
mean-centered, so that we won’t need to apply any
translations: the mean of the original data, the reduced
data, and the reconstructed data is zero or the zero vector.

If the data isn't mean-centered, we just subtract the mean

from each instance before we start the principal component
analysis.

To recap, under these constraints, the reduction function
consists of taking the dot product of our vector with some
parameter vector c’, and the reconstruction function
consists of multiplying our reduced representation with
some other parameter vector c.

We will try to choose our parameters ¢’ and c in such a way
that x is as close as possible to x'. Before we figure out how
to do this, however, we can simplify our problem. We can
show that for the optimal solution, the vectors c’ and c
must be the same. We'll show that first.

zc

Here is the reconstruction of x from z isolated in a diagram.
Take a moment to study this picture. Note that we have
fixed a line by our choice of ¢, and our reconstruction,
because it can only be a multiple of ¢, must be somewhere
on the line.

We'll work out what our functions should be in the
following order. First, we will assume that we have the
reconstruction function, and ask what the best reduction
function is to use. Then we will work out an optimization
objective for both of them together.

Imagine that c is fixed. This could be at the optimal value, or
some terrible value, but somebody has chosen c for us and
we're not allowed to change it. Which value should we
choose for z to put x" as close to x as possible?

Given c, what's the closest we can get to x while staying on
the line? If you remember your linear algebra you'll know
that this is the point where the line between x and x’ makes
a right angle with the line of c. This is the orthogonal
projection of x onto c. What you should also remember
from linear algebra is that the length of zc in this picture is
related to the dot product of x and c. Why?

the dot product provides the orthogonal projection From basic trigonometry, we know that the length of the
black line is ||x]|| cos a.

x' =zc
For our purposes, the length of c doesn’t matter (if we
make c longer or shorter it still defines the same line), so
we’ll assume that it has length 1 (that is, it is a unit

vector).

Because ||c|| = 1, we can multiply by that without changing
the value, which means that the length of the black line is

equal to ||c]||-||x|| cos a, the dot product between x and c.

assume that cis a unit vector If this seems a bit magical, see peterbloem.nl/blog/pca
“ (required reading) for a more intuitive proof. It all boils down

to the Pythagorean theorem in the end.

) x) What this tells us, is that the orthogonal projection of x onto
’ ’ c is found by taking the dot product of x and c. Since c has
length one, this is the value that we want to multiply c by to

/ gettox’.
B zc

When we started, we assumed that we had two parameter
vectors: ¢ for the reconstruction, and c' for the reduction.
reduction optimal reconstruction Now we find that whatever we choose for c, setting ¢’ = ¢
provides the optimal value of z.

z=x'¢c

reduction to 1 dimension This is the simplified picture: the reduction and and

reconstruction now have the same parameters c. Note that

reduce reconstruct /

X —_— z —_— X this required an additional assumption: that c is a unit
T ’

z=X ¢ X =zc vector.

o So here's the model: we pick some unit vector c, project our
‘. data onto it to represent it as a single scalar z, and then, to
() reconstruct the data, multiply c by z. As you can see, the

° .u‘ Py reconstructed data necessarily lie on a line. All we are
° . - looking to do is to get these reconstructions as close to the

. original points as possible. If we manage that, it's
reasonable to assume that we retained some information

from the original features in the single reduced feature z.

The only remaining question is, which ¢ should we choose
to minimize the reconstruction error?

Here's some randomly generated data. Remember, we
assumed that the data would be mean centered. Let's first
pick a random parameter c. And see what we get.

X

Here it is. The red points are our reconstructions. For each
point, the new feature z is the distance from the origin to
the red point. The grey lines indicate how far the
reconstruction is from the original data. Note that these
grey lines are orthogonal to the line described by ¢, because
we are reducing our data by orthogonally projecting it onto
c.

Clearly, this is not a very good choice for c. The grey lines
could be much shorter. This is how we’ll optimize for c.
We’'ll sum up the squares of the grey lines and minimize
that sum.

We can think of optimizing c as making the grey lines
rubber bands, that pull on the line representing c (which
pivots around the origin).

This is a lot like linear regression, but the task is slightly
different. Note that there is no target attribute here, and the
"residuals” are not parallel to one of the axes.

Doing regression with the residuals drawn like this is

arg min Z Ix" —x][?
© X
:argminz llz- c —x]?
c
x

:argrninz IxTc-c—x|?
c
x

2
. 2
=arg min E E (xTe-cy—xi)
© X i
. 2
= arg min E (xTc Sei—Xi)
c .
X,1

such that [|c]| =1

To find a better ¢, we will simply state our goal as an
optimization objective. We want to find the c for which the
squared distance between the data and the reconstructed
data is minimized. We first fill in the definition of the
reconstruction (line 2), and then the definition of the
optimal z (line 3).

In the definition of the Euclidean distance, the square root
cancels out against the square in our optimization, so that
we are left with a sum of the squares over every dimension i
in every reconstructed instance x’.

This leaves us with a simple objective to which we can
apply any search algorithm, like gradient descent. One thing
we must remember: we required that c is a unit vector.

Without this requirement we don't get ¢’ = c.

This means we have an optimization problem with a
constraint. This is a technical subject (have a look at the
extra lecture on SMVs if you're interested). For now, we can
solve this problem with a simple trick: we apply gradient

descent and normalize the vector c to scale it back to a unit
vector after every gradient update. This is called the
projection method for constrained optimization. It doesn’t
always work, but it does here. In practice, there are much
more efficient ways of computing PCA anyway, we're just
using gradient descent here because it's a method we're
familiar with.

the first principal component ¢

We run gradient descent and this is the solution that we
find. Itlooks pretty good. It’s hard to imagine any other line
c leading to shorter grey lines.

Note that the data is much more spread out along this line
than it was for our earlier choice of c.

We call this c the first principal component of the data.

for more dimensions

Repeat the process on the remaining directions.

The second principal component ¢ is the unit vector
- orthogonal to ¢;

- which, together with ¢, minimises the loss

Can be computed all in one go
Out of scope for this course

If we want to reduce the dimensionality to more than one
dimension, we repeat the process. Keeping the first
principal component fixed, the second principal component
is the one orthogonal to the first that minimizes the
reconstruction loss. This gives us two directions,
orthogonal to one another, to project onto. Our reduced
dataset then has two features.

Each next principal component is the direction orthogonal
to all the previous ones, that minimizes the loss, when the
data is reconstructed using all of them.

This works well as a definition, but in practice we don't need
to compute the principal components one by one. We just tell
some algorithm to give us the first k principal components,
and it spits them all out right away. How this works exactly, is
out of scope for this course. The results are the same as
solving this optimization problem one by one, just quicker.
The blog post in the required reading has some (non-
required) follow ups that go into more detail about this.

another perspective

The first principal component is the direction in which the

variance is maximal.
Le. the projected data is most spread out.

The second principal component is the direction,
orthogonal to the first, in which the remainder of the
variance is maximal.

And so on.

If you've heard about PCA before, you may be surprised by
this definition using reconstruction loss. Usually, the
principal components are defined as the directions in which
the variance of the projected data is maximized. The best ¢
is the line along which the orthogonal projections are the
most spread out.

The first principal component is the line along which the
variance of the data is maximal when projected onto the
line. The second principal component is the line orthogonal
to the first for which the variance is maximal, and so on.

It turns out, these two definitions are equivalent.

least squares is variance maximisation

p? = g2 + 12

original point x

r: sqrt of 's reconstruction error

) ‘projected point z

Let’s look at the one dimensional reduction again to show
why.

The variance of a one-dimensional dataset is defined as the
average of the squares of all the distances to the data-mean.
In our case, both the data and the reduction are mean-
centered, so the variance is just the sum of all the squares of
the z’s; our reduced representations. In this picture, the
length of the orange vector.

Thus, maximising the variance, means choosing c so that
the (squared) length of the orange vector is maximized

This arrangement into a right-angled triangle means that
the magnitude of the original data (p, the squared distance
to the mean) is related to the variance of the projected data
(q) and the reconstruction error (1, in black) by the
Pythagorean theorem.

Since p, the magnitude of the original data, is a constant, q2
+ 12 is constant, and minimizing the squared reconstruction
error r2is equivalent to maximizing the variance of the
projected data q2.

In the variance maximization view of PCA, we often talk
about how much variance the reduced data retains, seeing
the variance as a kind of “information content” in a
representation of the data. A perfect reconstruction has the
same total variance as the data.

choosing the nr. of principal components To use PCA for dimensionality reduction, we need to choose

the number of dimensions to reduce to. We can just treat
this as a hyperparameter and test different values.

But if we plot the variance or the reconstruction loss

against the number of components, we often see a natural

inflection point inflection point. In this case, we can retain the majority of
(keep only top 3 components)

variance

the variance in the data by keeping only the first three
principal components. The higher components still add a
little variance each, but not much.

" #Zi #3: PP #i w . What happens if we keep going until the new data has the

Component same number of features as the original?

source: http://alexhwilliams.info/itsneuronalblog/
2016/03/27/pca/

If we do that, we get perfect reconstructions, but our z’s are
still different from the original coordinates. We end up
expressing the data in another basis, called the PCA basis. It
turns out, that this actually gives us a whitening of the
data: in the new basis, the data is uncorrelated, with
variance 1 along each axis.

The different principal components c are unit vectors,
which are by definition all mutually orthogonal. This means
that the vectors c form an orthonormal basis. If we multiply
each with the standard deviation of the data projected onto
¢, we end up with a whitening basis.

yet another perspective This way of whitening is called PCA whitening. We apply

PCA with the same number of target dimensions as data
o dimensions. This gives us an orthonormal basis in which
PCA whitening: .
the data is uncorrelated. If we then measure the standard
- apply PCA with k=m deviation along each component and multiply the basis
. Use 05 C; as basis vectors vectors by that, we get a basis in which the data is

whitened.

While o and c together is not an orthonormal basis, ¢ by
itself is. Thus, we can still easily transform back and forth
between the whitened basis and the original data
coordinates.

Note also that this implies that if we used PCA for
dimensionality reduction, the data will also be whitened (if
we standardize it afterwards). The first k principal
components are always the same, no matter how many
more we decide to compute afterwards. Thus, the PCA
reduction just gives us the k most important dimensions of
the PCA-whitened data.

Doesn’t PCA have something to do with eigenvectors?

Or singular value decompositions?

Only if you want to compute it efficiently.
Or understand it even better. See peterbloem.nl/blog/pca-2

If you've heard about PCA before, you may be wondering
why [haven’t discussed eigenvectors, or the singular value
decomposition. These topics are only necessary if you want
to know the deeper workings of PCA, and if you want to
compute it efficiently.

For a basic understanding of what it does, all you need is a
reconstruction loss, and gradient descent.

@

Principal Component Analysis
linear transformation that minimizes reconstruction loss
or: linear transformation that maximizes variance
also: whitening transformation

orders dimensions by variance captured/rec. loss

The first dimension is the most important for reconstructing the data, then the second and so on.

So what'’s the point?

This may seem like a lot of math and complexity for
something so simple as reducing the dimensionality of a
dataset.

But it turns out that these principal components are
actually extremely versatile, and can give us a lot of insight
into our data.

http://peterbloem.nl/blog/pca-2

Dorsal

Lateral

Ventral

<
&

Homo

source: Green, David J, and !
f

Pan
N
N7

Gorilla

%
w

d the role of climbing in

ontogeny,

ion. Science 338.6106 (2012):514-517.

We'll start with an example of how PCA is often used in
research. Imagine you’re a palaeontologist, and you find a
shoulder bone, belonging to some great ape.

If you are a trained anatomist specialising in primates, you
can easily tell for a single shoulder bone whether it’s an
early hominin fossil, which is a very rare find, or a
chimpanzee fossil which isn’t rare. But how do you then
substantiate this? “It’s true because I can see that it is” is
not very scientific.

image source: https://science.sciencemag.org/content/
338/6106/514.full

N
N

Ee e
5= N
z° S ©
g & e &
3 POy § &
: 0, 3
z & @ -~
g ol 5
£E} P
= ® S -
£ & La8 @b&
<
i
S

source: Fossil hominin shoulders support an African ape-like la
hand

-0.10

apellini, Neil T. R

0.00

Principal Component 1 (47.3% Variation)

A

0.10

st common ancestor of humans and chimp:
lemseged

0.20

anzees. Nathan M. Young, Terence D.
12/38/11:

820

Here’s one common approach. Take a large collection of the
same specific bone (the scapula, or shoulder blade, in this
case) from different apes and humans, and take a bunch of
measurements (features) of each. Do a PCA, and plot the
first two principal components. As you can see, the different
species form very clear clusters, even in just two
dimensions.

When we find a new fossil, we can see where it ends up in

this space, and we can then show that what we’ve found is
clearly closer to human than to chimp just by measuring it,
and projecting it into this space.

Note also, that this data gives us some clues about how
humans might have developed. The proto-humans
Australopithecus Afarensis and Australopithecis Sediba, are
both on a straight line between the cluster of Bonobos,
Chimps and Gorillas on one side and modern humans on
the other. These are indeed the great apes considered to be
most like the ones from which we developed.

source: Fossil hominin shoulders support an African ape-
like last common ancestor of humans and chimpanzees.
Nathan M. Young, Terence D. Capellini, Neil T. Roach and
Zeresenay Alemseged http://www.pnas.org/content/
112/38/11829

https://science.sciencemag.org/content/338/6106/514.full
https://science.sciencemag.org/content/338/6106/514.full
https://science.sciencemag.org/content/338/6106/514.full
http://www.pnas.org/content/112/38/11829

https://www.ncbi.nim.nih gov/pme/articles/PMC2735096/

Here is another example of what PCA can tell us about a
high-dimensional dataset.

In this research, the authors took a database of 1387
Europeans and extracted features from their DNA. They
used about half a million sites on the DNA sequence where
DNA varies among humans (i.e. 1387 instances: people, and
500k features: DNA markers). They also recorded where
their subjects (or their immediate ancestors) were from.

Only the DNA data was fed to the PCA algorithm, with the
person’s origin only used afterward to color the points.

It turns out that the two principal components of this data
largely express how far north the person lives, and how far
east the person lives. This means that if you plot the data in
the first two principal components, you get a fuzzy picture
of Europe.

In short, the large scale geography of Europe can be
extracted from our DNA. If [sent a large sample of
European DNA to some aliens on the other side of the
galaxy who'd never seen our planet, they could use it to get
arough idea of our geography.

eigenfaces

from sklearn import datasets

faces = datasets.fetch_olivetti_faces()

Finally, possibly the most magical illustration of PCA:
eigenfaces.

Here we have a dataset (which you can easily get from
sklearn) containing 400 images, in 64x64 grayscale, of a
number of people. The lighting is nicely uniform and the
facial features are always in approximately the same place.

We take each pixel as a feature, giving us 400 instances each
represented by a 4096-dimensional feature vector. Note
that this essentially flattens the image into one long vector,
ignoring the grid structure of the pixels.

The prefix eigen- comes from the eigendecomposition often
used to derive the PCA analysis. It’s out of scope for us, but
you should hopefully remember eigenvectors from your linear
algebra. The eigenvectors of the covariance matrix are the
principal components.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/

mean face

Here is the sample mean of our data, re-arranged back into
an image.

"

components

Once we have the principal components, each a 4096-
dimensional vector, we can take their values, assign them a
color, like red for negative values, blue for positive values,
and re-arrange them back into images. Remember, every
dimension represents a pixel.

These are the first 30 principal components displayed this
way (top left is the first, to the right of that is the second
and so on).

Here is one way to interpret the principal components: the
basis vectors that are most natural for our data. Remember,
PCA is also a whitening operation.

The first principal component is the direction that captures
most of the variance of our data. Or, projecting our data
down to the first principal component gives us the lowest
reconstruction error.

We can visualize this space, by starting at the data mean,
and adding a small bit of the nth principal component.

o R g
l B 5 0

Starting from the mean face (in the middle column), we
take little steps along the direction of one of our principal
components (or in the opposite direction). These are the
first five.

We see that moving along the first principal component
roughly corresponds to ageing the face. Moving along the
fourth seems to make the face more feminine.

Instead of starting at the mean face, we can also start at
some other point, like one of our instances, and add or
subtract small bits of the principal components.

The reason that we can add the principal components
directly to the data like this is that the reduction and
reconstruction are linear operations. If we use nonlinear
versions of PCA, this trick won't work anymore. Details in the
reading materials.

Gl
Gl

B0 B4 B4 G4
B4 B4 B BB
BEEEE

»

The middle column represents the starting point. To the
right we add the k-th principal component, to the left we
subtract it. Note, in particular the effect of the fifth principal
component: subtracting it opens the mouth, and adding it
seems to push the lips closer together.

To reconstruct a point, we start with the mean, and add a
bit of the first principal component, then of the second
principal component and so on.

If we think of our principal components as a new basis for
our data, then we are just looking up our point by first
moving some distance along the first axis, then along the
second axis and so on. Just like we would look up a point
given its coordinates in the standard basis.

10

Here’s what that looks like. Top left is the mean. To the right
of it is the reconstruction from just the first principal
component. Next is what we get if we add the second
principal component to that and so on.

After 60 principal components out of a possible 4096, the
image starts to look pretty recognizable. We’ve reduced our
data from 4096 dimensions to just 60 dimensions, and still
retained enough information to tell people apart.

B R R EEEE
EEEEEEE
HHHHHN
HHHHHH
HHHHHH

PCA: dimensionality reduction

Using linear transformations
We'll discuss nonlinear dimensionality reductions in lecture 9

Principal components are a natural basis for your data
Good way of getting insight into your data

cast a new light on the topics we've seen today. Imagine if

.)) you have a dataset and you train a linear model on it. We've
Feature expansion: more expressive model, lower bias, . L
higher variance, more overfitting. seen that a linear model can be perfectly optimized by

. A) . analytical means, so this should be a very efficient
Dimensionality reduction: reduce model expressivity,

higher bias, lower variance, less overfitting. approach.

High Varance

We've also seen that you can expand its features to make
’ the model more expressive. For instance, this allows a

linear model to take the shape of a parabola in the original
feature space. We are increasing the model expressivity by

High B

doing this. This means that the bias will shrink, because the

model will fit the data better, but also that we risk an

increase in variance, because the model may begin to
overfit.

The key insight here is that dimensionality reduction, like
that provided by PCA, is the opposite of this. If we start with
a lot of features already (like all the pixels in an image),
then even a simple linear model may already overfit, and
put us in the high variance regime. PCA allows us to reduce
the features to a mixture that retains only the crucial
information: we take information from all features, but we
throw away the noise that the model would otherwise
overfit on. This pushes us away from the high variance
regime, and, if we go too far, towards the high bias regime.

micourse@peterbloem.nl

mailto:mlcourse@peterbloem.nl

