Probabilistic Models

Learning with probability

In this video we'll start to connect probability theory with
machine learning. We will first focus on model selection. We
will not yet worry about abstract tasks like classification or
regression, we will simply look a the case where we see
some data, and we use probability theory to select a model
for that data. In the next video, we will see how this
translates to classification.

|section|Learning with probability|
|video|https://surfdrive.surf.nl/files/index.php/s/
zZRr6EpCfNiPLmtn/download|

preliminaries

conditional probability: p(X | Y)
Bayes'theorem: p(X | Y) = p(Y | X) p(X) / p(Y)
useful rule: p(X, Y) = p(X | Y) p(Y)
(Conditional) Independence

Expectation

Bernoulli, Categorical and Normal distributions

Before we start, note that we assume a certain familiarity
with probability theory. There is a video in the
preliminaries lecture to help you brush up on the basics.

As you may be able to tell, that part of the preliminaries
lecture used to be part of this lecture, so it should work very
well as an introduction to the basics. Be sure to look at it if
you feel lost in the early part of this lecture.

The concepts shown here are probably the most important
for this course.

“machine”

Observed data

We understand the machine, so p(Data | 6) is known.

But we observe only the data (and the input) and we want
to know 6.

Here is an analogy for the way probability is usually applied
in statistics and machine learning. We assume some
“machine” (which could be any natural process, the
universe, or an actual machine) has generated our data, by a
process that is partly deterministic and partly random. The
configuration of this machine is determined by its
parameters (theta). 6 could be a single number, several
numbers in a vector, or even a complicated data structure
containing a lot of numbers in a complex arrangement.

We know how the machine works, so if we know 0, we
know the probability of seeing any given dataset. Given 6,
we can easily work out the probability of all possible
datasets. The problem is that we are not given 6, we are
given the data, and we want to work out the state of the
machine.

In practice, the "machine” takes the form of a probability
distribution, and the configuration of the machine is
determined by its parameters 6.
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frequentist learning

Maximum likelihood estimation
0 = argmaxp(X|0)
<]

The function L(6) = p(X|6) is called the likelihood.
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In frequentist learning, we are given some data and our
job is to guess the true model (out of a set of models) that
generated some data. In other words, pick the right
parameters 6 so that the probability distribution fits the
data well.

In the frequentist view of the world, the true model is not
subject to probability. Which model generated the data
doesn’t change if we repeat the experiment, so we shouldn’t
apply probability to it. We just try to guess which one it is.
We won't be exactly right, but we can hopefully get close.
This is typical of frequentist approaches: we build
algorithms that gives us a point estimate for our model
parameters. That is, they return one point in our model
space. One guess for 0.

We can use different criteria to decide which model we
want to pick. Probably the most common criterion is that
we should guess the model for which the probability of
seeing the data that we saw is highest. This is called the
maximum likelihood principle. Under the maximum
likelihood principle picking a model becomes an
optimization problem.

It’s fine if this sounds a little abstract right now, we’ll look at
plenty of examples. Note however, that this single idea is how
almost every modern machine learning model defines its loss
function. It is going to come back again and again in the
course, so you’ll need to become very familiar with this idea.

a simple example

p(Heads | Straight) =1/2 p(Heads | Bent) = 4/5

p(Tails | Straight) = 1/2 p(Tails | Bent) = 1/5
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To explain maximum likelihood fitting, let’s look at a simple
example. We have two coins, a bent one and a straight one.
Flipping these coins gives us different probabilities of heads
and tails.

We ask a friend to pick a random coin once without
showing us, and to flip it twelve times. The resulting
sequence has more heads than tails, but not such a
disparity that you would never expect it from a fair coin. If
we had to guess which coin our friend had picked, which
should we guess?

image source: https://www.magictricks.com/bent.html



a simple example

Model Space

Observed data

This is a simple version of a model selection problem. Our
model class consists of two models (the two coins) and our
data consists of 12 instances (the results of the coin flips).

In more technical terms, the coins are Bernoulli
distributions with parameter 1/2 and and 4/5 respectively.
We could also look at the model space of all Bernoulli
distributions, but to simplify matters we are looking at just
these two.

maximum likelihood

arg max

arg max
Model eModel Space

p(HTHHHTHHTHTH | Coin)

Coine{Bent,Straight}

p(Data | Model )

The maximum likelihood principle tells us to pick the coin
for which the likelihood is the greatest. We simply compute,
for both coins, the probability of the data that we saw given
the coin. The coin that gives us the highest value is the coin
we choose.

which coin?

HTHHHTHHTHTH
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Since the coin flips are independent, the probability over
the whole sequence is just the product over the
probabilities of the individual flips. There’s not much in it,
but the likelihood for the bent coin is slightly higher, so
that’s the preferred model under the maximum likelihood
criterion.



log-likelihood (loss)

(LOG) LIKELIHOOD: What we maximise to fit a probability
model

LOSS: What we minimise to fit a machine learning model

When we do this kind of computation, we often take the
logarithm of the likelihood, instead of the plain
likelihood. The logarithm is a monotonic function (it always
gets bigger if the input gets bigger) so the likelihood and
the log-likelihood have their maxima in the same place, but
the log-likelihood is often easier to manipulate symbolically
(see the first homework exercise). It can also provide a
smoother loss landscape for methods like gradient descent.

The log-likelihood of a probability distribution is a lot like
the loss functions we’ve already encountered.

In fact, if we want to fit a probability distribution with a
gradient based method, we usually take the negative log-
likelihood, so that we can do gradient descent to find the
optimum.

We could also use gradient ascent on the log-likelihood, but
it's nice to keep the convention that you always minimize
functions, and as we will see at the end of the lecture, the
negative logarithm of a probability actually has a very
natural interpretation.

N(x | p,0) =

probability density function

2702

As a second example of maximum likelihood, let's look at
the univariate (i.e. 1D) normal distribution. This is defined
by a complicated probability density function, which we
don't fully understand yet. What we want to show here is
how much of this complexity disappear just by taking the
logarithm.

The probability density of our whole data, given some mean
and standard deviation, is simply the product of all
individual probability densities. This follows from the
assumption that instance data is independently drawn from
the same distribution.

Maximum Likelihood: Estimating Mean
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Here’s an illustration of what it looks like to find the
maximum likelihood value for the mean of a normal
distribution (in one dimension). We will fix the variance to
some arbitrary value, and worry about that later.

If we pick some arbitrary mean on the left side, we see that
all the data points on the right side get a very low
probability density. This means that the likelihood of the
whole dataset under this model is probably poor (that is, a
relatively low value).

If we pick a mean on the right side of the axis, the data
points on the left are given low probability density, and we
get equally low likelihood for this data.

To find a model which gives the data a high likelihood, we
need to align the cluster of datapoints in the middle with

the region of high probability density in the middle of the
bell curve.



Low Height High

Same pistribubion

Maximum Likelihood: Estimating Mean

If we keep the mean fixed, and look at the variance, we see
that there is a tradeoff: high variance gives the outliers a
high density, but hurts the density we get from the cluster
in the middle.

The maximum likelihood objective balances this tradeoff for
us, putting most of the density in the middle, without letting
the density of any point get too low.

argmax Inp(X|0) =argmax In Hp(x | 6)
0 0
xeX
= arg max Zlnp(x |10)
0 X plx]0) =N(x|1,0)
with 0 = (i, 0)

1 1
=arg max Zlni — 5= w)?
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maximum likelihood for the normal distribution

Here’s how that idea works out mathematically.

We assume that X is a list of single numbers. We want to
find the parameters that maximize the log probability
density of this data given the parameters. The probability
density of the whole dataset is simply the product of the
individual probability densities, if we assume that the data
was independently drawn from the same distribution.

Since there's a factor raised to the power of e inside this
function, we'll use the natural logarithm (base e). With a bit
of luck, these will cancel out.

We can turn this product into a sum by moving the
logarithm inside. This is explained in detail in the first
homework.

We fill in the definition of the actual probability density
function we're using (line 3). This function is the product of
two factors (the division and the exponent). Both of these
become terms if we work them out of the logarithm. In the
second term the exponent cancels against the logarithm.
Already the function we are maximizing looks a lot simpler.

probability density

1.
5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00
K

This is enough to show that with the log likelihood we have
another “landscape” on top of our model space. The mean
and variance that give us the best fit to our data (under the
maximum likelihood principle) are in the center of the
bright area.

If we didn’t want to work out the rest analytically, we could
just find the optimum by gradient descent or even by
random search.

In statistics courses, you will often take the derivative of the
objective function and set it equal to zero to find that the
optimal value for the mean is actually the mean of your
sample, and the optimal value for the variance is actually the
variance of your sample.
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If we look at each parameter individually, we can reduce the
problem even more. We'll try this for the mean just to show
the principle.

We can remove the first term, since it doesn't contain the
mean. The factor 1/(202) can be moved outside the sum
and then removed (since a positive constant factor won't
affect where the maximum is).

Maximizing a function is the same as minimizing the
negative of that function, so we can remove the minus and
turn the argmax into an argmin.

This shows that the maximum likelihood solution for the
mean is just the value that minimizes the sum of the
squared distances between the mean and the values in the
dataset. This is how assuming a normal distribution leads
to a least squares loss. For now, the main message is that
even if your likelihood function looks really complicated,
it's often the case that when you take the logarithm and
maximize it, all that complexity disappears.

Ifyou work this out analytically, as we'll do in the next
lecture, you'll see that the minimum for this is the
(arithmetic) mean of the data.

This connection between the normal distribution, the least
squares loss and the artihmetic mean is a deep one. Don't
worry if you don't quite get it yet, we'll come back to this a
few more times.

Bayesian learning

osterior rior
distribution distribution

_ p(X[0)p(6)
p(0X) = o(X)

We'll finish up with a quick look at Bayesian learning. We
are now using subjectivist probability, so we are free to
assign each potential model a probability. We don’t
know the true parameters, but the data gives us some idea,
so we express that uncertainty with a probability
distribution over the model space.

That is, we'd like to know the distribution p(6|D): a
distribution over all available models, given the data that
we've observed. As usual, the distribution with the reverse
conditional p(D|6) is much easier to work out. So the first
thing we do is apply Bayes' rule to relate the two
conditionals to one another.

The distribution we want to work out is called the
posterior distribution. Posterior means "after”, as in: this
is our belief about the true model after we've seen the data.

The three parts of the right-hand side have these names.
The prior distribution is a name you'll hear often. Prior
means before, as in: this is our belief about the true model
before we've seen the data. For instance, if we do spam



classification in a Bayesian way, we might have a prior belief
about the probability of getting a spam email, which we
then update by looking at the content of the email (the
data). Our beliefs about the parameters after seeing the
data, is expressed by the posterior distribution.

Note that Bayesian learning does, in principle, not require
us to search or optimize anything. If we can work out the
function on the right hand side of this equation, we get the
posterior distribution and that gives us everything we need.
If we need a good model, we can pick the one to which p(6|
X) assigns the highest probability, or we can sample a
model and get a good fit with high probability. We can also
study other properties of the distribution: for instance the
variance of this distribution is a good indication of how
uncertain we still are about the parameters of the model.

In some cases, like for normal distributions, we can work all
of this out analytically, and we get a formula expressing the
posterior distribution. For more complicated models, it’s
usually impossible to work out the posterior analytically, and

p(Heads | Straight) =1/2 p(Heads | Bent) = 4/5

p(Tails | Straight) = 1/2 p(Tails | Bent) = 1/5
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That may all sound a little abstract, so let's return to our
coin example and see what a Bayesian approach would look
like there.

We first need to establish a prior. What is the probability of
each coin in our model space? We said that we’d asked a
friend to pick a coin at random. If we assume that he follows
our instructions, then we believe each coin is equally likely
so both get 0.5 probability. If we had two fair coins and one
bent one, we could set the prior to 1/3 for bent and 2/3 for
fair. O, if we expected our friend to have a preference for
the bent coin, we might set our prior differently.

This is an important thing to understand about choosing a
prior: it allows us to encode our assumptions about the
problem. As we will see again and again, encoding your
assumptions is a very important part of designing machine
learning models.

p(D) = p(D, Straight) 4+ p(D, Bent)

= p(D | Straight)p(Straight) + p(D | Bent)p(Bent)

p(D | Straight)p(Straight)
p(D)
- p(D | Straight)p(Straight)
~ p(D | Straight)p(Straight) + p(D | Bent)p(Bent)

p(Straight | D) =

After the prior, we need to work out the model evidence
p(D). This is the probability of the data with the model
marginalized out. Independent of the model, how likely are
we to see this data at all? We work this out by making the
marginalization explicit, and replacing the joint
probabilities by their conditionals.

Then, the posterior is just the proportion of one of the
terms in this sum to the total.



p(D | Straight)p(Straight)
p(D | Straight)p(Straight) + p(D | Bent)p(Bent)

p(Straight | D) =

p(D | Bent)p(Bent)
(D | Straight)p(Straight) + p(D | Bent)p(Bent)

(Bent | D) =
P P

Here's how we looked at Bayes' rule before.

We see the available models (bent and straight) as the two
possible causes for our data. The marginal probability of
seeing this data is the probability of picking straight and
seeing it plus picking bent and seeing it. The proportion of
the straight term in this sum is the probability of seeing
straight given the data.

D | Straight) .
p(Straight | D) = P(' | rlralg )5 '1
p(D | Straight) 5 +p(D | Bent) ;

B p(D | Straight)
e e, p(D | Straight) + p(D | Bent)

P(DiStrajgy _ 1111,
2235;

2

1117,
222255, ~0.000944

If we choose a uniform prior (each model gets the same
probability), then the priors cancel out and we are just left
with a function of the conditional data probabilities that
we've worked out already for the frequentist example.

HTHHHTHHTHTH

Bayesian: frequentist:
with maximum likelihood estimator

p(Straight | D) = 0.48
p(Bent | D) = 0.52

“Bent is the most likely model”

Filling these in gives us these posterior probabilities for the
straight and the bent coins.

Compare this with the maximum likelihood case. Both
approaches prefer the bent model as an explanation for the
data.

However, in the maximum likelihood case, even though the
differences between the two likelihoods were small, we
only provided one guess for the true model. In the Bayesian
approach we get a distribution on the model space. It tells
us not just that bent is the more likely model, but also that
both models are still quite likely. In this sense, getting a
posterior distribution is a much more valuable result than
getting a point estimate for your model.

The downside of Bayesian analysis is that as the models get
more complex, it gets more and more difficult to accurately
approximate the posterior, and trying to do so is what has
led to some of the most complicated material in machine
learning. Working out the posterior for the mean of a
normal distribution is already a bit too technical for this



course, but it's a good exercise to try and imagine what it
would involve.

In this video we’ll try to connect this probability business to
the abstract tasks of machine learning. Specifically, we’ll
look at classification.

|section|(Naive) Bayes classifiers|
|video|https://surfdrive.surf.nl/files/index.php/s/

ATl JBXnid40XnbfZQM/download|

(Naive) Bayes classifiers

We will focus on building probabilistic classifiers. These

are classifiers that return not just a class for a given

) ) instance x (or a ranking) but a probability over all classes.
X'=Xj, X2, X3, ...: random variable for instance.

This can be very useful. We can use the probabilities to
extract a ranking (and plot an ROC curve) or we can use the
probabilities to assess how certain the classifier is about its
P(Y=pos|X)=0.1  P(Y=neg|X)=0.9 judgement.

Y: random variable for class {pos, neg}

Note that a probabilistic classifier is also immediately a
ranking classifier (if we rank by how likely the positive class
is) and a regular classifier (if we pick the class with the
highest probability).
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two approaches

generative classifier:
P(Y[X) = p(X|Y) p(Y) / p(X)

discriminative classifier:
learn a function for p(Y|X) directly

There are two approaches to casting the classification
problem in probabilistic terms.

A generative classifier focuses on learning a distribution
on the feature space given the class p(X=s|Y). This
distribution is then combined with Bayes’ rule to get the
probability over the classes, conditioned on the data.

The key part of this process is to work out the probability of
the instance X given that its class is Y. We can think of this as
a probability distribution that generates the data (hence the
name).

A discriminative classifier learns the function p(Y|X=x)
directly with X as input and class probabilities as output. It
functions as a kind of regression, mapping x to a vector of
class probabilities.

We’ll look at some simple generative classifiers in this
video, and then we'll describe a discriminative classifier in
the next video.

generative classifiers

Bayes classifier
Learn single distribution P(X|Y). Reasonable approach for
low-dimensional data.

Naive Bayes classifier
Assume conditionally independent features. Simple, cheap
and effective for high-dimensional data.

Here are three approaches, arranged from impractical but
entirely correct to highly practical, but based on largely
incorrect assumptions.

We won't discuss the Bayes optimal classifier in this course,
but it's worth knowing that it exists, and that it means
something different than a (naive) Bayes classifier.

Bayes classifier

"~ p(x 1 pos) plpos) p(x | pos)p(pos)
Plos X = e = pixTpos)p(pos) + plx [ neglp(neg)

Fit a model for p(X|Y) and for P(Y)

For the Bayes classifier, we start with the probability we're
interested in p(Y|X): the probability of the class given the
data. Note that X in the conditional refers to a single
instance.

We'll focus on binary classification to make things concrete,
but the methods in this video translate naturally to multiclass
problems.

We rewrite p(Y|X) using Bayes’ rule. From the final form, we
see that if we compute, for all classes, the probability
functions p(X|Y), the data given the class and p(Y), the prior
probability of the class, we can compute the probabilities
we are interested in: the class probabilities given the data.

So, the task becomes to learn functions for those two
probabilities. The most important part will be P(X|Y). We
can model this by separating the data by class and fitting a
probability distribution to each subset individually.



multivariate normal distribution
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For this example, we will use a multivariate normal
distribution (MVN). This is just an extension of the normal
distribution to multiple dimensions. Its density curve (for a
two dimesnsional space) looks like a rotation of the familiar
bell curve, as shown on the left.

In two dimensions we often draw MVNs as ellipses, since
this is a natural way of expressing where most of the
probability mass is concentrated. The picture on the right
shows three MVNss fitted to three subsets of a data set.

The formula for the MVN is given below. It’s a complicated
beast, but all you really need to know is that for a given
dataset, of N features, we can work out analytically which
vector i and which matrix X give us the best fitting MVN
(under the maximum likelihood principle). As you might
expect, these are the sample mean, and the sample
covariance matrix. If you can compute those, you can fit an
MVN to your dataset.

Bayes classifier
Choose class of prob. distributions M (for instance MVNs) . Mo.“-e—s
L et
Fit params iy, 2, to all positive points: p(x|pos) = N(x | pp, Zp)

Fit params i, £, to all negative points: p(x|neg) = N(x | pn, Zn)

Estimate P(Y) from the class frequencies in the training data, or use
domain-specific information.

Compute class probabilities/probability densities

p(x | pos)p(pos)
x | pos)p(pos) + p(x | neg)p(neg)

p(pos|x) = i

Here is the algorithm for a simple Bayes classifier. We
choose a model class for P(X]|Y). In this case, multivariate
normal distributions (MVNs), but other distributions would
work too.

We then separate the points by classes and fit a separate
MVN to each of these subsets of the data. We use the
maximum likelihood estimates to fit the MVNs to the
instances.

Note that this make the Bayes classifier a bit of a Bayesian/
frequentist chimera: we are using Bayes' rule to reverse the
conditional, but we are using point esitmates to fit our
distributions.

The class prior p(Y) is a simple categorical distribution
over the classes. We can estimate this from the data, or use
some kind of prior knowledge that we have about the
domain.

Strictly speaking, we are mixing probabilities and
probability densities, but in this case that doesn't cause any
problems. The resulting probability on the classes is a
categorical distribution.

When we compute the class probabilities, we can compute
the term p(x | class)p(class) once for each term, and then re-
use them in the computation of each class probability. If we
are only interested in the most probable class or in the
ranking, we can omit the computation of the denominator.



example for MVNs
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Here is an example of what that looks like with 2 features.
On the left we have two classes, blue and black. We fit a 2D
normal distribution to each, represented by the blue and
black ellipses. Then, for a new point, we see which assigns
the new point the highest probability density, or compute
the full probabilities.

The red line provides the decision boundary: the points
where the two probability densities are exactly equal.

source: http://learning.cis.upenn.edu/cis520_fall2009/
index.php?n=Lectures.NaiveBayes

Assume independence between all features, conditional

on the class.

Often used with categorical features.

P(X1, X2 [ V) =p(X1 [ Y)p(X2 | Y)

This works well for small numbers of features, but if we
have many features, modelling the dependence between
each pair of features gets very expensive.

A crude, but very effective solution is naive Bayes. This just
assumes that all features are independent, conditional on
the class (for all classes).

Note that we do not assume that the features are
independent: it’s perfectly possible for one feature to be
dependent on another feature, but they are conditionally
independent. Informally, the dependency between the
features is “caused” by the class and nothing else. Just like
Alice and Bob in the first video: their lateness had only one
possible shared cause, the monster, and once we’d isolated
that, their lateness was independent.

Since naive Bayes is often used with categorical features,
we'll work out an example on those.

T

“pill”

“meeting”
T

MM AmMmmTm -

MMM A AAAAT

Here is an example dataset with binary features. The
instances are emails to be classified as ham or spam, and
each feature indicates whether a particular word occurs in
that instance.

We are building a generative classifier, so we should start by
estimating the probability of the data given the class. The
Naive Bayes assumption says that we can do this for each
feature independently and just multiply the probabilities.

We will estimate p(“pill”|spam) as the relative frequency
with which the “pill” feature was true for spam emails, and
similar for the other feature. That is, we simply count the
number of times this occurred in the dataset, divided by the
total number of spam emails in the dataset.
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Here's what those estimates look like.

More formally, we could say we are modelling X1 as a

Xi
Bernoulli distribution whose parameter we estimate as 2/6.
= ham This estimation, using the relative frequency of outcome x as
T ham the probability of x, is the maximum likelihood estimate for
: ::: p(X:=T | ham) = 2/6 the Bernoulli distribution. If that sounds too complicated, it
F ham D0X=F | ham) = 4/6 hopefully also makes intuitive sense to estimate the
probabilities this way.
F ham
We do the same for the spam class and for the other feature.
X1
T spam
T spam
p(X:=T | spam) = 3/5
F spam p(Xs=F | spam) = 2/5
T spam
F spam

p(Xl)"'7Xn|Y)

=pX1 |Y) x ... xpXn | Y)p(V)

This is the naive Bayes assumption formulaically. We simply
factor p(X1,...Xn) into n separate, independent probabilities.
That means we can take our estimates for the probability of
each feature, and multiply them together to get the
probability of the whole instance.



new instance: “pill” & “meeting”

This gives us a probability for the whole instance space.
Now, let's imagine a new email comes in, one which

"F’Ti"" "meeTting" contains the words pill and meeting. What class do we think
spam .
T F spam itis?
T T ham
T T ham The probability of it being ham is proportional to the
: I ::: p(ham | Xi=T, Xo=T) o< p(X:=T, X,=T | ham) p(ham) probability of seeing a ham email with these characteristics
F T ham = p(X:=T | ham) p(X,=T | ham) p(ham) times the probability of seeing a ham email at all. The first
F F spam factor breaks up by the naive Bayes assumption, and we can
T F spam =(2/6) x (5/6) x (6/11) . L . .
E F spam simply fill in our three probability estimates. We do the
F F ham same thing for spam and report wich class gets the high
probability
Note that we are only computing the numerator of Bayes'
rule. This is enough to work out which class gets the higher
probability.
If we work out the probability of spam in the same way, we
) ) ) see that the Naive Bayes classifier assigns the class ham the
ol . new instance: “pill” & “meeting”
”T' meeT“”g most probability. If we want proper class probabilities all
spam
T F spam we have to do is normalize these values (that is, divide b
p b y
(ham | X;=T, Xo=T) =0.
T 7 ham p(ham | Xi=T, Xo=T) e<5/33=0.15 (5/33) + (3/55)).
T T ham
F T ham p(spam | Xi=T, Xo=T) o p(Xi=T, Xo=T | spam) p(spam)
F T ham
F T ham =p(Xi=T | spam) p(Xo=T | spam) p(spam)
F F spam
T F spam =(3/5) x (1/5) x (5/11) = 3/55 = 0.055
F F spam
F F ham

X
T spam
T spam

p(X:=T | spam) = 5/5
T spam p(X:=F | spam) = 0/5
T spam
T spam

While naive Bayes can work surprisingly well with these
estimators, we do run into a problem if for some feature a
particular value does not occur. In that case, we estimate
the probability as 0.
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Since the whole estimate of our probability is just a long
product, if one of the factors becomes zero, the whole
thing collapses. Even if all the other features gave this class
a very high probability, that information is lost.

pseudo-observations ( )

spam
spam
ham

For every class, and every feature, ensure that
we've seen every possible value at least once.

- m -
- m - m

To remedy this, we need to apply smoothing. The simplest
way to do that is to add pseudo-observations. For each
possible value, we add one instance where all the features
have that value. This may seem like we're ruining our data
with fake examples, but if we have a large dataset the
impact should be minimal (and we'll see a way to minimize
the impact even further later).

(We should do the same for the class ham).

If we have features with different sets of values (like gender
and country of origin), we can no longer add the pseudo-
observations so neatly to the dataset. In that case, we just
adjust the estimators for p(Gender | C) and p(Country | C) as
shown in the next slide.

We can do this because of the conditional independence: the
estimators for feature 1 don’t look at the data of feature 2, so
we can actually add pseudo-observations to one feature but
not to the other.

unsmoothed

freq. of T in spam data

X;=T|Y= =
X l spam) total # of spam instances

smoothed

freq. of T in spam + 1
total # of spam instances + v

p(X; =T|Y =spam) =

A-smoothed

freq. of T in spam + A
= Y = spa =
PG =T spam) total # of spam instances + Av

This changes our estimates as shown here. In practice, we
don’t actually need to add the pseudo-observations literally,
we just change our estimator.

Here, v is the number of different values X1 can take. Note
that we have to change the denominator as well as the
numerator, or the probabilities will sum to more than 1
over all values of the feature.

If we are worried about the impact of the pseudo-
observations, we can reduce the weight they have among
the observations. For all other observations we assume that
the weight is 1. By replacing 1 for the pseudo-observations
with A, and setting this to a low value like 0.01, we get the A-
smoothed estimator shown. This makes the impact of the
pseudo-observations very small, but it still ensures that we
will never see a zero.

Ifyou do a Bayesian analysis, you can derive exactly this
estimator by setting a particular prior. In fact, many common
priors can be framed as pseudo-obervations. We won't dig
into this in the course, but it's pretty neat.



continuous Naive Bayes

not allowed:

Naive Bayes is commonly associated with categorical
features (to which Bernoulli or Categorical distributions are
fitted), but it can also be used with numerical features. If we
use normal distributions, then the independence
assumption means that we fit a univariate normal
distribution to each feature independently. The distribution
over the whole space for each class then becomes a
multivariate normal whose covariance matrix is diagonal
(all off-diagonal elements are zero).

Visually, this means that the distribution looks like an
ellipsoid that is stretched along the axes. Put more
technically, its major axis is not horizontal or vertical.

The kind of ellipse shown on the bottom, which is stretched
in an arbitrary direction is a multivariate normal
distribution, but not one where the features are
independent. So this kind of fit would only be allowed in a
non-naive Bayes classifier.

Note that non-naive Bayes with MVNs requires us to specify a
full covariance matrix, so the number of model parameters
grows quadratically with the number of features, while the
number of parameters for the naive Bayes classifier only
grows linearly, since we need just one scalar variance per
dimension.

image source: http://learning.cis.upenn.edu/
cis520_fall2009/index.php?n=Lectures.NaiveBayes

summary so far

Bayesian vs frequentist learning. Use what works, mix-and-
match.

Discriminative classification: learn p(Y|X) directly

Generative classif.: learn p(X|Y) and p(Y), apply Bayes

Bayesian classifier, Naive Bayesian classifier

Naive Bayes: assumes independent features (conditional
on the class).

Laplace smoothing: add pseudo-observations to avoid
zero probabilities.




|section|Logistic regression|
|video|https://surfdrive.surf.nl/files/index.php/s/
3RGE2wm]3LXdkPy/download|

Probabilistic Models

Logistic regression

discriminative classifier In this video we’ll look at an example of a discriminative

classifier: logistic regression. This is a classifier that learns
to map the features directly to class probabilities, without
using Bayes’ rule to reverse the conditional probability.

This is basically a small extension of the linear classifier

we've already seen. You can also think of it as a linear

Learn P(Y | X) directly. . . . .
Vi Y classifier with a specific loss function.

The name logistic regression is very confusing, but in the

modern view it is a classifier, not a regression model.

Remember that we were still on the lookout for good loss
functions for the classification problem. We'll use the
language of probability to define one for us.

1.0
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Least-squares classifier

This was our last attempt: the least squares loss.

Our thinking was: the hyperplane classifier checks if wTx +
b is positive or negative, to decide whether to assign classes
positive (blue discs) or negative (red diamonds),
respectively. Why not just give the classes some arbitrary
positive and negative values (-1 and +1), and treatitas a
regression problem?

Here is another option: instead of assigning the two classes
arbitrary values, we assign them probabilities: specifically,
the probability of being positive. This is 1 for all points in the
positive class and 0 for all points in the negative class.
Compared to the least squares approach, we just assign the
negative class points the value 0 instead of -1.

Does this give us a probabilistic classifier? Can we fita
linear regression line to these points and interpret the
output as the probability, p(pos|x), that the instance is
positive? If we fit a line through these points, it doesn’t look
substantially different to the previous slide, because our
function wTx + b still ranges from negative infinity to
positive infinity. We'd like it to produce values between 0
and 1, so we can always interpret them as probabilities, but
it only does that for a very narrow and arbitrary range.

What we need, is a way to squeeze the whole infinite range
of the linear function into the range [0, 1], so that the model
will only ever produce valid probabilities.

the sigmoid
1
05
L
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For this purpose, we will use the logistic sigmoid function
shown here. A sigmoid function is a function that makes an
s-shape like this: its domain is the entire real number line,
its range is between two finite values, 0 and 1 in this case,
and it increases monotonically. Informally, it squeezes the
whole real number line into a finite interval in a smooth
way. The logistic sigmoid shown here is just one of many
sigmoid functions.

The second definition, in grey, is equal to the first. You can
show this easily by multiplying both the numerator and the
denominator by et in the first definition.

source: By Qef (talk) - Created from scratch with gnuplot,
Public Domain, https://commons.wikimedia.org/w/
index.php?curid=4310325



properties of the logistic sigmoid

1

symmetry derivative
1—o(t) = o(—t) o' (t) = o(t)o(—t)
=o(t)(1 —o(t))

We'll see a lot more of the logistic sigmoid as the course
progresses, so make sure to remember it. The reason we
like to use this specific sigmoid in machine learning settings
is that it has a few nice properties that make analysis easier.

The first is its symmetry: if you flip it upside down, or left
to right, you get the same function, which is the sigmoid
running in the opposite direction o(-t). Basically the
remainder between o(t) and 1, is itself a sigmoid. We'll use
this property later in this video.

The second property is that the derivative of the sigmoid
has a particularly simple form: it's equal to the sigmoid
itself times one of these flipped sigmoids.

Both of these properties are easy enough to work out from
the definition on the previous slide. We'll save you this to keep
the lecture simple, but it's a good exercise if you have the time
to try. If not, take a minute to burn them into your memory,
so you'll be able to follow along later when they pop up.

é

With the sigmoid in hand, we can build our new classifier:
we compute the linear function w™x + b as before, but we
apply the logistic sigmoid to its output, squeezing it into the
interval [0, 1]. This means that we can interpret the output
as the probability of the positive class being true, according
to our classifier.

This may be a very accurate probability, or a very
inaccurate one, depending on how we choose w and b, but
it’s always a value between 0 and 1. Hopefully, if we choose
the parameters w and b well, we'll get a probability
distribution that assigns high probability to the blue discs
and low probability to the red diamonds.

Now all we need is a loss function that tells us how well
the probabilities produced by the classifier match what we
see in the data.

x: some data point
ax: our classifier gx(C) = p(C|x)

ax(Pos) =0.1  qgx(Neg)=0.9
split data into positive Xp and negatives X

Find the classifier q that maximizes the probability of the
true classes.

i.e. we use the maximum likelihood objective.

For this we'll introduce the log(arithmic) loss. This is also
know as the (binary) cross-entropy loss, for reasons we'll
explain in the next video.

At heart, this is just the maximum likelihood principle at
work. We have some data, the class labels, and a model with
some parameters, w and b. We are looking for the
parameters that maximize the probability of the data.

We'll call the probability distribution that our classifier
produces for x gx. This is the probability of the class
conditioned on the data, but we'll move the conditional to
the subscript to clarify the notation a little.

We call it q because it’s a probability distribution, but one
that we “build” rather than one that describes the real world.
That is, q could be very accurate, or very inaccurate,
depending on how we choose w and b.



maximum likelihood

pD)= [ ax(C)
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We assume that the instances in our data are independent,
so that the probability of all class labels is just the
probabilities of the individual class labels multiplied
together. Since we have a discriminative classifier, we are
not modeling the features. We take them as given and
directly maximize the probability of the labels given the
features.

arg max qu(C]
q C,x

= arg maxlogH qx(C) = argmin — logH qx(C)
q Cox q C,x

= argminZ—logqx(C)
q C,x

= arg min — Z log qx(P) — Z log qx(N)
a XEXp xEXN

Since, as we've seen, the logarithm of the probability is
often better behaved, we will maximize the log-probability
of the class labels given the features. Since we like to
minimize—we are looking for a loss function so lower
should be better—we stick a minus in front of the log
probability and change the argmax to an argmin.

Then, the multiplication can be moved out of the logarithm,
turning it into a sum.

Finally, we separate the data into the positive and negative
instances. Our loss function says that for the positive points
we want to maximize the log probability the classifier
assigned to the point being positive and for the negative
classes we want to maximize the probability that the
classifier assigns to the point being negative. Hopefully, this
sounds intuitive so far.

least-squares classifier

Before we move on, let's try to visualize what we have so
far.

In the least-squares case, the loss function could be thought
of in terms of the residuals between the prediction and the
true values. They pull on the line like rubber bands.



qx(pos) = o(w - x+b)

*
*

For the logarithmic loss on the logistic classifier, we can
imagine the "residuals" as the lines drawn here: the
probabilities of the true classes. The logarithmic loss tries
to maximize the sum of their logarithm (or minimize their
negative logarithm).

You can think of them as little rods pushing up (for the blue
rods) and down (for the red rods) on the sigmoid function
to push it towards the relevant instances.

Remember that in the least squares loss we squared the
residuals before summing them, to punish outliers. Taking
the logarithm has a similar effect. For those instances
where the probability is near the value it should be, we are
taking the negative logarithm of a value very close to zero.
That means that these points, which are far away from the
decision boundary, contribute very little to the loss, and the
points for which the rods are smaller contribute
proportionally much more.

The next question is how do we minimize this loss? We'll
use gradient descent, which means that we need to work
out the derivatives with respect to the parameters.

warning: complicated derivation ahead

The next couple of slides show a (somewhat) complicated
derivation. You should do your best to go through this step
by step. There are a couple more of these coming up in the
course, so if you don't take the time to get used to them,
you'll struggle later on. If you do take the time, | promise it
gets easier with a little practice.

You don't, however, have to understand this right away. If
you struggle to follow along, just look at the start and end
points. Try to figure out what the derivation is trying to
show and why this is important. Then, move on to the rest
of the lecture and come back for the details later.

Ifyou haven't done the second homework exercise yet, it may
be better to do that first, and then come back to this part of
the video. After that exercise, you should have a more
practical understanding of what we're trying to do here.



working out the gradient

What we need is the derivative of the loss with respect to
every parameter of the model. We'll work it out for the
weights wi and take the bias b as read.

We’ll show you the basics of working out the gradient for

oloss(w,b) _ 0 (— X xex, 108 4x(P) — X yex,, log qx (N)) logistic regression. The first step is to break the loss apart
ow; a“ i into separate terms for the positive and negative points.
0log qx(P) 2log x(N) We'll look at the positive term in detail (the negative term
- Z w; + Z w; can be derived in a similar way).
xEXp xXEXnN
T To simplify the derivation, we first take the output of the
y=wx+b . . . . .
linear part of our model (before it goes into the sigmoid)
0log qx(P) dlogo(y) oy . . ) .
— I =" T =X and call it y. Note that the derivative of y with respect wi is
' ' ' just xi, because the dot product is a simple sum of element-
dlog o do d wise multiplications, so the only term that w; appears in is
_ _Ologoly)  0o(y) . Y _
d0(y) dy ow; Wik
1 With this, we can work out the partial derivative with

respect to wi in a relatively clean and simple manner. We
start (line 1) by filling in qx(P), the probability according to
our current classifier that the point x is in the positive class
(which it is). This is just the output y of the linear function,
passed through the logistic sigmoid o.

Next (line 2), we apply the chain rule twice. First to move
out of the logarithm, and then to move out of the sigmoid.
Note that each denominator is the numerator of the
previous factor.

For each of these three factors, we can work out the
derivative (line 3). The derivative of log(x) is 1/x. That is,
assuming we are using the natural logarithm. If we want to
use a different logarithm (like base-2), then we get a
constant multiplier, which we can ignore if we are using
gradient descent (because we are scaling the gradient by n
anyway). The derivative of the sigmoid w.r.t. to y is the
sigmoid times the flipped sigmoid, and the derivative of y
wrt to wi; we have already worked out.

The factor o(y) appears above and below the division line,
so these cancel out (line 4), leaving us with just the flipped
sigmoid times x;. We note that the flipped sigmoid is one
minus the probability of the positive class (according to our
classifier). Since there are only two classes, this equals the
probability of the negative class qx(N). We fill this in, which
provides our answer.
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Despite the complicated business in the middle, the result is
actually very simple. This is one of the pleasing properties
of the logistic sigmoid, it tends to cancel itself out when the
derivative is taken.

In short, for this particular instance, and weight i, the
derivative is the i-th feature times the probability
(according to the current parameters) that this instance is
negative.

Consider what this means in a gradient descent setting: this
value here is what we want to subtract from the current
value of wi to better fit the classifier to this particular point
x. Imagine that the classifier does badly at the moment: to
this positive point x, it assigns a large probability for the
negative class, so gx(N) is large.

If xi is a large positive value, then gradient descent subtracts
a large negative number, - qx(N)xi, from wi. This makes it
bigger, increasing the sum w'x + b and increasing the
probability o(wTx + b) that the classifier assigns to the
positive class. If x; is a large negative number, we go in the
opposite direction.

If, however, the classifier already does well, assigning this
positive point a large positive probability, then qx(N) is very
close to 0, and this particular instance has very little
influence on the gradient descent step (unless the
magnitude of x; is so big that xiqx(N) is still a substantial
value).

0loss(w, b) Z
X

ow;

log gy

== > aNxi+ Y aqulPx

xeXp

xEXN

If we work out the derivative for the other term, we get a
predictable result: the same form, but with gx(P) instead of
gx(N) and a minus instead of a plus.

Ifyou’re wondering why the sign changes, it’s in the first line,
we replace qx(P) by a(y), but we replace qx(N) by 1- a(y), so
the derivation is slightly more complex.

So there we have it: the gradient for a linear classifier, fed
through a sigmoid function, producing a logarithmic loss.

For the bias b, we get the same result, but without the xi
factors. The derivation is the same, except that in the second
line of the derivation the third factor is 1 instead of x;.



Use the sigmoid function to turn a linear classifier into a
discriminative probabilistic classifier.

Use log loss.
Maximise the log-likelihood of the data given the model

Derive the gradient and search for good weights.

No analytical solution, but the problem is convex.

Regression is a bit of misnomer, since we're building a
classifier. I suppose the confusing terminology comes from
the fact that we're fitting a (curved) line through the
probability values in the data. Just one of the many
confusing names in the field of machine learning, I'm afraid.

Anyway, now that we have a gradient, we can apply gradient
descent. Let's see the model in action.
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Here is a 2D dataset that shows a common failure case for
the least squares classifier. The points at the top are so far
away from the ideal decision boundary that they will have
huge residuals under the least squares model, and this is
not balanced out by a similar cluster of negative points.

least-squares

Here is what the least-squares regression converges to.
Clearly, this is not a satisfying solution for such an easily
separable dataset. The blue points at the top are so far from
the decision boundary.



Least-squares classifier

.

Here is a 1D view of a similar situation. The green bar is the
decision boundary that we want, but any line that crosses
the horizontal axis there has really big residuals for the far
away points, or really big residuals for all the other points.
These pull on the line with a quadratic strength, so the
decision boundary will always be pulled toward them.

¢
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The logistic model doesn’t have this problem. If the model
fits well around the ideal decision boundary, it doesn’t have
to worry at all about points that are far away (if they’re on
the right side of the boundary). The log loss for these points
is very close to -log(1), so very close to 0.

X2
n
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logistic regression
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Here is what the logistic regression chooses as a decision
boundary. Unlike the least squares regression, the points
are perfectly separated.

Another thing to note is that while we added some non-
linearity to our classifier with the sigmoid function, the
decision boundary is still linear. This is because the
decision boundary is the curve where o(wTx + b) = 0.5. The
input to the sigmoid that results in an output of 0.5 is 0.

In other words, we previously put the decision boundary at
wTx + b = 0 and we are still doing the same thing here. What
changed was the loss function.



logistic regression We can also plot the probability function using a color map
(blue is high probability of positive, red is high probability
of negative). The white band in the middle is where the
probability of positive is near 0.5. That is, in this region, the
classifier is uncertain.

Uncertainty in machine learning is a difficult problem, and
models like these that that can express their certainty about
a classification are usually much more certain than they
should be, so be sure to take this with a grain of salt. Still,
it's nice that the model can at least express its uncertainty,

even if it may not be doing so accurately.

This plot shows where the non-linearity came in: the
probability density function is nonlinear. It looks like the 1D
sigmoid function extended in some direction to cover the
whole feature space. The place where it’s equal to 0.5 the
decision boundary, still makes a line, or in higher dimensions,
a hyperplane.

logistic regression Note that for such well-separable classes, there are many
suitable decision boundaries, and logistic regression has
little reason to prefer one over the other (all points are

. . assigned the correct probability very close to 1). We'll see a
s";' g solution to this problem next lecture, when we meet our

7 7 final loss function: the maximum margin loss.

¢ 4 If we want to stick with logistic regression we can solve this
olor Ll problem to some extent by widening the "region of

- uncertainty” as much as possible, without sacrificing too
much of the log loss. One way to achieve this is by adding L2

. . . regularization, which we will learn about in a later lecture.
next lecture: maximum margin classifier

summary: logistic regression

Use the logistic sigmoid to provide class probabilities from
alinear classifier

Use -log p(class|features) as a loss function

Points near the decision boundary get more influence than

points far away.
The opposite is true for the least squares classifier.

Log loss generalises naturally to multiclass classification
(more next week).




The last video was all about defining a probability p(x) and
then taking the negative logarithm of that probability. We
justified this by saying that the logarithm of the likelihood is
easier to work with, and that as a convention we tend to
minimize rather than maximize in machine learning so we
Probabilistic Models took the negative of the log likelihood. All very pragmatic.

Information theory
But actually, there is a very concrete meaning to the

negative log likelihood of a probability, that can really help
to deepen our understanding of what we are doing when
we use probabilities in machine learning. To understand
this, we need to dig briefly into the topic of information

theory. This will not just help us understand probability
from a new perspective, it will also provide us with the
concept of entropy, which is an important tool we will use
at different points in the course.

|section|Information theory|
|video|https://surfdrive.surf.nl/files/index.php/s/
b7EKqDsMkGt3SuW/download]|

o what d 109 (0 ) monopoly. Unfortunately, the dice have gone missing. You
aka: what does - log p(x) mean? i i s
do, however, have a coin with you. Can you use a coin flip to

simulate the throw of a six sided die?

For a four sided die, the solution is easy. We flip the coin
twice, and assign a number to each possible outcome.

source: http://www.midlamminiatures.co.uk/
heads tails blackpolydice /D4Black.html

(0 g () G2
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A six sided die is more tricky. We’ll show the solution for
three “sides”. You can just add another coin flip to decide
whether to interpret the result as picking between 1,2 and
3 or as picking between 4, 5 and 6.

The trick is to assign the fourth outcome to a “reset”. If you

NN\

throw two tails in a row, you just start again. Theoretically
you could be coin flipping forever, but the probability of
reset resetting more than five times is already less than one in
one-thousand.

With these kind of resets, it turns out that you can model

I any probability distribution you like. This will allow you to

play your monopoly game.

The downside is that you have to assign one outcome to
multiple leaves in your tree. What if we restrict ourselves to
trees where each leaf has a distinct outcome? In that case,
we can't model the six-sided die perfectly with coin flips.
What distributions can we still model?

Here are two distributions on the natural numbers that we
can model this way. One with an exponentially decaying tail,
and one with a fatter tail.

Note that both trees are infinite in size. This we don't mind.
The only constraint we care about is that each leaf node has
é a unique label.

N/

1234 .. 1234 ..

probabilities and codes In probability distributions expressed like this, it's really

simple to see the relation between probabilities and codes.
Functions that assign a binary string to each of our
outcomes.

We simply replace the heads and tails by zeros and ones
and describe each outcome by the sequence of steps
required to get from the root of the tree to that particular

() () &2 outcome.

code: 00 01 10 N Codes are used to transmit information. If we roll a die and

we want to tell somebody that we rolled a 3, we can send
them the code 10.
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These kinds of trees are called prefix-free trees, and the
resulting codes prefix-free codes. The name comes from
the fact that no codeword will be the prefix of any other
code word. That is, the first bits of one code will never be a
codeword by themselves.

The nice thing about prefix free codes is that if we want to
encode a sequence of these outcomes, we can just stick the
codes one after another and we won’t need any delimiters.
A decoder that has access to the tree will know exactly
where each codeword ends and the next begins.

likely outcomes have short codes

AN
L0\

010 011 110 111

Another, more relevant, nice property is that there is a
direct relation between the length of the code we assign an
outcome, and its probability: the more coinflips we
require to get to a particular outcome, the lower the
probability that we will get there, and the longer the
code. Low probability outcomes get long codes and high
probability outcomes get short codes.

In this tree here, if we generate outcomes by flipping coins
randomly, the probability of getting a is the probability of
flipping heads twice in a row: 1/4. The probability of
getting b is the probability of flipping heads, then tails, then
heads: 1/8.

This is expressed in the lengths of the codes for a and b. b
has a longer codelength and is therefore less likely.

If the probabilities from this tree match the probabilities
with which we expect to see the outcomes, then this is a
very nice property for a code to have: when frequent
outcomes have short codes, we end up with shorter
messages overall.

This was realized as early as the invention of Morse code.
Samuel Morse explicitly assigned short codewords to letters
like e and t, because he knew that they would occur
frequently, so that the telegraph messages would be shorter.

Information theory didn't exist yet, so his codelengths were a
little ad-hoc. He also didn't know about prefix-free codes, so
Morse code does have a delimiter symbol.



codelengths and probabilities

L(x): length of code for x

/N 1
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010 011 1101 (%) = —logy p(x) 4

Let's make all this a little more precise. Let's start with an
arbitrary tree, and assume that we sample from it by
flipping a coin to decide our path from the root to the
leaves. What probability distribution does this define? This
is very simple: each coinflip multiplies the probability by
1/2, so if the length of the code for outcome b is 3, then the
outcome b has probability (1/2)3=1/8.

In general the probability for an outcome x with a code of
length L(x) is p(x) = 2-L(),

With this equation in place, we can reverse the question. If
we are given a probability distribution p(x), and we are
assured that there is some prefix-free tree corresponding to
it, what can we say about the codelengths that this
probability tree describes? Rewriting the equation to
isolate L(x), we get L(x) = -logzp(x)

There it is! The negative logarithm of a probability. If we
have a probability distribution that can be expressed by a
prefix-free tree, the negative logarithm of its probabilities
has a very concrete meaning: it's the codelengths of the
outcomes under the corresponding codes.

The base 2 of the logarithm is a consequence of using bits to
encode our data. If we used trits (0, 1, 2) we'd get a base-3
logarithm and if we used digits, we'd get a base-10 logarithm.
You can even go the other way around and start with the
natural logarithm, which will give you a unit for amount of
information called "nats". These are a little more abstract; |
can't imagine what a codeword written in nats looks like, but
it still works to quantify the amount of information in the
outcome of a sample from a probability distribution.

arithmetic coding

There exists an algorithm which provides for any p(x), a
prefix-free code L such that

| —logy p(x) —L(x)I <1

Thus, if we ignore this minor inaccuracy, or if we allow L(x)
to take non-integer values, we may

equate codes with probability distributions.

The only drawback with this view is that we are restricted
to probability distributions that we can model as prefix-free
codes with unique labels on the leaves. If we investigate
closer, it turns out that this is not as much of a restriction as
we may fear. We can show that for any probability
distribution L we can find a prefix-free code so that the
value -log p(x) and the code-length L(x) differ by no more
than one bit for any outcome x.

If we handwave this small difference, we can equate codes
with probability distributions: every code gives us a
distribution and every distribution gives us a code. And all
of these codes have the nice property that the higher the
probability of an outcome is, the shorter its codelength.



p(X=x): data source

If we encode X with the corresponding code for p, what is
our expected codelength?

H(p) = E,L(x)

=D P

xeX

=—> px)logp(x)
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We already noted that this is a nice property for a code to
have, because it reduces the amount of bits we can expect to
use. How much does it reduce it? If we know the things we
are going to encode come from distribution x, then can we
say something about whether using the corresponding code
is in some sense the optimal choice?

The simplest way to answer this question is to compute the
expected number of bits we will have to use per
outcome. This is simply the codelength of each outcome,
multiplied by its probability, summed over all outcomes.
This quantity is called the entropy.

The entropy of a distribution is the expected codelength of
an element sampled from that distribution.

1

/2
1/4IIII 1/4|I

abcd ab cd abocd
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o+ logle)=° when computing entropy
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The entropy of a distribution is a very commonly used
function, because it expresses in a single number how much
uncertainty we have over the outcome. Or in other words,
how uniformly spread out the probability mass is among
the outcomes.

The more uniform our distribution is, the less we know
about what will happen, and the higher the entropy.

On the left we see a perfectly uniform distribution. Each
outcome has equal probability 1/4, so each outcome gets a
2-bit codewords, and the expected codelength is 2.

In the middle, we know something more about our
distribution, for instance that a is very likely, so we can

make the codeword for "a" a little shorter, reducing the
expected codelength to 1.75 bits.

On the right, we see the extreme case of perfect knowledge.
We are certain that outcome "a" will happen every time. We
can label the root of our tree with "a". This is like having a
single "empty" codeword with a length of 0 bits. More
practically, if I had to sample an outcome from this
distribution and send you a message saying what had
happened, the best option would be no message at all: we
both know the distribution, so I don't need to tell you what

happened.

This last example requires the assumption that we assume
0 - log(0) = 0. This is not always true, but it's an assumption
we make when we compute entropies, since it leads to the
most intuitive results.



cross entropy

p(X): source of our data
q(X): our model

Cross entropy: expected codelength if we use g, but the
data comes from p.

H(p, q) = E,L9(x)
— Y px)logq(x)

xeX

What if we don’t use the code that corresponds to the
source of our data p to encode our data, but some other
code based on distribution q. What is our expected
codelength then? This is called the cross entropy.

It can be shown that the cross entropy is minimal when
p=g. That is, when the cross entropy corresponds to the
entropy.

We can conclude two things:

» The code corresponding to p provides the best expected
codelength out of all possible prefix-free codes.

+ The cross entropy is a good way to quantify the distance
between two distributions (because it's minimal when
the two are the same).

The proof that the cross entropy is always bigger than the
entropy is too complicated for now. If you're up for a
challenge and you know about Lagrange multipliers
(explained in the optional SVM lecture), you can apply these
to the problem of minimizing the cross entropy for vector q,
subject to the constraints that the elements of q are positive
and sum to 1.

Kulback-Leibler divergence

Expected difference in codelength between p and q.

Or, difference in expected codelength.

> p(x)log 469

= p(x)

The cross-entropy is a nice measure, but it’s not zero when
p and q are equal. Instead, it's equal to the entropy of p.

To get a measure that is zero when the two are equal, and
larger than zero otherwise, we can just subtract the the
entropy of p. This is called the Kullback-Leibler (KL)
divergence. The KL divergence between two distributions is
zero if and only if they are equal.

You can think of this a little bit like the "distance" between
two distributions, although unlike a distance, it's not
symmetric.



for continuous spaces

H(p) =— , p(x)logp(x)dx = —E, log p(x)
Jx
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For probability distributions on continuous spaces, we can
also define entropy, known as the differential entropy, and
KL divergence. We lose the interpretation of prefix-free
codes, and there are some technical hurdles here, but the
long and short of it is that we replace the summation by an
integration.

To avoid this complexity, in the rest of the course we will
often write the entropy and the KL divergence using the
expectation notation. This automatically implies that we are
summing for discrete sample spaces and integrating for
continuous ones, and if we know the basic properties of the
expectation (see homework 1), then we'll never need to
open the expectation operator up anyway.

log loss is cross-entropy loss

loss(q) = D H(px, dx)

xeX
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Now that we have our interpretation of -log(x) as a
codelength, let's see what it says about the places where
we've used it.

One such place was the log loss. One interpretation we now
have is that if we minmize -qx(P) in logistic regression, we
are minimizing the amount of bits we would need to
transmit to communicate that x is of the positive class, if we
assume that both the sender and receiver have access to the
classifier and x, but not to the class label (more about this in
a bit).

Another interpretation comes from the fact that we
characterized the cross entropy/KL divergence as the
"distance" between two probability distributions. What if
we see the labels in the dataset as one probability
distribution p (with all probabilities 0 or 1), and the
classifier as another distribution q? What happens if we
explicitly try to minimize the cross entropy between p and
q by changing the parameters of q?

As you can see, with a little rewriting, we recover the
logarithmic loss we already derived. For this reason log-
loss is also known as cross-entropy loss. This is not justa
mathematical curiosity, it can actually be useful. There may
be cases, where the data provides class probabilities rather
than explicit class labels. In such cases, the cross entropy
view tells us exactly what to do, but the log-loss perspective
becomes useless.

We can also do this with the KL divergence instead of the
cross-entropy. In that case, we get a constant term - log p(x),
which is independent of the parameters of q. This usually
doesn't affect the gradient, but in some cases it does.



warning: entropy is coming back.
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Just a little heads up: entropy is an important subject. It
may feel a little abstract now, and it's fine if you don't quite
get it, but we will see it in use a number of times
throughout the course.

We will practice it in the homework exercises, so you'll get
another chance to get comfortable with it.

the Minimum Description Length Principle

A model that allows us to compress the data is a model
that has learned something about the data.

The better the compression, the more we've learned.

Balance model complexity by storing the model, and then
the data given the model.

We'll finish up with a brief look at the field that aims to
apply this coding perspective to problems of learning more
rigorously. The family of methods based on the principle of
Minimum Description Length.

The idea is very simple: compression is similar to learning.
We look at some data and try to isolate recurring patterns
in the data. Using the ideas of coding and entropy, we can
make this idea rigorous.

data

The simplest way to think of MDL is in a sender and
receiver framework. The sender is going to see some data,
and is going to send it to the receiver. Before observing the
data, the sender and receiver are allowed to come up with
any scheme they like. But afterwards, the data must be sent
using the scheme, and in a way that is perfectly decodable
by the receiver without further communication.

One way this is often done is called two-part coding:

» The sender and receiver agree beforehand on a family of
models (for example the normal distributions, as indexed
by parameters |1 and o)

« Then, once the sender has seen the data, she picks a
model best suited to the data, and sends this choice of
model to the receiver (fopr instance by sending the L and
o for the chosen model).

« Next, the sender uses the model to encode the data and
sends it over

+ The receiver unpacks the model and then uses the model



to decode the data.

This allows us to frame the problem of model selection
using the MDL principle. The best choice of model is the one
that minimizes the size of the total package: the cost of
communicating the model plus the cost of communicating
the data given the model. If the model is very good at
compressing the data, then it might be a very good choice,
unless the model is so complex that the cost of sending the
model over negates the gains made on communicating the
data.

This idea is often used to solve the problem of over- and
underfitting. Without going into the technical details, here
is the basic principle of two-part coding applied to a
regression problem.

In a regression (or classification) problems, we take the
instances and their features as fixed: both the sender and
receiver have access to them. The data that we want to send
over the wire is the target labels; in this case the regression
targets. How you encode a continuous value is a technical
matter that requires some assumptions. For now we can
just discretize the range of outputs, and assume that we are
using a code that means that bigger numbers cost more
bits. The same goes for the parameters of the model: these
are also continuous values, but we’ll discretize them
somehow. Here we only need to assume that using more
parameters in your model takes more bits.

Once we've chosen a model we can reconstruct the data by
sending the model parameters and the residual values. We
see that if we pick a linear model we have many large
residuals to transmit. On the other hand, our model is
described by only two parameters, so we can transmit that
part very cheaply. If we make our model a parabola, we
require three numbers to transmit it, so that part of our
message gets bigger, but because the model fits so much
better, the residuals are much smaller, and the overall
length of our message gets much smaller.

If we make our model a 15-th order polynomial, we get a
slightly tighter fit, but not by much, and the price we pay in
storing the 16 numbers required to describe our model
means that our total message length is bigger than for the
parabola. So overall we prefer the model in the middle,
according to the minimum description length principle.



arg max p(M)p(X | M)
M

= argmin—logp(M)p(X | M)
M

= argmin —logp(M) — log p(X | M)
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cost of describing cost of describing
the model the data given the model

There are many correspondences between using MDL and
using Bayesian methods. In fact they are often different
perspectives on the same thing.

Here is one example. Let's say we are picking a single model
M that maximizes the posterior probability of the data (this
requires us to maximize only the numerator of Bayes rule,
since the denominator is constant).

A full Bayesian analysis would compute the entire posterior
distribution, but sometimes we are only interested in its
maximum.

As we've seen before, we can stick a logarithm in front of
any probability without changing the maximum, and we can
add a minus to change the maximum into a minimum.

Then, using the basic properties of the logarithm, we find
that we are minimizing the sum of two code-lengths: the
cost of describing the model, and the cost of describing the
data once the model is known. This is exactly what we do in
two-part coding.

simplicity assumption

When we talked about the problem of induction and the no
free lunch theorem, we noted that some assumption about
the source of our data was always necessary to make
learning possible at all. Some aspects of our problem we
need to assume before we start learning.

You can think of MDL as encoding a simplicity
assumption. We prefer simple solutions over complex
ones, and we define a simple solution as one that
compresses the data well. The assumption we make about
the universe, is that it generates compressible data for us.
Or, more precisely, that the compressible aspects of the data
that we see are likely to carry over to the test set, and that
the incompressible aspects of the data are likely random
noise.

The nice thing about MDL is that it tells us how to trade off
the desire to fit the data well with the desire for a simple
solution.
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