|section|Neural networks|
|video|https://surfdrive.surf.nl/files/index.php/s/
PHImIzOcnEKmBIS/download|

Beyond Linear Models

Neural networks

making linear models A few lectures ago, we saw how we could make a linear

model more powerful, and able to learn nonlinear decision
d P d*p boundaries by just expanding our features: we add new
075 0.98 074 features derived from the old ones, and depending on which
066 032 0.21 combinations we add, we can learn new, non-linear
045 0.84 0.38 decision boundaries or regression functions.
0.93 0.78 0.72
-0.42 0.24 -0.10
-0.02 0.43 -0.01
-0.74 0.58 043
-0.41 -0.41 0.17
0.59 0.72 0.42 5% ,

from linear to nonlinear models Both models we will see today, neural networks and

support vector machines, take this idea and build on it.
Neural networks are a big family, but the simplest type, the

neural networks SVMs
specifically the feedforward network using the kernel trick two-layer feedforward network, functions as a feature
extractor followed by a linear model. In this case, we don’t
wix+b wix+b linear model choose the extended features but we learn them, together
with the weights of the linear model.
k(xi, X5) feature extractor) ,
The support vector machine doesn’t learn the expanded
features (we still have to choose them manually), but it uses
learns a feature uses a kernel to
extractor together massively expand the a kernel function to allow us to fit a linear model in a very
with the classifier feature space

high-dimensional feature space without having to pay for

actually computing all these expanded features and storing
them in memory.

Using the SVM in this way is becoming less popular. Their loss
function (the maximum margin loss) is still used, but the
feature expansion trick is exceedingly rare. For this reason,
we have made this part of the lecture optional. We suggest
you have at least a quick look at the basic idea, but the
material covered in the last part of this lecture won’t appear

http://mlvu.github.io

on the exam.

linear models 2

1985-1995

part 1: Neural Networks
part 2: Backpropagation
1995-2005

part 3: Support Vector Machines, Hinge loss

part 4: Optimizing under constraints

Lagrange optimization

The kernel Trick

The layout of today’s lecture will be largely chronological.
We will focus on neural networks, which were very
popular in the late eighties and early nineties.

Then, towards the end of the nineties, interest in neural
networks died down a little and support vector machines
became much more popular.

In the next lecture, we’ll focus on Deep Learning, which sees
neural networks make a comeback in a big way.

neuron

In this video, we'll start with the basics of neural networks.

In the very early days of Al (the late 1950s), researchers
decided to try a simple approach: the brain is the only truly
intelligent system we know, so let’s see what it's made of,
and whether that provides some inspiration for intelligent
(and learning) computer systems.

They started with a single brain cell: a neuron. A neuron
receives multiple different input signals from other cells
through connections called dendrites. It processes these in
a relatively simple way, deriving a single new signal, which
it sends out through its single axon. The axon branches out
so that this single output signal can reach different cells.

image source: http://www.sciencealert.com/scientists-

1957: the perceptron

y=wixi+wax2+b

output pos ify >0
output neg otherwise

These ideas needed to be radically simplified to work with
computers of that age, but the basic idea was still there:
multiple inputs, one output. Doing this yielded one of the
first successful machine learning systems: the perceptron.
This was the model we saw in action in the video in the the
first lecture.

The perceptron has a number of inputs, the features in
modern parlance, each of which is multiplied by a weight.
The result is summed, together with a bias parameter, and
the sign of this result is used as the classification.

Of course, we've seen this classifier already: it's just our
basic linear classifier. The training algorithm was a little
different from gradient descent, but the basic principle was
the same.

Note that when we draw the perceptron this way, as a mini
network, the bias can be represented as just another input
that we fix to always be 1. This is called a bias node.

problem: composing neurons

y=1(1x1 + 3x2) + 2(2x3 + 1Xa)

o

13 4 2

0000

Y =1X1 4 3X2 + 4X3 + 2Xa

Of course the brain’s power does not come from the fact
that a single neuron is such a powerful mechanism by itself:
it’s the composition of many simple parts that allows it to do
what it does. We make the output of one neuron the input of
another, and build networks of billions of neurons.

And this is where the perceptron turns out to be too simple
an abstraction. Because composing perceptrons doesn’t
make them more powerful. Consider the graph on the left,
with multiple perceptrons composed together.

Writing down the function that this graph represents, we
see that we get a simple function, with the first two
perceptrons in brackets. If we then multiply out the
brackets, we see that the result is a linear function. This
means that we can represent this function also as a single
perceptron with four inputs. This is always true. No matter
how many perceptrons you chain together, the result will
never be anything more than a simple linear function over
your inputs: a single perceptron.

We’ve removed the bias node here for simplicity, but the
conclusion is the same with a bias node included.

nonlinearity

sigmoid Q@

2
z
I
-
+‘
g
x

y = o(wixg +woxg + b)

[J
x ifx>0
RelLU =
€ °© / () {0 otherwise

To create perceptrons that we can chain together in such a
way that the result will be more expressive than any single
perceptron could be, the simplest trick is to include a non-
linearity, also called an activation function.

After all the weighted inputs have been combined, we pass
the resulting scalar through a simple non-linear scalar
function to produce the output. One popular option,
especially in the early days of neural networks, was the
logistic sigmoid, which we’ve seen already. Applying a
sigmoid means that the sum of the inputs can range from
negative infinity to positive infinity, but the output is always
in the interval [0, 1].

Another, more recent non-linearity is the linear rectifier, or
ReLU nonlinearity. This function just sets every negative
input to zero, and keeps everything else the same.

Not using an activation function is also called using a linear
activation.

It's difficult to provide an intuition here for quite how these
nonlinearities operate in the larger model. For now, the only
point we want to make is that adding nonlinearities stops a
network of perceptrons from collapsing into a single
nonlinear function. We'll trust that these functions allow the
network to learn some useful functions. We'll see a little more
intuition in later lectures.

feedforward network

output layer

hidden layer

input layer
(features)

aka Multilayer Perceptron (MLP)

Using these nonlinearities, we can arrange single
perceptrons into neural networks. Any arrangement of
perceptrons makes a neural network, but for ease of
training, this arrangement seen here was the most popular
for a long time. It’s called the feedforward network or
multilayer perceptron (MLP). We arrange a layer of
hidden units in the middle, each of which acts as a
perceptron with a nonlinearity, connecting to all input
nodes. Then we have one or more output nodes, connecting
to all hidden units. Note the following points.

» There are no cycles, the network feeds forward from
input to output.

» Nodes in the same layer are not connected to each other,
or to any other layer than the next and the previous one.

+ Each layer is fully connected to the previous layer, every
node in one layer connects to every node in the layer
before it.

In the 80s and 90s these networks usually had just one

hidden layer, because we hadn’t figured out how to train
deeper networks.

Nowadays it's common to find feedforward networks with as
many as 12 hidden layers, often used as part of a much larger
network also employing different types of layers.

Note that every line in this picture represents one distinct
parameter of the model. The blue lines (those connected to
bias nodes) represent biases, and the rest represent
weights.

We can use networks like these to do classification or
regression.

for j in 1 .. 3:
for i in 1 .. 2:
ki += wij * Xi
ki += bj

for i in 1 .. 3:
hi: = sigmoid(ki)

for i in 1 .. 3:
y += hi % v
y += ¢

loss = (y = t) %k 2

This is a simple feedforward neural network in pseudocode
(including the computation of the loss). It's worth studying
this in detail to make sure you understand all the steps.

Here are some questions you can ask yourself to see if you
properly understand.

* Where is k in the diagram?

+ How many values bj are there, and to which parts of the
diagram do they correspond?

+ What loss function are we using here?

+ Why does the first layer have two nested loops, but the
second only one?

+ The computation of the sigmoid activation happens only
in one loop. If the network looked different, would that
happen in two nested loops, like the computation of the
first layer?

regression

linear regression

feature expansion

To build a regression model, all we need is one output
node without an activation. This means that our network as
a whole, describes a function from the feature space to the
real number line.

We can think of the first layer of our network as computing
a feature expansion: the same thing we did in the fourth
lecture to enable our linear regression to learn non-linear
patterns, but this time, we don’t have to come up with the
feature expansion ourselves, we simply learn it. The second
layer is then just a linear regression in this expanded
feature space.

The number of hidden nodes is a hyperparameter. More
nodes makes the network more powerful (that is, able to
represent more different functions), but also more likely to
overfit, more expensive to compute and potentially more
difficult to train. The only real advice we can give is that
whenever possible, your hidden layer should be wider than
the input layer.

After we've computed the output, we can apply any

regression loss function we like, such as least-squares loss.

classification (binary)

kc;?‘ﬁ\73

logistic regression

feature expansion

To build a binary classifier, we could do what the
perceptron did: use the sign of the output as the class. This
would be a bit like using our least squares classifier from
the second lecture, except with a feature expansion layer
below it.

These days, however, it's much more common to take
inspiration from the logistic regression. We apply the
logistic sigmoid to the output and interpret the resulting
value as the probability that the given input (x) is of the
positive class.

The logarithmic loss that we use for logistic regression, can
then be applied here as well.

classification (multiclass)

softmax activation sea\"n
s
g v
y 0.1 0.6 03
0" @® %@ o) oi=w'h+b
exp(01)

Y=

> exp(oj)

For multiclass classification, we can use something called a
softmax activation. We create a single output node for
each class, and then ensure that they are all positive and
that together they sum to one. This allows us to interpret
them as class probabilities.

The softmax function is one way to ensure this property. It
simply passes each output node through the exponential
function, to ensure that they are all positive, and then
divides each by the sum total, to ensure that all outputs
together sum to one.

After the softmax we can interpret the value of node ys as
the probability that x has class 3. Given these probabilities,
we can apply a simple log loss: the aim is to maximize the
logarithm of the probability of the true class.

The softmax is slightly unusual among activations in that it
exchanges information between the nodes of the output layer.
This allows us to look at just one output, and still provide a
learning signal for all output nodes. For instance, imagine
that the probability of class 3 is low, but it should be high.

This means that the value of y3 should increase, but because
the three nodes are required to sum to one, it automatically
means that the values of y1 and yz should decrease. We will
see in the next video how this is achieved.

stochastic gradient descent

pick random weights w (for the whole model)
loop:
forxinX:

W W - T Viossx(w)

Because neural networks can be expensive to compute we
tend to use stochastic gradient descent to train them.

Stochastic gradient descent is very similar to the gradient
descent we've seen already, but we define the loss function
over a single example instead of summing over the whole
dataset: just use the same loss function, but pretend your
data set consists of only one instance. We then loop over all
instances, and perform a small gradient descent step for
each one based on only the loss for that instance.

Stochastic gradient descent has many advantages,
including:

+ Using a new instance each time adds some noise to the
process, since the gradient will be slightly different for
each instance, which can help to escape local minima.

* Gradient descent works fine if the gradient is not perfect,
but still good on average (over many instances). This
means that taking many small inaccurate steps is often
much better than taking one very accurate big step.

» Computing the loss over the whole dataset is expensive.
By computing the loss over one instance at a time, we get
N steps of stochastic gradient descent for the price of one
step of regular gradient descent.

The most common approach these days is a compromise
between stochastic and regular gradient descent, where we
actually compute the loss for a small batch of instances (say
32 of them), and take a single step of gradient descent for
each batch. This is called minibatch gradient descent,
which we’ll look at more closely next lecture.

training a neural network

get some examples of input and output

geta loss function

least squares, cross entropy

work out the gradient of the loss wrt the weights

use (stochastic) gradient descent to improve the weights
bit by bit.

Apart from this exception, the training of a neural network
proceeds in much the same way as the training of linear
classifiers we've seen already.

playground.tensorflow.org

5 poch Learing rate Actvato Probiom ypo
»
000,419 003 - ReLU - Classication

DATA FEATURES + — 1 HIDDENLAYER OUTPUT

Which dataset do
You want to use?

REGENERATE

Colors shows P
data, neuronand

Before we dig into the details, we can get a sense of what
neural network training looks like in the tensorflow
playground. We suggest you play around a bit with the
different datasets, different activations, and try to change
the shape of the network.

- Note how the shape of the decision boundary changes
based on the activation functions we choose (curvy for
sigmoid, piecewise linear for ReLU)

» Note that adding another layer makes the network much
more difficult to train (especially with sigmoid
activations).

+ Try the linear activation (i.e. no activations on the hidden
nodes). Note that all you get is a linear decision boundary,
not matter how many layers you try.

+ Try a network on the circular dataset, with hidden layers
with 2 units. It should not be possible so solve the
circular dataset this way. It can be shown that to create a
closed shape like a circle as a decision boundary, at least
one hidden layer needs to be strictly bigger than your
input layer.

https://goo.gl/bM8oC4
http://playground.tensorflow.org

But how do we compute the gradient for such
complex models?

That’s the basic idea of neural networks. So far, it’s
hopefully a pretty simple idea. The complexity of neural
networks lies in computing the gradients. For such complex
models, sitting down at the kitchen table with pen and
paper, and working out a symbolic expression for the
gradient is no longer feasible. If we manage it at all, we get
horrible convoluted expressions that no longer reduce to
nice, simple functions, as they did in the case of linear
regression and logistic regression.

To help us out, we need the backpropagation algorithm,
which we’ll discuss in the next video.

Beyond Linear Models

Local and global derivatives

|section|Local and global derivatives|
|video|https://surfdrive.surf.nl/files/index.php/s/
tScZ]Z9P2me0aql/download|

But how do we compute the gradient for such
complex models?

In the last video, we saw what the structure of a very basic
neural network was, and we ended on this question. How
do we work out the gradient?

For neural networks, the gradients quickly get too complex
to work out by hand, so we need to automate this process.

http://mlvu.github.io

Symbolically: too expensive
Numerically: too unstable, also expensive

Middle ground: backpropagation

There are three basic flavors of working out derivatives and
gradients automatically.

The first is to do it symbolically, What we do on pen and
paper, when we work out a derivative, is a pretty
mechanical process. It’s not too difficult to program this
process out and let the computer do it for us. This, is what
happens, when you ask Wolfram alpha to work out a
derivative, for instance. It has its uses, certainly, but it won’t
work for us. The symbolic expression of the gradient of a
function grows exponentially with the complexity of the
original function. That means that as we build bigger and
bigger networks the expression of the gradient would soon
grow too big to store in memory, let alone to compute.

An alternative approach is to forget the symbolic form of
the function, and just estimate the gradient for a specific
input x. We could, for instance, pick some points close to x
and and fit a hyperplane through the outputs. This would be
a pretty good approximation of the tangent hyperplane, so
we could just read out the gradient. The problem is that this
is a pretty unstable business. It’s quite difficult to be sure
that the answer is accurate. It’s also expensive: the more
dimensions in your model space, the more points you need
to get an accurate estimate of your gradient, and each point
requires you to recompute your model for a new input.

Backpropagation is a middle ground: it does part of the
work symbolically, and part of the work numerically. We get
a very accurate computation of the gradient, and the cost of
computation is usually only twice as expensive as
computing the output for one input.

backpropagation

Break your computation down into a chain of modules.

Work out the derivative of each module with respect to its
input symbolically.

Compute the global gradient for a given input by
multiplying these gradients.

Accumulate your gradients down the computation graph. hext Fm—{»

Here are the three steps required to implement
backpropagation for a given function.

Don't worry if this seems abstract, it should become clearer
when we look at an example.

We'll focus on the first three steps in this part. In the next
part, we’ll show how to build on this for complex
computations.

example

computation graph:

*—0—1—0—0

X a C d

To show that backpropagation is a generic algorithm for
working out gradients, not just a method for neural
networks, we’ll first show how it works for some arbitrary
scalar function: f(x) = 2/sin(ex).

There is no special meaning to this function. I just chained
together a few operations for which the derivatives are
simple.

First we take our function f, and we break it up into a chain
of smaller functions, the output of each feeding into the
next. Defining the functions a, b, ¢, and d as shown, we can

write f(x) = d(c(b(a(x)))).

The graph on the right is a called a computation graph:
each node represents a small computer program that
receives an input, computes an output and passes it on to
another module.

Normally, we wouldn’t break a function up in such small
modules: this is just a simple example to illustrate the
principle.

chain rule

o _ 2c b

d ox ~ 0box

0
x ob _ dbda
0b da ox ~ da dx

da 0x

Because we’ve described our function as a composition of
modules, we can work out the derivative purely by
repeatedly applying the chain rule.

Since we know for each function what the argument is, we’ll
leave the arguments out to keep the notation clean.

—_—— — 00—

local derivatives
of|_|3d|ac db da
ox _‘@a da 0x

global derivative

We’ll call the derivative of the whole function with respect
to input x the global derivative, and the derivative of each
module with respect to its input we will call a local
derivative.

work out local derivatives

symbolically
ao=? Of_240c000a
c 0x O0c 0b 0a 0x
c(b) =sin
(a)=e® of 2 u
a(x) = —x x = =2 coshb-e% - —1

The next step is to work out the local derivatives
symbolically, using the rules we know.

The difference from what we normally do is that we stop
when we have the derivatives of the output of a module in
terms of the input. For instance, the derivative dc/ db is cos

. Normally, we would fill in the definition of b and see if we
could simplify any further. Here we stop once we know the
derivative in terms of b.

compute a forward pass (x=-4.499)

retain values of a, b, ¢, d

f(—4.499) =2
2

d=-=2 computation graph:
C

c=sinb=1 ¢—o—0c—0—0

X a c d

e =90

a=—x=4.499

Then, once all the local derivatives are known, in symbolic
form, we switch to numeric computation. We will take a
specific input, in this case -4.499 and compute the gradient
only for that.

First we compute the output of the function f given this
input. We do this simply by following the computation
graph: the input is fed to the first module, and its output is
fed to the second module, and so on. This is known as the
forward pass. During our computation, we also retain our
intermediate values a, b, c and d. These will be useful later
on.

compute the backward pass

numerically
of 2
a

— =——-cosb-e"-—1

ox c?
2 4.4

=—= -cos00-et199. 1

12

Next up is the backward pass. We take the chain-rule
derived form of the derivative, and we fill in the
intermediate values a, b, c and d.

This gives us a function with no variables, so we can
compute the output. The result is that the derivative of this
function, for the specific input -4.499, is 0.

Note that we have stopped doing symbolic computations:
we fill in the numeric values and work out the numeric
result (accepting a small amount of inaccuracy due to
floating point imprecisions).

t: training data

y
0 1=(y—t?

K y =vihi +vohe +vshg + by
nQ_h@Q O @

Here’s what the local gradients look like for the weight v».

The line on the bottom shows how we update v> when we
apply a single step of stochastic gradient descent for x (x
may not appear in the gradient, but the values y and
were computed using x).

o o L4 oL ol ay
’ " vy Oy Ovy
=2(y—1)-
Vo= vo—1-2(y—t)-
) So far, this is no different from gradient descent on a linear
l=(y—t)

y =vih; +vohy +vshg + by
_ 1
" 1+exp(—hj)

h) = wiox1 + Waoxa + by

ol ol 9y oh, 0Oh}

X1 owiy 0y 0 ohj 0w,

=20y —1) v h(l- 1)

Wip 4= Wi =1 - 2(y —t) - va - (1 —ho) - xg

model. The real power of the backpropagation algorithm
shows when we look at how the error propagates back
down the network (hence the name) and is used to update
the weights. Lets look at the derivative for weight wi2.

2y—t)

2y—t)

This approach by itself gives us a way to work out all the
derivatives we need. But note that we are recomputing the
same quantity multiple times. For instance, the error term
2(y-t) appears in every update rule we compute.

This is no coincidence. Because of the graph structure of
our computation, the same local derivatives will show up in
the expressions for many of our global derivatives. We can
make clever use of this to compute all gradients efficiently.
To do that, we first need to be a bit more specific in how we
express the structure of our computation. We will add this
ingredient in the next part of the lecture.

Beyond Linear Models

Backpropagation

|section|Backpropagation|
|video|https://surfdrive.surf.nl/files/index.php/s/
bCudXtVURcW5S6d/download|

backpropagation

Break your computation down into a chain of modules.

Work out the derivative of each module with respect to its
input symbolically.
previous part
Compute the global gradient for a given input by
multiplying these gradients.

Accumulate your gradients down the computation graph.

This is how we described backpropagation in the last part.
There, we focused on making a tradeoff between numeric
and symbolic computation, and working out local
derivatives.

However, there is another ingredient to backpropagation,
which will show us where the name comes from. If we
carefully accumulate our computed gradients we will see
that we can compute all derivatives we need in a single
walk down the computation graph.

a computation graph

ki

[
t
L g
t
®
t
L 2
hs %NO
*
1
®
t
L J
1

The first thing we have to do is draw a proper computation
graph. The diagram we’ve drawn so far provides a kind of
“model perspective”: it separates the inputs and
intermediate values, which are on the nodes, from the
parameters, which are on the edges.

In a proper computation graph, all the numbers that go into
our computation and come out of it, are nodes, whether
they’re parameters of the model or inputs. We'll draw these
as circles: o. To represent the computations, we’ll introduce
anew type of node, drawn as a diamond: e. The edges tell
us which values are the input of a particular computation,
and which is the output. All edges are directed, the ones
going in to the computation represent inputs, and the ones
coming out represent outputs.

In a computation graph, a circle is always connected to a
diamond and vice versa.

We’ve drawn only part of the computation graph for this
network here, to keep things simple. (The full computation
graph for this network would have 22 nodes.)

http://mlvu.github.io

Note also that:

+ We've included the computation of the loss. This is
because when we compute gradients, we're always
interested in the derivative of the loss with respect to the
parameters. Therefore, the computation of the loss
should be part of the computation graph.

» We've separated the computation of the unactivated
hidden nodes (k) and the activated ones (). We could
make this one computation, but it's more common to
separate them.

a computation graph Here are the computations represented by the diamond

e nodes. This is the forward computation of our network:
i 9 from inputs, to the output, to the loss.
Y @ @t We’ve removed some further parts of the graph for the sake
t .
?\ y =vihi +voho +vzhs +¢ of clarity.
h @ ‘@
v 1
T T+ expl—ky)
K ? p 1
?\ ki =wi1X1 + waixg + by
[]
X2

backpropagation For a complex computation graph, it's important to work

the derivatives out in the right order. This allows us to reuse

what we've already computed at every step.
Do a forward pass. Y p ystep
Compute the output and loss given the inputs. i .
The algorithm is simple. We start at the top and work our
Start at the top (output) of your computation graph.
The computation graph should always have a single output.

way down.

Compute the derivative for every node
That is, the derivative of the output wrt. the node.

Work your way down.
As we will see, this makes the computation entirely local.

imaginary i
Jtary gradient descent update

ol
y%yfn@—yf%(yft)

We start at the topmost computation node. We focus on the
computation of the loss from the prediction y and the target
t. We’ll compute derivatives for every node in our
computation graph.

These derivatives are not directly useful to us yet, because
neither y nor t are values we can change directly: t, the
target, is given by the data so we can’t change that at all,
and y we can only change indirectly by changing our
parameters.

What we can do however, is imagine that we could change y
directly. In that case this derivative tells us how we would
update y. In other words, this derivative tell us how we
would like to change y, even though we can’t.

Note how the sign is taken into account. If t is larger than y,
the error term y - t is negative and the gradient update tells
us to add a little bit to y. Likewise if t is smaller than y, we end
up subtracting from y. We can’t do this directly, but the
derivative tells us what we would like to achieve.

o Al ay
oh; = dy 0
=2(y—t) v

—_—

already computed

Next, we move to the previous computation, the one that
takes h1, vi and c as input, and produces y. We can compute
a derivative for each input, but let’s focus on

Applying the chain rule tells us that we can break up the
derivative of the loss wrt to h; into the derivative of the loss
with respect to y times the derivative of y with respect to

loss @
part of the computation
graph that follows the
current computation

output @
9.

N

input

The derivative of the loss wrt to the input is always

ol ol OJoutput

dinput - doutput Jdinput

local
derivative for
current
computation

already
computed

This shows us a general rule about backpropagation on
computation graphs. If we have a node feeding into a
computation, the global derivative of that node (the loss
over the value of the node) is always the global derivative of
the output of the computation, times the local derivative of
the output over the input.

The key to backpropagation is that if we traverse the graph
in the right order, the first derivative (the loss over the
output) is always something we have already computed. If
we take care to work out the derivatives in the reverse
order in which we computed them, we will only ever need
to work out the local derivative of the current computation.

The dotted line in the diagram represents the whole
computation graph above the current module that we're
looking at. At this point, we know the derivative of the loss
with respect to the output, so we no longer care what
happens in this part of the computation graph. For our
purposes, we can treat it as a single computation for which
we already know the derivative.

ol ol dy
ovy @ ovq
ol
B

e

already computed

With this idea in hand, we can work our way down the
graph. For every input of every computation, we can work
out the derivative in terms of the derivative for the output.
We don’t need to worry about what happens after the
output: the derivative for the output is all we need.

Once we have the local derivative worked out, we fill in the
values from the forward pass, and multiply them by the
value we already have for the derivative for the output.

ki

o _ o2
okq 0kq

= o(ki)(1—o(ky))

Once we are done with a computation, we just move down
the computation graph to the next one. We don’t care
whether nodes represent parameters of the model like v;
(which we can change directly) or intermediate values like

(which we can only change indirectly). We want
derivatives for all nodes in the graph, because we’ll need
them to work out derivatives for any node below.

In this case, we deal with the node that computes the
activation function. Since we already have the derivative of
the loss with respect to hi, we only need to apply the chain
rule once. This breaks up the computation of the derivative
that we need (1 over k1) into one derivative we've already
computed (1 over h1) and one local derivative that we can
easily work out (h: over ki).

ol 0kq
0Woq 0Wo1

Here is the final step. We've left out the biases: it's a good
exercise to see if you can work out what the rule is for the
derivative of the biases.

the full backpropagation algorithm

Break your function up into a computation graph.
Call the last node the /oss.

loss @
Do a forward pass.

Start at the loss node and work your way down.

At each input to a computation, multiplying
of loss over output <~ already C"""F“kad
of output overinput <= local deriv,
produces the deriv. of loss over input.

OB'OH.
/

This then, is the full backpropagation algorithm. If we move
down the graph from the loss node, all we need to do is
compute the loss wrt the input and multiply it by the local
derivative (the output over the input).

Note that a lot of this is done by hand, rather than in the
program. We never actually store a computation graph in
the computer, we just draw it with pen and paper and use it
to work out all the rules for computing derivatives
efficiently. Once we’ve done this, we can write these down
in a computer program.

We can also have the computer do this for us: store the
computation graph as an actual object in memory, and have
the computer work all of this out for us. This is called
automatic differentiation, and we’ll discuss it in the next
lecture.

| dy =2 % (y - t)

for i in 1 .. 3:

-\ dvi = dy x h
y ot dhi = dy * vi
dc = dy

for i in 1 .. 3:
dki = dhi % hi *x (1-h:)

7.0
o

=
0 —0—0—0—0—0—0—0—0
{ J
e @
4..
[

2%

=
<
S
>
G
<
S
)

for j in 1 .. 3:
for iin 1 .. 2:
dwi; = dkj * xi
dbj = dk;j

3]

For example, here is how backpropagation looks in
pseudocode for our neural network (the diagram only
shows part of the computation graph, but the algorithm is
for the whole thing). In the algorithm dq is always the
derivative of the loss with respect to the value q.

We start at the top, with dy. Then, we move down to the
inputs of the computation that resulted in y. For each we
compute their derivative by multiplying the derivative for
the loss wrt the output by the local derivative of the
computation.

Once we've made our way down to the bottom of the graph,
we’ve computed the derivatives for every node in the graph.

next lecture: it’s all just linear algebra

X1

x|
|
+ = L ha
N
hy

«

mE =

f(x) =Vo(Wx+b)+c

t:training data

This is how backpropagation was done in the early days of
neural networks (up to the turn of the century). Once we
began to recognize that neural networks could actually
work, we needed ways to speed up their computation. The
most effective way to achieve this is to describe the whole
computation in terms of matrix multiplication/addition,
together with the occasional element-wise non-linear
operation. This allows us to write down the operation of a
neural network very elegantly, and to use highly optimized
routines for matrix multiplication (possibly on special
hardware like a GPU).

In order to make proper use of this, we should also work
out how to do the backpropagation part in terms of matrix
multiplications. That's where we’ll pick up next week in the
first deep learning lecture.

NB: This picture requires us to rename the weights in the
first layer.

Beyond Linear Models

Maximum margin loss

|section|Maximum margin loss|
|video|https://surfdrive.surf.nl/files/index.php/s/
XSETO0tHQMcxp1I5/download|

logistic

In lecture 5, we introduced the logistic regression model,
with the logarithmic loss. We saw that it performed very
well, but it had one problem: when the data are very well
separable, it didn’t have any basis to choose between two
models like this: both separate the training data very well.
Yet, they’re very different models.

There are some tricks we can add to the logistic regression
to deal with this problem, but today we'll look at a loss
function that takes this problem as its starting point: the
maximum margin hyperplane classifier.

Here is an extreme example of the problem. We have two
linearly separable classes and a decision boundary that
separates the data perfectly. And yet, if [see a new instance
that is very similar to the rightmost red diamond, but with a
slightly higher x1 value, it is suddenly classified as a blue
disc.

This illustrates the intuition behind the loss function we
will introduce in this video. If we see new points near our
existing points, they should be classified the same as
the existing points. One way to accomplish this is to look
at the distance from the decision boundary to the nearest
red diamond and blue disc, and to maximize that.

http://mlvu.github.io

What we are looking for is the hyperplane that separates
the classes and has a maximal distance to the nearest
positive point and nearest negative point.

We measure the distance m at a right angle to the decision
boundary. For the positive class, there is only one point
nearest the margin, but for the negative class, there are two
the same distance away.

support vector machine

suFForE vectors

The points closest to the decision boundary are called the
support vectors. This name comes from the fact that the
support vectors alone, are enough to describe the model. If I
give you the support vectors, you can work out the
hyperplane without seeing the rest of the data.

The distance to the support vectors is called the margin.
We’ll assume that the decision boundary is chosen so that
the margin is the same on both sides.

Or, alternatively, you can imagine we are drawing parallel
lines through the support vectors, and putting the decision
boundary halfway between these lines.

Maximum margin loss

Hinge loss
Usually refers to a the constraint-free formulation of this loss. Used in combination with
neural networks.

Support vector machine (SVM)

Usually refers to use to this loss in combination with the kernel trick.

Maximum margin hyperplane classifier
Old-fashioned name for the SVM. Usually refers to the version without the kernel trick.

This idea goes by many names. These all mean the same
thing, but they are used in different contexts.

Given a dataset, how do we work out which
hyperplane maximizes the margin?

So, given a dataset, how do we work out which hyperplane
maximizes the margin?

This is a tricky problem, because the support vectors aren’t
fixed. If we move the hyperplane around to maximize the
distance to one set of support vectors, we may move too
close to other points, making them the support vectors.

Surprisingly, there is a way to phrase the maximum margin
hyperplane objective as a relatively simple optimization
problem.

1D linear classifier

wx+b>0

To work this out, let’s first review how we use a hyperplane
to define a linear decision boundary. Here is the 1D case.
We have a single feature and we first define a linear
function from the feature space to a scalar y.

If the function is positive we assign the positive class, if it is
negative, we assign the negative class. Where this function
is equal to 0, where it “intersects” the feature space, is the
decision boundary (which in this case is just a single point).

Note that by defining the decision boundary this way, we
have given ourselves an extra degree of freedom: the same
decision boundary can be defined by infinitely many
hyperplanes. We’ll use this extra degree to help us define a
single hyperplane to optimize.

Here’s the picture for a two dimensional feature space. The
decision boundary is the dotted line where the hyperplane
intersects the (x1, x2) plane. If we rotate the hyperplane
about that dotted line, we get a different hyperplane
defining the same decision boundary.

The hyperplane h we will choose is the one that produces
y=1 for the positive support vectors and y=-1 for the
negative support vectors. Or rather, we will define the
support vectors as those points for which the line produces
1and-1.

There's no guarantee that this happens at points that are in
the dataset, but we will see later that this must be the case
for an optimal choice of h.

For all other negative points, h should produce values
below -1 and for all other positive points, h should produce
values above 1.

support vector machine

.". wix+b=1
wix+b=-1 @,

wix+b=-1 0

This is the picture we want to end up with in 2 dimensions.
The linear function evaluates to -1 for the negative support
vectors, and to a lower value for all other negative points. It
evaluates to 1 for the positive support vectors and to a
higher value for all other positive points.

The trick we use to achieve this is to optimize with a
constraint. We first define the margin as the distance from
the decision boundary, where h evaluates to zero, to the line
where h evaluates to 1, and on the other side to the line
where h evaluates to -1. Then we set the constraint that all
points should be on the correct side of their respective
margins.

maximize “2x the size of the margin”
such that :
wixi+b>1 forx;eX’
wixi+b<—1 forx;e XM

Here is our objective, written as precisely as we can manage
at the moment. We will make this more precise as we move
on.

The quantity that we want to maximize is "2 times the
margin": the width of the band separating the negative from
the positive support vectors (between the two dotted lines
in the previous slide).

The constraints define the support vectors: all positive
points should evaluate to 1 or higher. All negative points
should evaluate to -1 or lower. Note that if we have N
instances in our data, this gives us a problem with N
constraints.

Note that this automatically ensures that the support
vectors end up at -1 and 1. Why?

solutions without support vectors are suboptimal

Here is a picture of a case where all negative points are
strictly less than -1, and all positive points are strictly larger
than 1. The constraints are satisfied, but there are no points
on the edges of the margin: we have no support vectors.

In this case, we can easily make the margin bigger, pushing
it out to coincide with the nearest points. Therefore, we
have not hit the maximum yet. This is not an optimal
solution to our optimization problem.

Thus, any hyperplane with a maximal margin, that satisfies
the constraints. must have points on the edges of its margin.
These points are the support vectors.

~_ 2
NG
& //\
~__ S 9.
s ¥
. &
\ NG

Here is the picture in 3D. Just like the hyperplane crosses
the plane where y=0 to make the decision boundary, it
crosses the y=1 plane to make the positive margin, and it
crosses the y=-1 plane to make the negative margin.

Imagine finding a hyperplane that separates the classes,
and then angling it so that the margins hit the nearest
points.

but keep these above 1:

maximize this

and these below -1

Here is the picture for a single feature. We want to
maximize the distance between the point where the
hyperplane hits -1 and where it hits 1, while keeping the
negatives below -1 and the positives above 1.

maximize “2x the size of the margin”

such that:

yi(w'xi+b)>1 forallx;

So, how do we work this into a practical optimization
objective that we can actually solve?

The first thing we’ll do is simplify the two constraints for
the two classes into a single constraint.

We introduce a label y; for each point x; which is -1 for
negative points and +1 for positive points. Multiplying the
left-hand side of the constraint by yi keeps it the same for
positive points and takes the negative for negative points.
This means that in both case, the left hand side should now
be larger than or equal to one.

This label yi is the same label we introduced to define the
least squares loss, but now we're using it in a different way.
Instead of trying to map each point to its label y;, we are
fitting points to values above or below yi.

We now have a problem with the same constraint for every
instance in the data.

Next, we need to make the phrase "2x the size of the
margin" more precise. We know that our hyperplane,
whichever hyperplane we choose, is defined by parameters
w and b. Looking at the parameters of a particular
hyperplane (good or bad), can we tell what the size of the
margin is?

meaning of v and

First, let's recall what the parameters mean geometrically.
Remember that in the equation wTx + b, w is the vector
pointing orthogonally to the decision boundary. b is how
high the hyperplane is at the origin.

Note that the hyperplane we have drawn here is not a
solution to our problem, since it does not satisfy the
constraints.

what is the size of the margin?

2m . wix+b=1

wix+b=-1

wix+b=-1

This is the value we're interested in expressing. Twice the
margin.

what is the size of the margin?

2m=|fall

To make the math easier, let’s move the axes around so that
the lower dotted line (belonging to the negative support
vectors) crosses the origin. Doing this doesn’t change the
size of the margin.

We can now imagine a vector from the origin to the upper
dotted line, at a right angle. Call this vector a. The length of
a is exactly the quantity we're interested in.

Remember also that the vector w points in the same
direction as a, because both are perpendicular to the
decision boundary.

what is the size of the margin?

wio+b=-1
wla+b=1 .
wla=2
[lwll llal] = 2 "
2
llal| = m
wTx = |wll x|l cos &

Because of the way we’ve moved the hyperplane, we know
that the origin (0) hits the negative margin, so evaluates to
-1. We also know that a hits the positive margin, so
evaluates to +1.

Subtracting the first from the second, we find that the dot
product of a and w must be equal to two.

The dot product of anything with the zero vector is always 0.

Since a and w point in the same direction (cos a = 1), their
dot product is just the product of their magnitudes (see the
geometric definition of the dot product on the right).

Re-arranging, we find that the length of a is 2 over that of w.

2

maximize : r—
[Iwll

such that:

yi(w'xi+b)>1 forall x;

So, the thing we actually want to maximise is 2/||w||. This
gives us a precise optimization objective.

Note that almost all the complexity of the loss is in the
constraints. Without them we could just let all elements of
w go to zero However, the constraints require the output of
our model to be larger than 1 for all positive points and
smaller than -1 for all negative points. This will
automatically push the margin up to the support vectors,
but no further.

Consider what it would mean for the elements of w to go to
zero. w is the gradient of our hyperplane. It points in the
direction of steepest ascent, and its magnitude indicates how
steep that ascent is. The smaller w is, the more flat the
hyperplane lies. This is what the objective says: subject to the
constraint that all points are on the correct side of their
respective margins, we want a hyperplane that lies as flat as
possible. If you think back to the 3D picture, you should be
able to imagine how this ensures as wide a margin as
possible.

hard margin SVM

o 1
minimize: —||wl|
2

such that:

yi(w'xi +b) > 1 forall x;

Since we prefer to minimize instead of maximize, we take
the inverse of this objective, and minimize that. The
resulting classifier is called a “hard margin” support
vector machine (SVM), since no points are allowed to
violate the constraint and end up inside the margin.

In previous lectures we usually took the negative of the
objective to turn maximization into minimization. In SVMs
taking the inverse is more common, since the objective looks
nicer this way.

The hard margin SVM is nice, but it doesn’t work well when:
+ We have data that is not linearly separable

» We could have a very nice decision boundary if we just
ignored a few misclassified points. For instance, when
there is a little noise, or a few outliers.

hard margin SVM

minimize : —WTw

such that:

yilw'xi +b) > 1 forall x;

A common alternative is to replace the norm of w by the dot
product of w with itself. This is just a question of removing
the square from the norm, so it doesn't change the location
of the minimum.

This is because the square is a monotonic function: if the
input gets bigger, the output gets bigger.

This form is easier to work with if we want to work out the
gradient explicitly.

This objective is also sometimes written as Y||w||2, which
means the same thing.

To deal with such situations, we can allow a soft margin. In
a soft margin, we allow a few points to be on the wrong side
of the margin, if it helps us achieve a better fit on the rest of
the points. That is, we can trade off a few violations of the
constraints against a bigger margin.

These points can even be on the wrong side of the decision
boundary.

soft margin SVM

o 1
minimize : §WTW +C ; Pi

such that:

yilw'xi +b) >

1—p; forall x
pi =0

To achieve this, we introduce a slack parameter p; for each
point xi. This parameter indicates the extent to which the
constraint on Xi is relaxed. Our learning algorithm can set pi
to whatever it likes. If it sets pi to zero, the constraint is the
same as it was for the hard margin classifier. If it sets pi
higher than zero, the constraint is relaxed and the point x;
can fall inside the margin.

The price we pay is that p; is added to our minimization
objective, so the value we reach there becomes higher if we
use more nonzero slack parameters.

Our search algorithm, which we will detail later, does the
rest. It automatically makes the tradeoff between how much
we want to violate the original constraints and how big we
want the margin to be.

C is a hyperparameter, indicating how to balance the
tradeoff.

The value of C is positive, and we usually try values on a
logarithmic scale like 0.001, 0.01, 0.1, 1.0, 10 and 100. As C

goes to infinity, we recover the hard margin SVM, where
violating the constraints is “infinitely bad” and this never
happens.

-1

pi

* 0

Here is what that looks like in 1D. The open points are the
support vectors, and for each class, we have one point on
the wrong side of the decision boundary, requiring us to pay
the residual p; as a penalty.

So, the objective function has a penalty added to it, but
without this penalty, we would not have been able to satisfy
the objective at all, since the two classes are not separable

-1

* 000

——————— soft margin

+— hard margin

However, even if the classes are linearly separable, it can be
good to allow a little slack.

Here, the two points that would be the support vectors of
the hard margin objective leave a very narrow margin. By
allowing a little slack, we can get a much wider margin that
provides a decision boundary that may be more likely to
generalise to unseen data.

How do we search for a good solution to the
soft margin SVM objective?

So, now that we have made our objective precise, how do
we find a good solution? We haven'’t discussed constrained
optimization much yet. It turns out, we don't necessarily
need to use constrained optimization methods, although
there is a benefit to using them. We'll look at both options.

option one: express everything in terms of w, get rid of

the constraints.) b_e,o
M
-5
- Allows gradient descent to be used. &
- Good for use with neural networks/deep learning.
option two: express everything in terms of the support
vectors, get rid of w. o
b_ﬂ/
- Doesn't allow error to propagate back, but ... \,“\'
&
&

- allows the kernel trick to be applied.

a fork in the road

The first oiption allows us to use the old familiar gradient
descent, without having to worry about constraints.

The other requires us to delve into constrained
optimization, which we start to do in the next video. The
payoff for that is that it opens the door to the kernel trick.

In the rest of this video, we will work out option one.

If you're in a hurry, and you just want to know the parts
that are important for the course, you can skim the rest
of this video and focus on the next two.

if yiw'xi+b)<1 :

pi=1—yi(w'xi+Db)

pi

otherwise:

pi=0
1—yi(w'x; +b) is negative

pi =max (0,1 —yi(w'x; + b))

option one: get rid of the constraints

To get rid of the constraints, let’s look at what we know
about the value of pi.

If the constraint for x; is violated, we can see that p; makes
up the difference between what yi(wTxi+ b) should be (1)
and what it is.

If the constraint is not violated, pi becomes zero, and the
value we computed above becomes negative.

We can summarise these two conclusions in a single
definition for pi: it is 1 - yi(wTxi+ b) if the constraint is
violated and 0 otherwise. This is equal to the value max(0,
1- yi(wTxi+ b)) in both cases.

Since this value is always equal to p;, we can replace p; by it
everywhere it occurs in the optimization objective

soft margin SVM

1
minimize : 5wTw +C ; max (0, 1— yi(wai + b))

1 — max (().1 —yi(w'x + b)) forall x;
0

suchthat: v Txi+b) >
max ((l.lfyi(TXier)) >

Doing this, we get a new objective function.

The new constraints are now always true. For the second
one, this is easy to see, since the maximum of 0 and
something is always larger than or equal to 0.

For the first, note that we worked out max(0, 1- yi(wTxi+ b))
as how far below 1 the value yi(wTxi+ b) was. If we move it
to the the other side, we get

yi(wTxi+ b) + max(0, 1- yi(wTx;+ b))

which must therefore be exactly equal to 1 if yi(wTxi+ b) is

below 1, or larger if yi(w™xi+ b) is larger than 1.

Since the constraints are always true, we can remove them,
giving us an unconstrained optimization problem.

option one: unconstrained optimization

minimize :
1 + T
3V w—i—CZmax (0,1 —yi(w'x; + b))

| e | k 1

regularizer error

This gives us an unconstrained loss function we can
directly apply to any model. For instance when training a
neural network to classify, this makes a solid alternative to
logarithmic loss. This is sometimes called the L1-SVM
(loss).

There is also the L2-SVM loss where a square is applied to the
pi function, to increase the weight of outliers.

We can think of the first term as a regularizer. It doesn’t
enforce anything about how well the plane should fit the
data. It just ensures that the parameters of the plane don’t
grow too big. We'll see more regularization in the next
lecture, but this form, where we add the norm of the
parameter vector to the loss function, is very common.

The highlighted part of the second term functions as a kind
of error (just as we used in least squares classification, but
without the square). It computes how far the model output
yi(wTxi+ b) is away from the desired value (1).

However, unlike the least squares classifier, we only
compute this error for points that are sufficiently close to
the decision boundary. For any points far from the
boundary (i.e. outside the margin), we do not compute any
error at all. This is achieved by cutting off any negative
values. If the data is linearly separable, we could easily
shrink the margin enough to make the error zero for all
points, but this usually requires a w with a very high norm,
so then the regulariser kicks in and start increasing so
much that we prefer some points inside the margin.

classification losses

¢ —
. - . 5p ity
TSVMTioss (week 37 tirear iodets 2)-

And with that, we have discussed our final classification
loss. Let’s review.

aka zero-one loss, nr. of misclassified instances
doesn't work with gradient descent

error + J
T !

least squares
assign -1, 1 to points treat as regression
doesn't really work well, illustrative .

log-loss
aka cross entropy, use a sigmoid to tur the ‘
)

linear output into probabilities
works well for non-separable data, generalizes
to multiclass

soft margin SVM

aka hinge loss, maximum margin loss

works well in high-dim data, separable data l
[N N]

Here are all our loss functions in one handy slide.

The error, also known as zero one loss, is simply the
number or proportion of misclasssified examples. It’s
usually what we’re interested in, but it doesn’t give us a loss
surface that is suitable for searching.

The least-squares loss we introduced as a simple
illustration of the principle of a proxy loss for the error. In
practice it doesn't usually work very well, and is rarely
used.

The log loss requires a sigmoid function to be added to the
output of the linear function. It assumes that the result is
the probability of the positive class applying to the instance,
and it maximizes the log likelihood of the classes given the
model parameters. Practically this boils down to
minimizing the negative log likelihood of the correct class.
This can also be derived from the cross-entropy between
the true class distribution given by the data and the class
distribution given by the model.

Finally, the soft margin SVM loss, which we've introduced
today attempts to maximize the margin between the
positive and negative points. It's also know as a maximum
margin loss, or the hinge loss (since the error is fed
through a maximum function, which looks like a hinge).

Beyond Linear Models

Support vector machines*

In this final part of the lecture, we will take a quick look at
support vector machines that make use of the kernel trick.
It’s not exam material, so you can skip it if you need to, but
we recommend at least giving a skim, so that you have a
broad idea what SVMs are in case you ever encounter them
in the wild.

We're skipping a large amount of technical details in this
part. If you really want to know how this works all the way
down to the foundations, there is an extra lecture
explaining them on the website.

|section-nv|Support vector machines*|

a fork in the road

option two: express everything in terms of the support
vectors, get rid of w.

- Doesn't allow error to propagate back, but ...

- allows the kernel trick to be applied.

In the previous video we introduced the maximum margin
loss objective. This was a constrained optimization
problem which we hadn't learned how to solve yet. We
sidestepped that issue by rewriting it into an unconstrained
optimization problem, so that we could solve it with plain
gradient descent.

In this video, we will learn a relatively simple trick for
attacking constrained optimization problems: the method
of Lagrange multipliers. In the next video, we will see
what happens if we apply this method to the SVM objective
function.

What we'll skip:

- Lagrange multipliers

Let you rewrite an objective with an equality constraint into one without.

- KKT multipliers/conditions
Let you rewrite an objective with inequality constraints into one without.

- Details of the kernel trick

To avoid overloading this lecture, we will skip a lot of the
technical details. We will give you a very high level view of
what support vector machines can do. This should help you
recognize what they are, and give you a sense of how they
work, in case you ever need to apply them.

If you ever need to understand them properly, all the
technical details are available on the website in an extra
lecture.

http://mlvu.github.io

The key idea behind all this technical stuff is that we can
rewrite our maximum margin objective from the previous
slide into its dual form. This is what the KKT method does
for us, it gives us a new minimization objective where some
of the variables have disappeared. Under the right
conditions, both objectives have the same solution.

In return we also get some extra variables ai. You can think
of these as weights, we get one for every instance x;, yi in
our data. The hyperplane parameters have disappeared and
these as are the only parameters of our problem now.

There isn’t much more intuition we can give you. Without a
whole lot of math, you’ll just have to take our word for it
that these two problems are equivalent. We can find the
optimal maximum-margin hyperplane loss using the
problem at the top or the problem at the bottom.

The reason this dual problem is so interesting is that the
only thing we ever need to compute on our data is the dot
product between every pair of instances in our data.
That is, we don’t need the original features: if I give you all
dot products between all pairs of instances in a dataset, you
can fit an SVM to it without every seeing anything else of
the data.

This is the idea that leads to the kernel trick.

the kernel trick

If you have an algorithm which operates
only on the dot products of instances,
you can substitute the dot product for a
kernel function.

What if [didn’t give you the actual dot products, but instead
gave you a different matrix of values, that behaved like a
matrix of dot products.

The idea is that it’s possible to design a high-dimensional
feature space in such a way that that you can very cheaply
compute dot products without ever having to compute the
high dimensions vectors.

making linear models more powerful Remember, by adding features that are derived from the

K original features, we can make linear models more
d P d*p powerful. If the number of features we add grows very
075 0.98 074 quickly (like if we add all 5-way cross products), this can
066 -032 0.21 become a little expensive (both memory and time wise).
045 0.84 -0.38 The kernel trick is basically a souped-up version of this
0-93 0.78 072 idea. We expand our features into a high dimensional space,
-0.42 0.24 -0.10 .
except we never actually compute the feature expansion.
-0.02 0.43 -0.01 . .
We just compute the dot products in the expanded feature
-0.74 0.58 -0.43 .
space directly.
041 -0.41 0.17
0.59 0.72 0.42 .

Here’s a plot for the dataset from the first lecture. As you

can tell, the RBF kernel massively overfits for these
SVM with RBF kernel (y=2.0, C=10)

SVM with poly kernel (degree=3, C=10)

hyperparameters, but it does give us a very nonlinear fit.

extend the feature space was to add all cross-products.
Xi X xi2 X1X: x22 . .
! : ! v This turns a 2D dataset into a 5D dataset. It also more than
3 105 9 315 11025 male
doubles the amount of data we need to store our dataset,
1 110 1 110 12100 male i X i
and the amount of time required to, for instance, compute a
7 119 49 833 14161 male
8 120 64 960 14400 male dot product in this space.
9 120 81 1080 14400 I P .
e This is not usually a bottleneck, but we want to expand this
12 119 144 1428 14161 female 3 -
idea to thousands or even millions of extra features.
8 122 64 976 14884 female
¢ - ot 1000 625 female Again, to fit an SVM, all we need is the dot products
’ - o e e female between pairs of instances in this 5D space. Let’s see if we
9 132 81 1188 17424 male . P . P
. can compute those, or something similar, without explicitly
14 12 196 179 16384 female

computing the 5D vectors.

Here are two 2D feature vectors. What if, instead of
computing their dot product, we computed the square of
their dot product.

It turns out that this is equal to the dot product of two other
3D vectors a’and b’

P (a1bs + ﬂ2b2)2

= (112b12 + 2(11b1 (12b2 + (122b22

=a;2- b2 +v2a1az - V2b1 by + ar? - by?

a;? i b2
= | v2a1as V2b by

(122 b22

The square of the dot product in the 2D feature space, is
equivalent to the regular dot product in a 3D feature space.
The new features in this 3D space can all be derived from
the original features. They're the three cross products, with
a small multiplier on the aiaz cross product.

\601 az

That is, this kernel function k doesn't compute the dot
product between two instances, but it does compute the dot
product in a feature space of expanded features. We could
do this already, but before we had to actually compute the
new features. Now, all we have to do is compute the dot
product in the original feature space and square it.

1
minimize > Z Z o oYY k(xi, x5) — ; !

i
suchthat 0 <oy < C

Z(Xiyi =0
i

Since the dual solution to the SVM is expressed purely in
terms of the dot product, we can replace the dot product
with this kernel function. We are now fitting a line in a
higher-dimensional space, without computing any extra
features explicitly.

Note that this only works because we rewrote the
optimization objective to get rid of w and b. Since w and b
have the same dimensionality as the features, keeping them
in means using explicit features.

Saving the trouble of computing a few extra features may
not sound like a big saving, but by choosing our kernel
function cleverly we can push things a lot further.

a kernel function

k'(Xi7 X))

A function that computes the dot product of xiand xjin a
different feature space, without explicitly computing those
features.

For some expansions to a higher feature space, we can
compute the dot product between two vectors, without
explicitly expanding the features. This is called a kernel
function.

There are many functions that compute the dot product of
two vectors in a highly expanded feature space, but don’t
actually require you to expand the features.

There are some straightforward conditions for when a given
function of two vectors is a kernel. We won't worry about
that now, and just look at some commonly used kernels,
assuming that others have done the work to show that these
actually are kernels.

polynomial kernel

k(a,b) = (aTb + l)d

feature space for d=2: all squares, all cross products, all single features

feature space for d=3: all cubes and squares, all two-way and
three-way cross products, all single features.

This s already a big feature space.

Taking just the square of the dot product, as we did in our
example, we lose the original features. If we take the square
of the dot product plus one, it turns out that we retain the
original features, and get all cross products.

If we increase the exponent to d we get all d-way cross
products. Here we can see the benefit of the kernel trick.
Imagine setting d=10 for a dataset with a modest 10
features. Expanding all 10-way cross-products of all
features would give each instance 10 trillion expanded
features. We wouldn't even be able to fit one instance into
memory.

However, if we use the kernel trick, all we need to do is to
compute the dot product in the original feature space, add a
1, and raise it to the power of 10.

d is a hyperparameter: increasing it does not make the
algorithm much more expensive, but it does increase your
(implicit) feature space so much that you risk overfitting, so
you'll need to tune it to your data.

RBF kernel

k(a,b) = exp (—ylla—bl|)

feature space: infinite-dimensional

94

If ten trillion expanded features sounded like a lot, here is a
kernel that corresponds to an infinite-dimensional
expanded feature space. We can only approximate this
kernel with a finite number of expanded features, getting
closer as we add more. Nevertheless, the kernel function
itself is very simple to compute.

Gamma is another hyperparameter.

Because this is such a powerful kernel, it is prone to
overfitting.

SVM with RBF kernel (y=2.0, C=10)

SVM with poly kernel (degree=3, C=10)

5

Here’s a plot of the SVM decision boundary with a poly
kernel and an RBF kernel, on some simple dataset.

As you can tell, the RBF kernel massively overfits for these
hyperparameters, but it does give us a very nonlinear fit.

text, DNA, proteins: string kernels (inspired by edit
distance)

graphs: Weisfeiler-Lehman distance

One of the most interesting application areas of kernel
methods is places where you can turn a distance metric in
your data space directly into a kernel, without first
extracting any features at all.

For instance for an email classifier, you don't need to extract
word frequencies, as we’ve done so far, you can just design a
kernel that operates directly on strings (usually based on
the edit distance). Put simply, the fewer operations we need
to turn one email into another, the closer we put them
together. If you make sure that such a function behaves like
a dot product, you can stick it in the SVM optimizer as a
kernel. You never need to deal with any features at all.
Just the raw data, and their dot products in some feature
space that you never compute.

This approach has often been used to analyze DNA and
protein sequences in bioinformatics.

If you're classifying graphs, there are distance metrics like
the Weisfeiler-Leman algorithm that you can use to define
kernels.

using kernel SVMs

Normalize your data.
Pick a kernel (Linear, rbf, poly)

Pick a C and the hyperparameters for your kernel (d, y)

In [106]: from sklearn.svm import SVC

lin = SVC(kernel='rbf', gamma=0.1, C=10)
lin.fit(x, y)

Kernel SVMs are complicated beasts to understand, but
they're easy to use with the right libraries. Here's a simple
recipe for fitting an SVM with an RBF kernel in sklearn.

why did neural networks come back?

Quadratic vs. linear training time.
SVM training needs to see all pairs of instances: O(N2)
Neural net training needs k passes over the data: O(kN)

Good SVM performance required hand-designed kernels.

Deep neural nets matured, and hardware caught up with

them.
LSTMs and ConvNets, both invented in 1998, provided the first breakthroughs.

Machine learning culture changed: empirical evidence of
performance became acceptable without proof of
convergence/learnability.

Neural nets require a lot of passes over the data, so it takes
a big dataset before kN becomes smaller than N2, but
eventually, we got there. At that point, it became more
efficient to train models by gradient descent, and the kernel
trick lost its luster.

mlcourse@peterbloem.nl

And when neural networks did come back, they caused a
revolution. That's where we’ll pick things up next lecture.

mailto:mlcourse@peterbloem.nl

