Deep Learning

Automatic differentiation

This is the first of several lectures that deal with deep
learning. Deep learning evolved out of neural networks, but
it's slightly more than just the business of training very
large and very deep neural nets. We'll discuss exactly what
makes a deep learning model at the end of the lecture.

|section|Automatic differentiation|
|video|https://www.youtube.com/embed/ufvd0DC2_EI|

hi @,\\ h, @,

output layer

hidden layer

input layer
(features)

recap

For now, we'll pick up the discussion about neural networks
from the last lecture, and develop the idea further.

Here’s how we defined a neural network last time around. A
neural network is a model described by a graph: each node
represents a scalar value. The value of each node is
computed from the incoming edges by multiplying the
weight on the edge by the value of the node it connects to.

We train the model by tuning the weights. Every orange and
blue line in this picture represents one of those weights.
The feedforward network, seen here, is the simplest way of
wiring up a neural net, but we will see other possibilities
later.

neural networks: it’s all just linear algebra

t:training data

X1

X%

/
Wi

Wi2 W22

WB. .

+

In addition to the graph perspective, there’s another
perspective that can greatly simplify things. Most of the
operations used in neural networks can also be written as
matrix multiplications.

Consider what happens in the first layer before the non-
linearity, ignoring the bias nodes. If we see the input nodes
and the hidden nodes as two vectors (of 2 and 3 elements
respectively), then each element in the hidden vector is
computed by multiplying all elements of the input vector by
a unique weight, and summing them together. This is
exactly the operation of a matrix multiplication.

Adding the bias can be cast as a simple vector addition, and
applying the nonlinearity is simply and element-wise non-
linear operation on the vector.

In this way, we can express the whole operation of a neural
network in terms of simple linear algebra operations.

http://mlvu.github.io

f(x) =Vo(Wx+b)+c

As you can see, this greatly simplifies our notation. It also
allows for very efficient implementation of neural networks,
since matrix multiplication can be implemented very
efficiently (especially on a GPU).

This is what we will discuss today: how to simplify the basic
idea of neural networks into a very powerful and flexible
framework for creating highly complex machine learning
models.

deep learning

Part 1: Deep learning systems (aka automatic differentiation)

tensors, matrix calculus, backpropagation revisited

Part 2:Backpropagation revisited

Multivariate chain rule, calculus over tensors

Part 3: Convolutions
aka ConvNets or CNNs

Part 4: Making it work

vanishing gradients, minibatches, optimizers, regularization

i £o
for wmore detail, see dlvu.githud.d

In this video, we'll look at the general layout of deep
learning frameworks. Specifcally, how these systems allow
us to define complex models in such a way that they can be
efficiently computed and that we don’t have to implement
backpropagation ourselves. A large part of this, is
expressing everything we do in the language of tensors.

In the second video, we’ll look specifically at how we can
implement backpropagation in such tensor settings. We've
seen a scalar version of the algorithm already, where we
work out the derivatives of the parameters one by one, but
when we want to implement this efficiently, using tensor
operations, we need to take a few more things into account.

Deep learning works best when we don’t use fully
connected layers, but when we tailor the architecture of our
network to our task. In the third video, we'll look at the first
type of layer that allows us to do this: the convolution. This
layer is particularly suited to image data.

And finally, to do deep learning efficiently, we need to know
a number of tricks and tools. We’ll run through the most
important ones briefly in the last video.

We don’t have time in this lecture to go into all the details. If
you are doing your project on a deep learning topic, and you
need to know more, you can have a look at the materials for
our Deep Learning course in the master. They discuss
the same subjects, but in more detail, with more examples
(in particular lectures 2, 3, and 4).

http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io
http://dlvu.github.io

Scalar backpropagation -> Tensor backpropagation

Tensor operations (i.e. matrix multiplication) are easy to parallelise and run well on GPUs
Functions with multiple inputs and outputs

Backpropagation over any computation (next video)
No matter how complex

Ingredients: tensors and functions over tensors

These are our aims for the first two videos. In order to scale
up the basic principle of backpropagation on neural
networks, we want to move from operations on scalars
(that is on individual numbers) to the linear algebra view:
everything is a vector, a matrix or a higher dimensional
analog of that and all operations (including this in the
backpropagation step) are operations on such objects.

These vectors, matrices and higher dimensional analogs are
called tensors. Let's start by looking at what tensors are,
and how we can define functions on them.

tensors
scalar vector matrix < ﬁ

gigeE <

0-tensor 1-tensor 2-tensor 3-tensor 4-tensor

shape: 3 shape: 3.2 shape: 2:3:2 shape: 2:3:2:4

For our purposes, a tensor is nothing more than a
straightforward generalisation of vectors and matrices to
higher dimensionalities. A tensor is collection of numbers
arranged in a grid. The rank of the tensor, is the number of
dimensions along which the values change.

A vector is arank 1 tensor: a one-dimensional array. Its
shape can be described by one integer: how many numbers
there are arranged along one dimension.

A matrix is a rank 2 tensor: a two dimensional array. Its
shape is described by two integers: how many rows it has
and how many columns.

Following this logic, we can also think of a a single number
(a scalar) as a rank 0 tensor.

Extending this idea, we can create tensors of rank 3, 4 and
higher. Above rank three, they’re not easy to visualize, but
you can think of a rank 4 tensor as a collection of rank-3
tensors, arranged along an extra dimension (just like a
matrix is a collection of vectors arranged along an extra
dimension).

If you've done the first worksheet, you'll already know the
tensor as the basic data structure of numpy. There it is more
often called a multidimensional array.

The idea of deep learning frameworks is that we can deal
with any data, so long as it’s represented as one or more
tensors. Let’s look at some examples of how data is
represented in tensor form.

A simple dataset with numeric features can simply be

\’ /' — represented as a matrix (with a corresponding vector for
% X X 1
s | w il . the labels).
. 1.88 | 4.70 [}
flipper body sex 190 495 KR Tensors can only contain numbers, so any categoric
length mass 217|570 0 features or labels should be converted to numeric features.
1.93 3.65 female 100332 11 This is normally by one-hot coding, as discussed in lecture
1.88 4.70 male X=[192|570 y=n 5.
1.90 4.95 female 2.23 | 5.00 0
2.7 5.70 male 05 | 345 BN image source: https://allisonhorst.github.io/
1.90 3.32 female T palmerpenguins/
2.08 | 3.05
1.92 5.70 female (-
2.23 5.00 male 193 | 530 |1
2.05 3.45 female 1.88 | 5.55 0 ,
EW.V. EW.N 3 £ Il —
But the real benefit in deep learning is not just in
representing our standard abstract tasks as features
pixel

matrices. We want to find ways to represent the raw data,

N % or at least something closer to the raw data, as tensors.
H . A One example is image data. A single image can be
represented a a 3-tensor. In an RGB image, the color of a
idth height single pixel is represented using three values between 0

and 1 (how red it is, how green it is and how blue it is). This
means that an RGB image can be thought of as a stack of

channels

.0
three matrices, each representing one of the color channels

as a grayscale image. This stack is a 3-tensor.

source: http://www.adsell.com/scanning101.html

tensor. The three image dimensions we saw already, and

one extra, indexing the different images in the dataset.
This snippet of Keras code shows how this looks in python
if we load the CIFAR 10 dataset. The training data contains
50 000 images, each 32 pixels high and 32 pixels wide and
with 3 color channels.

In (5]: from keras.datasets import cifarl0
(x_train, y_train), (x_test, y_test) = cifarl0.load data()

x_train.shape

out[5]: (50000, 32, 32, 3) 10

computation graphs

shorthand

In the previous lecture, we introduced the concept of a
computation graph. This is a graph that details the
computation of our model and its loss. It consists of circular
nodes that represent the inputs, intermediate nodes, and
outputs of a computation, and of diamond nodes that
represent the different computations we apply to these
values.

If a proper computation graph value nodes only connect to
computation nodes and vice versa (they are bipartite
graph). However, in the interest of clarity, we will
sometimes omit the computation nodes and use the
shorthand on the right.

In the previous lecture, the computation graph was
something we only drew on pen and paper to help us figure
out what the correct backpropagation rules were for a given
model. In this lecture, we are going to actually represent
the computation graph in the computer, and let the
computer figure out the backpropagation algorithm for us,
based on the computations that we choose to do.

functions

k I m
Functions can have multiple inputs and [] e o
outputs. All inputs, outputs are tensors. \ T /
Also called operations, or ops

Functions implement:

- forward(...) / \

computing the outputs given the inputs [} []
y
+ backward(...) X
computing the gradients for the inputs given the gradients for the outpt

To build our computation graph, and to do it with tensors,
we’ll need functions that consume tensors, and spit our
new tensors. A function can have multiple inputs and
multiple outputs, and all of them are tensors. Non-tensor
inputs are sometimes allowed, but when we start
computing gradients, we'll only get gradients over the
tensor inputs.

Functions exist in many programming environments. All we
usually have to do to specify a function is to define how to
compute the output given the inputs. In deep learning
parlance this is called the forward of the function. For a
deep learning function, we need to specify one additional
thing: a backward function. The backward receives the
gradients for the outputs and computes the gradients for
the inputs. We’ll see some examples of this in the second
video.

Putting these two ingredients, tensors and functions,
together, we can build a model. We define some functions
and we then chain them together into a computation

computation graph

(axb)+b=c

<@

I

Here is a simple example of a computation graph, a
directed acyclic graph that shows the data (scalars a, b, ¢, x)
flowing through the functions.

A deep learning system uses a computation graph to
execute a given computation (the forward pass) and then
uses the backpropagation algorithm to compute the
gradients for the data nodes with respect to the output (the
backward pass).

If we are not interested in the specifics of the function being
applied, we will omit the circle (as we did in the previous
lecture).

automatic differentiation

Perform computation by chaining functions.
Keep track of all computation in a computation graph.

When the computation is finished, walk backward through
the computation graph to perform backpropagation.

This is called automatic differentiation: we define our
model by chaining together predefined functions that come
with a forward and a backward, and then we use the
backpropagation algorithm to compute gradients for the
parameters of the model.

two approaches: and eager

lazy execution
Keras, Tensorflow 1 default

- Define the computation graph.
- Compile it.
- lterate backward/forward over the data

Fast. Many possibilities for optimization. Easy to
serialise models.

Difficult to debug. Model must remain static during
training.

There are two ways of doing this. The first is to use lazy
execution: you define your computation graph, but you
don’t place any data in it (only nodes that will hold the data
later). Then you compile the computation graph and start
feeding data through it.

The drawback of this sort of model is that when something
goes wrong during the forward pass, it's very difficult to
trace the program error (which happens after you compiled
the computation graph) back to where you actually made
the mistake (somewhere during definition of the
computation graph).

two approaches: lazy and

eager execution
PyTorch, Tensorflow 2.0 default.

- Build the computation graph on the fly during the
forward pass.

Easy to debug, problems in the model occur as the
module is executing. Flexible: the model can be entirely
different for each forward pass.

More difficult to optimize. A little more difficult to
serialize.

Eager execution does not require this kind to predefining
of the computation graph. You simply use programming
statements to compute the forward pass, for instance
multiplying two matrices. The deep learning system then
ensures that your matrices are special objects, that keep
track of the whole computation, so that when it comes time
to do the backpropagation pass, we know how to go back
through the computation we performed.

Since eager execution seems to be fast becoming the default
approach, we will focus on that, and describe in detail how
an eager execution deep learning system works.

example

o]

a
b

Tensor (data=1)
Tensor (data=2)

data: 2 g,
grad: 1 —
dc

source: mult(a,

c=a*hbh

backprop(c)

b)

In eager mode deep learning systems, we create a node in
our computation graph (called a Tensor here) by specifying
what data it should contain. The result is a tensor object
that stores both the data, and the gradient over that data
(which will be filled later).

Here we create the variables a and b. If we now apply a
function to these, for instance to multiply their values, we
can immediately compute the result: 1 * 2 = 2. We take this
result and put it in another Tensor object called c. We also
store references to the variables that were used to create c,
and the module that created it: we perform a computation,
but we also keep a history of which computation we
performed in the form of a graph.

Note that when we want to illustrate what a value node
contains, we represent it as a rectangle, rather than a circle.

Using this graph, we can perform the backpropagation from
a given starting node. Here, we compute the partial
derivatives of c with respect to every node in the graph
(including c itself).

These names and this syntax are loosely inspired by those of
PyTorch, but the concepts are similar for all deep learning
frameworks.

loss(V o(Wx+b) +c,t)
vV, b, ¢ = Tensor(..), Tensor(..), Tensor(..), Tensor(..)

for x, t in data:

= sigmoid(mult(W, x) + b)
y = malt(V, n) +c
loss = 1(y, t) # compute the loss

backprop(loss)
gradient_descent_step() # perform one step of GD
with the computed gradients

;ifi%xﬂ 1O 1GOOI
th [V4|

(o}
data: . data:
grad: ? grad: ?

loss
-| data: ..
grad: ?

Here’s what a training loop would look like for a simple
two-layer feedforward network. The computation graph
shown below is rebuilt from scratch for every iteration of
the training loop, and cleared at the end. The variables W, V,
b and ¢, that define our neural network contain tensor data
that is saved between iterations, and updated at every step
of gradient descent. Each value node contains a tensor
(specifically, a matrix or a vector).

Note that the output of every module is also a Tensor, with
its own data and its own gradient. Note that the
multiplications are now matrix multiplications

Once we have our computation graph in place, we have
everything we need to start the backpropagation algorithm.
To translate what we learned in the last video to this setting
we'll need some extra insights. We'll go over those in the
next video.

scalar backpropagation With a computation graph like this, if all the data are

scalars, it's very easy to implement backpropagation. Say
b

data: 2
— L) —>| o : — {0 —

a

c we're interested in the derivative of ¢ over a. The chain rule

data: 2

grad: ? tells us this is the derivative of b over a times that of c over

source: f(a) source: g(b)

b. c over b is the local derivative for function g, and b over a
is the local derivative for function f.

o0b oc oc Starting at the output we can walk backward, and multiply

da

% - a all the local derivatives we encounter. At each step, we
multiply the derivative of the output over the input.

This is what we did manually in the last lecture: we walked
Simple if your computation graph is a path, and contains only scalars.

backward down the computation graph, and at each

computation, for each input, we multiply the derivative of
the loss wrt the output by the derivative of the output wrt
the input.

Next video, we'll see what we need to do when the
computation graph has a more complicated structure, and
when the data nodes can contain tensors instead of scalars.

|section|Tensor backpropagation|
|video|https://www.youtube.com/embed/S1_EBqAOpio|

Deep Learning
Tensor backpropagation

loss(V o(Wx +b) + ¢, t) In the previous video we explained how deep learning

¢ P © 7 TeNSOT(n)s TenSOr(-)s Tensor(-), Tensor(-) systems like Pytorch and Tensorflow allow us to build up a
for x, t in data:
) computation graph in code. Once we have this computation
= sigmoid(mult (W, x) + b)
vomae e graph, we can use it to implement backpropagation.
loss = 10y, 0 ¢ compte the Loss
gradient. descent_step() # perform one step of GD
with the computed gradients

S loss
data: .. %xﬂ DI FCO[FCOH T aata: .
grad: ? J 4| grad: ?

data: ..
grad: ?

http://mlvu.github.io

tensor backpropagation

Functions can have any number of inputs and outputs.
Inputs and outputs can be tensors of any rank.

The final output must be a scalar.

That is, we always take the derivative of a scalar function.

To do so, we will assume these three basic rules.

The last one is essential: the function for which we compute
the derivative (with respect to all values in the comp graph)
must be a scalar. In our case, this will usually be the loss of
the model we're training.

As we shall, see, this property will allow us to work
backwards down the graph, computing the gradients.

S
FLN

computation

<
5
e
& tput:
c outputs
2 P
&
£
Ef
£
S 5 -
8 S3 N
23 o<
£ |
Es |
Es
8 |
|

inputs

Note that this doesn’t mean we can only ever train neural
networks with a single scalar output. That would be quite
boring. Even the multiclass classification model from the
previous lecture had three outputs already, and later we
want to start building neural networks that generate faces
and play chess. All of that is possible: our model can have
any number of outputs of any shape and size.

However, the loss we define over those outputs needs to
map them all to a single scalar value.

The computation graph is always the model, plus the
computation of the loss. This way, no matter how complex
our model becomes, the computation we’re using for
backpropagation always has a single scalar output.

backpropagation revisited

The multivariate chain rule
Dealing with multiple paths in the comp. graph

Backpropagation with tensors

Matrix calculus

In order to make backpropagation flexible and robust
enough to work in this setting, we need to discuss two
features that we haven’t mentioned yet:

* how to perform backpropagation if the result depends on
the a variable along different computation paths,

« and how to take derivatives when the variables aren’t
scalars.

We'll start with the first point. To deal with this we need to
beef up the chain rule a little bit.

chain rule for multiple inputs

oc

P

X @

:\. c
-

y @—

oc da Ociaca

dadx 0y 0bdy

So far, we’ve only looked at applying the chain rule to
computation graphs that look like paths: a single sequence
of functions with the output of the last being the input to
the next.

If a function has multiple inputs, there isn’t usually a
problem applying the chain rule. If we want the derivative
with respect to x, we apply the chain rule over the path
from x to c. for this derivative, b is a constant, so we can
ignore that path in the computation graph.

If we want the derivative with respect to y, we apply the
chain rule along the other path, taking a as a constant. So
far so good.

N
~.

X @

dc 5 0cOa

ox da ox
oc i 0c 0
ox ~ 0b Ox

But what if ¢ has two inputs, both depending on x?

How do we apply the chain rule here? Over a or over b?

multivariate chain rule

X

./:\. C
~.

dc _dcda dcdb
Ox dadx 0b 0x

For such cases, we need the multivariate chain rule.

It’s very simple: to work out the derivative of a function
with multiple inputs we just take a single derivative for
each input, treating the others as constants, and sum them.

Oc__Oa __Oa Oa%_Oa 0
ox 0x da dox 0b 0x
da 0

= N a—

0x 0x

The multivariate chain rule can be used to derive many
rules for derivatives you should already know. For instance,
if we make c the product of a and b, applying the
multivariate chain rule gives us the product rule.

oc oc 0ay
o ~ 2 2a; o

If ¢ has more than two inputs, the multivariate chain tells us
to sum over all of them.

We won't try to give you any intuition for why the
multivariate chain rule works this way. You'll just have to
accept it as one of the rules of differentiation. If you want
more insight, there is some explanation in the second DLVU
lecture.

backpropagation revisited
Wﬁ
Dealing with multiple paths in the comp

Backpropagation with tensors

Matrix calculus

With that, we know how to apply the chain rule to any kind
of computation graph.

Next, we need to figure out how to make backpropagation
work in settings where our inputs and outputs are tensors.

backpropagation revisited
‘HMM;W
Dealing with multiple paths in the comp.

Backpropagation with tensors

Matrix calculus

Next, we need to figure out how to express backpropagation
in terms of tensors. Expressing the forward pass as matrix
multiplications may help to make things more efficient, but
that doesn't buy us much if the backward pass still consists
of a load of loops over individual scalars. The backward
pass should also be expressed in a series of matrix
mulitplications.

break up your computation into modules

t: training data 1« .
y ™)
0 Ve ot =) (y—t)
I¥o y=Vhte
I V ¢ :O'(k)
k @
k=Wx+b
¢ AN
x Wb

We'll try to apply the basic logic of backpropagation to a
computation graph with nodes containing tensors, and we'll
see where we get stuck.

The first step of applying backpropagation in any setting is
to break your computation into modules. For our
feedforward neural network, this is a natural way to draw
the computation graph. Note that both the model
parameters and the inputs are tensor nodes in the
computation graph.

matrix calculus

Can we express the local derivatives in terms of the tensor
inputs and outputs?

=) (y—t7
y=Vh+ec

= o(k)
k=Wx+b

ol 0loyoh ok

OW Jy oh 0k OW

The next step is to work out the local derivatives. We would
like to have a chain rule like the one shown on the right, and
then to work out how to compute those local derivatives
efficiently.

What does it mean to take the derivative of a vector, or with
respect to a matrix?

Vector-to-scalar function f(x) =y

ninputs, 1 output, n possible scalar derivatives.

Vector of derivatives. (gradient)

Scalar-to-vector function f(x) = y

ninputs, 1 output, n possible scalar derivatives.

Vector of derivatives.

Vector-to-vector function f(x) =y
n inputs, m output, nxm possible scalar
derivatives. Matrix of derivatives.

Matrix-to-vector function f(X) =y
nxm inputs, k output, nxmxk possible scalar
derivatives. 3-tensor of derivatives?

inputis a

vector

matrix

ol

function returns a

vector matrix

vector matrix
vector matrix ?
matrix ? ?

_ 0Ly dh ok

OW ~ Jy oh 0koW

There are ways to define the derivative of a function with
respect to a matrix or a vector. In general, if we have a
function with a tensor input and a tensor output, we can
take a large number of scalar derivatives by taking the
derivative of one of its outputs with respect to one of its
inputs. The gradient is an example of this: we have a
function from a vector to a scalar, so we take all scalar
derivatives of the output with respect to one of the inputs,
and collect them into a vector.

If we have a function from a vector to a scalar, we can collect
all derivatives of one output with repsect to the single input.
This can also be neatly represented in a vector.

If we have a vector-to-vector function, we can take all scalar
derivatives of one of the m outputs with respect to one of
the n inputs. This is best represented by a n-by-m matrix.

If we go higher, like a matrix-to-vector function, we get so
many derivatives that we need a 3-tensor to represent
them. And this is where we run into trouble.

For matrices and vectors, multiplication is still defined, and
works similarly to scalar multiplication. That means that so
long as our derivatives are only matrices and vectors, we
can still hope for a functional chain rule, where we can
work out the local derivatives compute them and multiply
them together. But this already breaks down in the case of
the feedforward network. If we imagine what a chain of
local derivatives for our computation graph might look like,
we’d get something like this expression at the bottom. even
for something so simple as a feedforward network, one of
the factors is already the derivative of a vector over a
matrix. This means the result should be represented in a 3-
tensor, for which multiplication isn’t defined (or at least not
unambiguously), so that we can never multiply all the local
derivatives to give us the global derivatives.

outputs

modet

computation
of model

inputs

inputis a

vector

matrix

function returns a

vector matrix
vector matrix
vector matrix ?

matrix ? ?

Our saving grace is the fact that we assume our function as
a whole always has a scalar output. This means that
whatever we are doing, the only derivatives we ever want to
end up with in the end are those of the loss (a scalar) with
respect to some tensor in our computation graph. This
means that we can stay in the leftmost column of this
matrix.

the gradient

ol
We will call 3\ the gradient of 1 with respect to W. Or
the gradient for W.

Commonly writtenas V1

Nonstandard convention: V1 has the
same shape as W.

3

[VW 1] ijk — Tk
Y

The only derivatives we will ever be interested in,
ultimately, are the derivatives of the loss with respect to one
of the inputs of the computation graph (the inputs to the
network, or the parameters of the network). For these, we
can always represent the the collection of all derivatives, by
giving it the same shape as the tensor we’re taking the
derivative over.

In the example shown, W is a 3-tensor. The gradient of | wrt
W has the same shape as W, and at element (i, j, k) it holds
the scalar derivative of] wrt Wijk.

With these rules, we can use tensors of any shape and
dimension and always have a well defined gradient. The
gradient of any tensor T always has the same shape as T.

Note that in other fields, the gradient often has a different
shape from the thing we’re taking the gradient for. If the
function takes column vectors, the gradient is often defined
as a row vector. That’s because the gradient is used as an
operator, defining a function on the original vector space. In
our case, we are not interested in using the gradient in this
way: it only ever defines a direction in our model space, which
will help us search, so for us it makes more sense to have the
gradient be the same shape and size as the points in the
model space.

ol
_ AV AV —
VAl—A 1) aAl)

Vil=1bY

To simplify this picture we will introduce some new
notation. This is specific to this course (and the DLVU
course), so don't expect to see it anywhere else, but it
should hopefully simplify things a little bit.

We know that we are always computing the gradient with
respect to the loss, so we remove that from the notation.
The thing we're most interested in is the tensor that we're
computing the gradient for. In this case A. We'll put that
front and center (instead of in a asubscript) and put the
nabla in the superscript (a bit like a transposition or inverse
operator). The idea is that for any tensor A, the notation AV
refers to a tensor of the same shape as A, such that each
element contains the partial derivative of the loss with
respect to the corresponding element in A.

for example

k=Wx+b

DN

[]
w

* 9—0 =
- @

forward(W, x, b): compute Wx + b

backward(kY): compute “'V, xv7 bv

With these principles in place, we can apply
backpropagation in a tensor-friendly way. Instead of
computing the local derivatives first, and then multiplying
to compute the global derivatives, we accumulate the
product of the local derivatives directly.

This is the first layer of our feedforward network. It has
three inputs W, x, and b, and one output k. As we saw
earlier, the local derivative, consists of a 3-tensor of scalar
derivatives, so it's not practical to compute. Instead we
compute the gradients of the inputs directly from the
gradients of the outputs.

The forward function computes the unactivated values of
the first layer, given the inputs x, weights W and bias b.

The backward function is given the derivative of the loss
for k, and should output the derivatives of the loss for W, x,
and b.

backpropagation

backward(k¥): compute WV, xV, bV

Once we have the computation graph, and we know all the
backwards for all the functions functions, the rest of
backpropagation is a breeze.

We compute a forward pass, remembering the
intermediates and then we walk backwards down the
graph. At each module we call its backward() function with
the gradients for its outputs and receive the gradients for its
inputs. So long as we do this in the right order, we can be
sure that we will compute all gradients for all nodes in the
graph.

Note that we are using the same property we used in the

previous lecture. So

The only thing we need to do now is work out how to
compute these backward functions, and how to make this
computation efficient.

working out derivatives for high rank tensors

1. Describe the problem in terms of scalar derivatives.

2. Apply the scalar (multivariate) chain rule.

3. Rewrite the scalar computations as tensor operations.

Here is a standard plan for working out what a backward
function should be (based on the forward function).

k=Wx+hb ol _y O ki %
Wy — Oki OW;, x

_y Sloxtb) pie B

ki OWa

N S
k*\ L O(Wix+b) i [waps] o I «
_ i) 1 fws > ¢
W .ii._'. [Z 0k OW3,
kz/ i
® -y oL 03 ;(Wiyxg)
ks ki 0W3o
_ ol OWjjx; _ ol OWs39xo _ ol
- . Oki OWsy Okg OWsy Ok_gXQ

To work out a scalar derivative we pick an arbitrary
element of W, say W32, and work out the derivative for that.
Note that since we are using matrix notation Ws: is the
weight from input 2 to output 3. In the previous videos the
subscripts were the other way around.

If we think of this as a computation graph with scalar
nodes, k just represents different inputs to the function that
ultimately computes 1. That means that the derivative of 1
over W3 is just the sum of the derivatives through each
element of k. This works whatever the rank and shape of k;
it could be a huge 9-tensor, and all we have to do is flatten
it, and sum over its derivatives. Note that these are the
derivatives that we are given.

At the end, we see that the scalar derivative we're
interested in is the second element of the vector that we are
given, times the third element of the input x.

vectorize

a a -
Wiy = mXQ =k3 " x2

Wiy ¥ =

o 15
WV: v v _kVXT

X1 Xo | =
L vxl kgvXQJ

We don’t actually want to compute the scalar derivatives
one by one like this, but at least now we know what is
expected of us. We can write down what all the elements of
the matrix WV look like, and see if we can find some clever
way to figure out how to compute this matrix using simple
linear algebra operations, instead of filling the elements of
the matrix one by one. This is called vectorizing:
expressing an algorithm in single matrix operations rather
than a series of loops.

In this case, we can note that the matrix WV is simply the
outer product of the vector kv which we were given and the
input vector x. Multiplying these two will give us all the
derivatives we're interested in, in a single operation.

for example

k=Wx+b

k

[) forward(W, x, b): compute Wx + b

lx. backward(k¥): compute WV = kVxT

x W b xV =WTkY
bY =kV

The gradients for x and b can be worked out in the same
way.

backpropagation As we said before, once we know all the backwards' we can

just walk down the computation graph from the loss to the
le® inputs. So long as we do this in the right order, we always
I have the gradient that the backward needs already, and we
y t can call the backward to give us the gradients for the nodes
T below.
V ¢
k
ed
x Wb

in summary

model: the application of functions to tensors
each function defines a backward () function:
given the gradient over the outputs, compute the

gradient over the inputs.

backpropagation walks backwards through the graph,
accumulating the gradient product.

45

working out the backward function Working out a backward function is not usually necessary

in practice: deep learning frameworks provide a large

)) number of pre-built functions that you can chain together
Usually not necessary, only if you write your own module

Butits good to understand the principle to do almost anything. Only when you write your own

- Phrase the problem in terms of scalar derivatives: work out the function, do you need to implement the backward and
derivative for one element of the input.

forward yourself.

- Use the multivariate chain rule: sum over all elements of the
output variable.

- Work out the general solution in terms of matrix operations

Further reading:

https://dvlu.github.io
https://compsci682-fa18.github.io/docs/vecDerivs.pdf
http://cs231n.stanford.edu/handouts/derivatives.pdf

6

https://dvlu.github.io
https://compsci682-fa18.github.io/docs/vecDerivs.pdf
http://cs231n.stanford.edu/handouts/derivatives.pdf

modules / layers

o
nn.Linear nn.Linear
W l -
eas
rad: X - +
\—‘ -
b
data: ..
grad: ?

Most deep learning frameworks also have a way of
combining model parameters and computation into a single
unit, often called a module or a layer.

In this case a Linear module (as it is called in Pytorch) takes
care of implementing the computation of a single layer of a
neural network (sans activation) and of remembering the
weights and the bias. These modules combine existing
functions together with tensors. Implementing a module is
easy, you only define the forward part of the computation.
The backward is done automatically, because everything is
defined in terms of functions that already have a backward
implemented.

backpropagation revisited
W;w
Dealing with multiple paths in the comp:

Backpropagation-with-terrsors

Matrix calculus.

In order to make backpropagation flexible and robust
enough to work in this setting, we need to discuss two
features that we haven’t mentioned yet: how to perform
backpropagation if the result depends on the dependent
variable along different computation paths, and how to take
derivatives when the variables aren’t scalars.

330 Uines (245 sloc) 10.8 KB Row Bame D 2 O

nusgy a5 np

Represents a value node in the cosputation graph: a tensor value linked to its
the cosputational history

(self, valve : np.ndarray, source=None):

ue: A nuspy array.

self.grad = np.zeros(shape=value.shape) #

And with that, we have all the ingredients for a modern
deep learning framework.

If you'd like to see what this looks like in practice, click this
link to see a very minimal implementation of such a
deep learning system, in about 300 lines of code. If you'd
like to get your hands dirty and start training neural
networks, check out the fourth and fifth worksheets.

In the next videos, we see what we can build in systems like
this besides simple feedforward networks. Specifically, we’ll
look at convolutional neural networks.

https://github.com/dlvu/vugrad
http://colah.github.io/

|section|Convolutions|
|video|https://www.youtube.com/embed/5PywqjN1hh0|

Deep Learning

Convolutions

convolutional layers: pruning and weight sharing To get started with deep learning, let’s look at our first

special layer. That is, a layer that is not just a fully connected
linear transformation of a vector, but a layer whose shape is
determined by some knowledge about its purpose. In the
case of the convolution, its purpose is to consume images.

We know that images form a grid, and we can use this
information to get far fewer connections, and far fewer
weights in the layer than a fully connected layer.

There are also convolutional layers for one dimensional grids,
like a sequence of characters, or three-dimensional grids, like

an MRI scan, but convolutions are most popular in the

context of images.

Convolutional neural network Image we start from the idea of a fully connected layer,

where each (grayscale) pixel is one input node. Instead of
input layer hidden layer

ok " connecting every hidden node with every input node, we
Just 4 weights

will make the connections more sparse. We will also force
OO0 OO0 O0—0000

00000 O OO0 channell

certain weights to take the same values.

[ONONONOES: O 000 We connect each node in the hidden layer just to a small n
OO OO0 O-0O-00 by n neighbourhood in the input (here n=2); there are no
00000 AY connections to any other pixels. We do this for each such n x
0000 n neighbourhood in the input. For an input image of 5 by 5
\ O OO0 hannel2 pixels, this gives us an input layer or 25 nodes, and a hidden
0000 layer of 16 nodes (which we’ve also arranged in a grid).

Just 4 more weights 0000 .

Each node in the hidden layer has just 4 incoming
connections. What's more, we set the 4 weights of these
incoming connections to be the same for each of the 16
nodes in the hidden layer.

We are essentially dividing the image into patches of 2x2
pixels, and applying a small set of weights to turn each
patch into a single hidden node.

To extend the hidden layer, we can add additional channels

http://mlvu.github.io

to the hidden layer. For an extra channel we follow the same
procedure but with 4 new weights. If, as shown here, we
have a 5 by 5 input layer with 4 pixel neighbourhoods, and
two maps, we get a network with 25 inputs and 32 nodes in
the hidden layer.

In a traditional feedforward network, that would give us 25 x
32 connections with as many weights. Here, we have just 32 x
4 connections, and only 8 weights.

1D Convolution

 ——
kernel size

Here is how it looks if the input is 1D (a sequence of units
rather than a grid). Note that the connection colors indicate
shared weights (that is, every blue connection has the same
weight).

The set of weights we apply to each "patch” is called a
kernel. The kernel size here is 3, and in the previous slide it
was 2x2.

Not to be confused with the kernels we used in the SVM
lecture, which were entirely different.

padding

Q

O

O

O

O O O O O

O O O OO0

O

O

©)

O

One drawback with the previous picture is that the inputs
on the sides contribute to only one hidden unit, and the
ones next to them to only two

To combat this, we can add padding: extra units, usually
with a fixed value set to zero. Because of this padding, the
number of outputs becomes the same as the number of
inputs, and the actual units on the side contribute to more
nodes.

To achieve the same number of units in the output as in the
input (before padding), we must set the number of units
padded on both sides to floor(kernel_size/2). This is
sometimes called “same padding”.

multiple channels

0O O0OO0OO0O0O0O0

o\ o0 O o o0 0o 0o
o O OO OO0 O0o0O0o

If our input has multiple channels (like one color channel
for each pixel), the standard approach is to add new
weights for the new channel. Note that these are repeated
along the spatial dimension(s) just like the other weights.
The same approach is used to create multiple output
channels.

terminology

— stride 1

padding I

Here is the view in 2 dimensions. We normally slide the
kernel one pixel each step (this is called a stride of 1), but
we can also increase the stride to lower the output
resolution.

channels

channels

Used in this way, the convolution layer transforms the
input, a 3-tensor, into another 3-tensor with the same
resolution and potentially a different number of channels.

Between the two orange boxes, everything is fully
connected (every channel of every pixel in the lower boxer
is connected by unique weight to every channel of every
pixel in the top box.

If the input to this layer is the raw image, then the channels
of the input have clear meanings: the levels or red, green and
blue in each pixel of the input. This is no longer true for the
channels of the tensor at the top. We still call them channels,
but what they represent is entirely dependent on the weights
of the network.

exercise

For a 6x6 image, with 1 pixel of
padding,1 input channel and 3 output
channels, a 3x3 kernel, and stride 1:

- what is the size of the output tensor?

- how many (unique) weights does the
convolution have?

Here’s an exercise to see if you get the basic idea.

Note first that the padding gives us an 8x8 image. Sliding a
3x3 kernel over this image, we see that we can fit 6 such
kernels horizontally (this is one per column, minus 2
because the kernel window hits the right edge). The same
thing holds for the rows, to we get 6 by 6 distinct windows.
Since the output has 3 channels, we repeat this trick with 3
different kernels, so that we get an output tensor with
dimensions 3 x 6 x 6.

Each 3 x 3 kernel has 9 weights, and there are repeated at
each position in the image. That means that no matter how
big the image is, we never get more than 9 weights.
However, the output has 3 channels, so we have 3 different
kernels. The result is that we have 3 - 9 = 27 distinct
weights.

This sort of question will come up in quiz 4, so make sure you
get the idea.

stride 2

We chain these convolutions together, but after a while (as
the number of channels grows) we’d like the resolution to
decrease so we're gradually looking at less specific parts of
the image, but we have more information (more channels)
about that part of the image.

The max pooling layer does this for us, it divides the image
into n-by-n squares, and returns the maximum value from
each square. Average pooling (returning the average over
each square) is also possible, but max pooling is usually
more effective.

Most likely, this is because during the backward pass, the
whole gradient flows back down one of the pixels, instead of
dividing over all four. This gives the backpropagation a
sparse character: it focuses only on the most important paths
in the computation graph instead of dividing its attention
over all of them.

Note that the maxpool is a layer without weights. It just
removes some of the information coming in based on what
the layers below it have done. We need to backpropagate
through it to train the layers below, but it doesn't have any
trainable properties of its own.

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

===~~~ __dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

o

I -0

ReLU activations after each convolution

0151 o0

With the three layers we have now defined: convolutions,
maxpooling and fully connected layers, we can build a
convolutional network. The slide shows a diagram of a
relatively standard way of building a convolutional neural
net to classify images.

At each step the maps of the layers get smaller, and we add
more maps. Eventually, we add one or two fully connected
layers, and a (softmax) output layer (if we're doing image
classification).

ore channels = more weights

high resolution, low channels: few weights

low resolution, many channels: many weights

Convolution Pooling Convolution Pooling Fulh Fully
Connected Connected

AN

Output Predictions

few weights many weights

Note that the early layers have relatively little weights. Even
though they process the largest input in terms of the width
and height, the weights are repeated along these
dimensions. Only when the number of channels grows do
we get a large number of different weights.

from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPool2D, Dropout, Flatten

model = Sequential()
model.add(ConvaD(16, kernel size=(3, 3), activation='relu', input_shape=(28,28,1)))
del 32, (3, 3), activation='relu'))
model . add (MaxPool2D (pool_size=(2, 2)))
model.add(Dropout (0.25)) # Dropout 25% of the nodes of the previous layer during training
nodel.add(Flatten()) # Flatten, and add a fully connected layer
model.add(Dense(128, activation='relu'))
model.add (Dropout(0.5))
model.add(Dense(10, activation='softmax')) # Last layer: 10 class modes, with dropout
nodel . sunmary ()

from keras.optimizers import Adam

optimizer = Adam
model.compile(optimizer-optimizer, loss='categorical crossentropy', metrics=['accuracy'])

Train the model, iterating on the data in batches of 32 samples
model.fit(x_train, y_train, epochs=15, batch_size=32, validation_split=1/6)

In worksheet 4, we show you how to build one of these
convolutional networks to classify digits.

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

So what can these convolutional operations learn? How do
they transform the image, for different values of the

weights? To investigate we can look at the transformation
from one input channel to one output channel (from one

0125 grayscale image to another).
s . ons Here is an example: the Gaussian convolution. It takes a
_; pixel neighbourhood and averages the pixels in it, creating a

0125 blurred result of the input. This is just one transformation
that a convolution filter can perform, depending on the
kernel weights, many other operations are possible. We get this

transformation in a 3x3 kernel where the middle weight is

the largest and the surrounding weights are small positive
values. The convolution then outputs essentially the input
image, but each pixel is mixed with a little of its

surrounding pixels' values.

While Gaussian blur may seem to be throwing away
valuable information, what we actually get is a
representation that is invariant to noise. All these noisy
input images in the left will be mapped to the same image
on the right. We can do the same thing to create
representations invariant to, for instance, small

translations.

Here are the results of a real convolutional network trained
to detect faces. The small grayscale images shows a typical

Gd al D T M Ty Gy Ty
<ER = R o 798 i image that each node in one of the layers responds to.
— iy 1y -H -
: :“ T O" . Those for the first layers can be thought of as edge
5 ;' =l - - detectors: if there is a strong edge in a particular part of the

image, the node lights up. The second combine these into
detectors for parts of images: eyes noses, mouths, etc. The
third combine these into detectors for complete faces.

source: https://devblogs.nvidia.com/parallelforall/deep-

learning-nutshell-core-con

feature visualisation

Slightly positive Maximum activation
activation examples examples

Positive optimized

Here is a feature visualisation example for a more recent
network trained on imagenet, a collection of 14 million
images with diverse subjects.

To find the image on the right, the authors took one node
high up in the network, and instead of optimising the
weights to minimise the loss, they optimised the input to
maximise the activation of that node.

They also searched the dataset for natural images that
caused a high activation in that particular node.

You can look through these visualizations yourself at
https://distill.pub/2017 /feature-visualization/

feature visualisation

Minimum activation Slightly negative Slightly positive
examples activation examples

activation examples [

Layer mixed 4d, unit 479

b/201

The opposite is also possible: searching for an input that
cause minimal activation.

https://distill.pub/2017 /feature-visualization/

convolutions

Output layer has the shape of another "image', with more
channels.

Output nodes are only wired to nearby nodes in the
previous layer.

Weights are shared, each hidden node has the same
weights to the previous layer.

Max-pooling reduces the image dimensions.

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/

|section|Making it work]|
|video|https://www.youtube.com/embed/3UJjSRIKn10|

Deep Learning

Making it work

making it work These are the four most important tricks that we use to

train neural networks that are big (many parameters) and

deep (many layers). Consequently, they are also the main
How to make deep neural nets work. .
features of any deep learning system.

- Overcoming vanishing gradients

Proper initialisation, ReLUs over sigmoids
- Minibatch gradient descent

- Optimizers

(Nesterov) momentum, Adam

- Regularizers
L1, L2, Dropout

vanishing gradient problem Here is a simple network to illustrate the problem of

vanishing gradients. The question is how should we
initialize its weights? If we set them too large, the

<

fe) activations will hit the rightmost part of the sigmoid.
Consequently, the local gradient for each node will be very
(4 1 close to zero. That means that the network will never start
learning.
(4]
If we go the other way, and make the weights large negative
(0] o numbers, then we hit the leftmost part of the sigmoid and

we have the same problem.

x

http://mlvu.github.io

derivative 0.25 -»

Even if the value going in to the sigmoid is close enough to
zero, we still end up with a derivative of only one quarter.
This means that propagating the gradient down the
network, it will still go to zero with many layers.

We could fix this by squeezing the sigmoid, so its derivative
is 1, but it turns out there is a better and faster solution that
doesn’t have any of these problems.

derivative 1 =»

der-[v
al,

>

r(x) = x ifx>0
710 otherwise

The rely activation preserves the derivatives for the nodes
whose activations it lets through. It kills it for the nodes that
produce a negative value, of course, but so long as your
network is properly initialised, about half of the values in
your batch will always produce a positive input for the
ReLU.

There is still the risk that during training, your network will
move to a configuration where a neuron always produces
negative input for every instance in your data. If that
happens, you end up with a dead neuron: its gradient will
always be zero and no weights below that neuron will
change anymore (unless the also feed into a non-dead
neuron).

initialization

Make sure your data is standardized/normalized
i.e. the mean is close to 0, and the variance is close to 1 in every direction.

initialise weights W:
- Make W a random orthogonal matrix (eigenvalues all 1).

- Glorot uniform:

" u(— [6 /L)
K Tin + Tout " V Tin + Nout

There are two standard initialisation mechanisms. The idea
of both is that we assume that the layer input is (roughly)
distributed so that its mean is 0 and the variance is 1 in
every direction (we must standardise of normalise the data
so this is true for the first layer).

The initialisation is then designed to pick a random matrix
that keeps these properties true (in a stochastic sense).

How to make deep neural nets work.

N . Ly

rHTggTaTieTTtS
Proper intialisation, ReLUs over sigmoids

Minibatch gradient descent

Optimizers

(Nesterov) momentum, Adam

Regularizers
L1, L2, Dropout

adient descent

Like stochastic gradient descent, but with small batches of
instances, instead of single instances.

Smaller batches: more like stochastic GD, more noisy, less
parallelism.

Bigger batches: more like regular GD, more parallelism,
limit is (GPU) memory

General advice, keep it between 16 and 128 instances.

How to make deep neural nets work.

a!

I .
=] TG gTaCiTeTTtS
Proper initialisation, ReLUs over sigmoids

< MBaTyradiert-eeseemt—

Optimizers
(Nesterov) momentum, Adam

Regularizers
L1, L2, Dropout

Attempt to adapt the gradient descent update rule to improve
convergence.

- Momentum

+ Nesterov momentum
- RMSProp

- AdaGrad

- AdaDelta

- AdaMax

+ Adam

- Nadam

General advice, use Adam, try Nesterov momentum if it
doesn't work.

plain gradient descent

w « w —nVloss(w)

with momentum

v < uv —nVloss(w)
W WV

If gradient descent is a hiker in a snowstorm, then moment
gradient descent is a boulder rolling down a hill. The
gradient doesn’t affect its movement directly, it acts as a
force on a moving object. If the gradient is zero, the updates
continue in the same direction as the previous iteration,
only slowed down by a “friction constant” mu.

Nesterov momentum

momentum Nesterov momentum

Nesterov momentum is a slight tweak. In regular
momentum, the actual step taken is the sum of two vectors,
the momentum step (representing the history of steps
taken so far) and a gradient step (a step in the direction of
steepest descent at the current point).

Since we know that we are taking the momentum step
anyway, we might as well take this step first, and then
evaluate the gradient after the momentum step. This will
make the gradient slightly more accurate.

See DLVU lecture 4 for a more detailed explanation.

Normalize the gradients: keep a running mean m and
(uncentered) variance v for each parameter over the
gradient. Subtract these instead of the gradient.

m <+ By xm+ (1— B1)Vloss(w)
V& Ba# v+ (1 — Ba)(Vloss(w))?
m

nﬁ+e

W W—

Comes with two extra hyperparameters, but the defaults
are usually fine.

One way of thinking about momentum is that in large,
complex networks each weight should have its own
learning rate. Different weights perform very different
functions, so ideally we want to look at the properties of the
loss landscape for each weight (the sizes of recent
gradients) and scale the “global learning rate” by these. In
some ways, this is what the momentum vector is doing for
us: is gives every weight a separate momentum scalar that
changes how much that weight will changes separate from
all the other weights.

Adam is a method that takes this idea and adds another
per-weight tuning on top of this: a scaling by the standard
deviation of recent gradient values.

The bigger the recent gradients, the bigger we want the
learning rate to be (this is what momentum does for us).
However, if there is a lot of variance in the recent gradients,
we want to reduce the learning rate because the landscape
is unpredictable. Thus, if we scale the learning rate by the
mean m over the recent gradients (similar to momentum),
and divide that by the square root of the variance v (plus
some small epsilon to avoid division by zero), we end up
with a direction that uses recent information about the loss
landscape to adapt the gradient.

m and v are computed as an exponential moving average.
This means that the current gradient weights the most, and
the influence of recent gradients decays exponentially (but
all play some part in the total sum).

It may not be immediately obvious that the m vector is doing
roughly the same thing here as the momentum m is, but with
a little rewriting, you can show that they are very similar. You
can think of Adam as doing "momentum plus scaling by the
standard deviation”.

How to make deep neural nets work.

et

iala .
=] TG gTaCiTeTTtS
Proper initialisation, ReLUs over sigmoids

< MinTBatciTgradient-ceseent—
imizers
(Nesterov) momentumm:

- Regularizers
L1, L2, Dropout

regularizers

The bigger your model, the greater the capacity for
overfitting.

Regularizers attempt to pull the model back towards more
simple models, without entirely removing the more
complex ones.

considers models with small parameters to be simpler (and
lossreg = loss + Al|6]| therefore preferable). It adds a a penalty to the loss for

5 T models with larger weights.
loss;eg = loss + Al|6]|* = loss + A0 " 0

To implement the regularizer we simply compute the L2
norm of all the weights of the model (flattened into a
vector). This is essentially the distance in model space from
the origin to the model.

With L2 loss in particular, it's common to compute the

model space square of the norm rather than the norm itself. This works

out as the dot product of the parameter vector with itself.

This is easier to compute, and has some beneficial
properties in analysing the resulting model mathematically.

The behavior of these two approaches is slightly different
(the second is more sensitive to larger values), but in practice
there isn't a big difference.

We then add this to the loss multiplied by hyper parameter
lambda. Thus, models with bigger weights get a higher loss,
but if it's worth it (the original loss goes down enough),
they can still beat the simpler models. Theta is a vector
containing all parameters of the model.

vector norm

b
/ 6] = Vw2 4 b?

ol = ¥/wP -+ bP

We can generalise the L2 norm to an Lp norm by replacing
the squares(and the square root) with some other number

p.

6P = ¥/ wp +bP

For the 12 norm, the set of all points that have the same
distance to the origin form a circle. In higher dimensions
this becomes a (hyper)sphere. This is the set of all models
that receive the same regularization penalty under the L2

norm.

loIP = ¥/wP + b7

For the L1 norm, they form a diamond. This means that if
we penalize by L1 norm, we are allowing models to get
further away from the origin, if they move along one of the
axes. | you keep one parameter 0, you get to move much
farther away than if you keep both equally big.

0>p>1

The smaller we make p, the more pronounced this effect
gets. We usually stop at p=1, for the sake of numerical
stability.

L1 regularizer

lossyeg < loss 4 AllO]l;

The L1 regularizer works just the same as the L2
regularizer: we just add a weight term to the loss, with the
L1 norm of the model parameters. The diamond shape of
the norm has a special effect. It means that the search will
have a strong preference for models that lie exactly on the
axes.

For example, the L2Znorm won't induce much of a
preference between the model with parameters (0.01, 1)
and (0, 1), but the L1 norm will show a clear preference for
the latter. For this reason we say that the L1 norm prefers
sparse solutions. Models where as many as possible of the
parameters are exactly 0.

Here’s an analogy. Imagine you have a bowl, and you roll a
marble down it to find the lowest point. Applying 12 loss is
like tipping the bowl slightly to the right. You shift the
lowest point in some direction (like to the origin).

L1 loss is like using a square bowl. It has grooves along the
dimensions, so that when you tip the bowl, the marble is
likely to end up in one of the grooves.

unregularized
s

.

3

3 -2 -1 ° 1 2 3
-
3 -2 -1 o 1 2 3

DATA

REGENERATE

Learning rate Activation Regularization Reguiarization rate roblem type

on
000,000 003 < T) - oot - Classification

FEATURES + — 0 HIDDEN LAYERS ouTPUT

Tost loss 0,694
Training loss 0.807

We can try this in tensor flow playground. For this example
(a simple logistic regression) we know that the derived
features x12 and x22 contain everything we need to a linear
fit. However, when we with with regularly, or with L2
regularization, we see that the weights for the other
features never quite go to zero. However, with L1
regularization, we see that they become precisely zero.

https://bit.ly/32lc6cQ

minimize :

1

inw +C Z max (0,1 —yi(w'x; + b))
i

— —_—

regulariser error

Sometimes a regularization term is something that you tack
onto your model in an ad-hoc fashion: you see that it is
overfitting, so you add a little regularization.

Other times, it appears naturally. We saw this in the last
lecture, where we rewrote the SVM soft margin loss to an
error term and a regularization term.

Here the penalty hyperparameter C is on the error term, and
not on the regularization term, but practically it doesn’t
make much of a difference which term you control.

https://bit.ly/32lc6cQ

(b) After applying dropout

() Standard Neural Net

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Dropout is a very different regularization technique for
large neural nets. During training, we simply remove hidden
and input nodes (each with probability p) by setting their
values to zero.

Memorization (aka overfitting) often depends on multiple
neurons firing together in specific combinations. Dropout
prevents this by randomly turning them of.

image source: http://jmlr.org/papers/v15/
srivastaval4a.html

Present with Always
probability p present
(a) At training time (b) At test time
Figure 2: Left: A unit at training time that is present with probability p and is connected to units

ayer with weights w. Right: At test time
are multiplied by p. The output at test time is same as the expected output

in th unit is always present and

at training time.

Once you've finished training and you starting using the
model, you turn off dropout. Since this increases the size of
the activations, you should correct by a factor of p.

Frameworks like Keras know when you’re using the model to
train and when you're using it to predict, and turn dropout
on and off automatically. In other frameworks like Pytorch,
you need to be little bit more careful to tell the network
whether you're training or evaluating.

image source: http://jmlr.org/papers/v15/
srivastaval4a.html

regularization

Provides a soft preference for “simpler” models.

L2: Simpler means smaller parameters

L1: Simpler means smaller parameters and more zero
parameters

Dropout: randomly disable hidden units. Simpler means
more robust

Many other tricks available for regularization.

How to make deep neural nets work.

et

I -
TG gTaUTETTTS
Proper initialisation, ReLUs over sigmoids

< MinTBatciTgradient-cesecent—
imizers
(Nesterov) momentum:
- Regulag
L4727, Dropout

These are the four most important tricks that we use to
train neural networks that are big (many parameters) and
deep (many layers). Consequently, they are also the main
features of any deep learning system.

Google uses Al, deep learning to predict
cardiovascular risk from retina scans

What is ‘deep learning'?

jOpinion Sport

e Cities Global development Football Tech Business Environment Obituaries

'It's able to create knowledge itself":
Google unveils Al that learns on its own

The Great A.I. Awakening

Inamajor
< with

just
no human help

Once we had the basic frameworks for deep learning
worked out and we started to get the hang of training big
and deep networks, the deep learning revolution started to
get going. Let’s look at some early successes (mostly in the
visual domain).

Jrator filed with lots of
food and drinks.

‘across a dry grass feld. ona coueh. side of the rosd, a pariing ot

This is an end-to-end system for producing natural
language descriptions of photographs. The system is not
provided with any knowledge of the way language works, it
just learns to produce captions from examples using a
single neural network that consumes images and produces
text, trained end-to-end.

source: https://www.engadget.com/2014/11/18/google-
natural-language-image-description/
recommended: https://twitter.com/picdescbot

This example uses a convolutional network to transfer the
style of one image onto another. Interestingly, this work was
done with a general purpose network, trained on a general
classification task (such networks are available for
download). The authors took this network, and didn’t
change the weights. They just built the style transfer
architecture around the existing network.

source: https://research.googleblog.com/2016/10,
supercharging-style-transfer.html
try it yourself: http://demos.algorithmia.com/deep-style/

image-to-image (

Labels to Street Scene

Labels to Facade BW to Color

output

Aerial to Map

input output
Day to Night

input = output output output

This is pix2pix: a network with images as inputs and images
as outputs was trained on various example datasets. Note
the direction of the transformation. For instance, in the top
left, the street scene with labeled objects was the input. The
car-like objects, road surface, tree etc were all generated by
the neural network to fill in the coloured patches in the
input. Similarly, the bottom right shows the network
generating a picture of a handbag from a line-drawing.

unmatched image to image (

In some cases, we don’t have neatly paired images: like the
task of transforming a horse into a zebra. We can get a big
bag of pictures of horses, and a big bag of pictures of zebras,
but we don’t know what a specific horse should look like as
a zebra. The CycleGAN, published in 2017, could learn in
this setting.

http://gntech.ae/news/cyclegan-ai-can-turn-classic-
paintings-photos/

)) https://twitter.com/goodfellow_ian/status/
@'a"“”"”"m” @€ - 1084973596236144640

@goodfellow_ian

4.5 years of GAN progress on face
generation. arxiv.org/abs/1406.2661 arxiv.org
/abs/1511.06434 arxiv.org/abs/1606.07536
arxiv.org/abs/1710.10196 arxiv.org
/abs/1812.04948

DALL-E 2 (

Teddy bears working on A bowl of soup thatis a A bowl of soup that looks
new Al research portal to another like a monster knitted out
underwater with 1990s dimension as digital art of wool

technology

end-to-end learning Finally, let’s discuss what deep learning means on a higher

level; why we consider it such a departure from classical
machine learning.

Here is the kind of pipeline we would often attempt to build

named . .
entity relation vWhen did in the days before deep learning: we scan old news papers,
OCR tokenization recognition extraction . s .
Obama become perform optical character recognition, tokenise the
_— _ president?”

characters into words, attempt to find named entities (like
people and companies) and then try to learn the relations
between these entities so that we can ask structured
queries.

Most of these steps would be solved by some form of

machine learning. And after a while, we were getting pretty
good at each. So good that it would, for instance, make a
mistake for only 1 in a 100 instances.

But chaining together modules that are 99% accurate does
not give you a pipeline that is 99% accurate. Error
accumulates. The tokenization works slightly less well than
on its pristine test data, because it’s getting noisy input
from the OCR. This makes the input for the NER module

even more noisy and so on. The end result is that all
modules work well individually, but the pipeline as a whole
performs very poorly.

OCR tokenization recognition extraction

named

entity relation “When did

Obama become

—_— — —_— -_— president?”
«— -— -— -«
error signal

end-to-end learning

What deep learning allows us to do is to make each module
differentiable: ensure that we can work out a local
gradient so that we can also train the pipeline as a whole
using backpropagation.

This is called end-to-end learning.

We can still start by training each module individually, so
long as we do a little fine-tuning after we chain them all
together. This does mean that we need some training
examples for the whole pipeline, as well as for all the
individual components.

trad. Machine Learning
raw data

feature extraction
(hardcoded)

features

earning

output

specific learning method for each model

classification, regression, clustering

Deep Learning
raw data

tensors
learning \

hidden layers

learning

output

always uses (some form of) gradient descent

much more flexible, less limited to abstract tasks

what is deep learning?

In traditional machine learning, the standard approach is to
take our instances and to extract features. If our instances
are things like images, natural language, or audio, this
means we may lose information in this step. The data
always has to be a matrix, so we are constrained to an
inflexible abstract task.

In deep learning, because we translate our raw data to
tensors of any shape and size, and then design a model to
deal with the specific tensor shape we’ve created, we have
much more flexibility, and we can get much closer to the
raw data. This means that instead of deciding what the
model should pay attention to through feature design, we
are allowing the model to learn which aspects of the raw
data are relevant.

In short, deep learning is to traditional machine learning, as
Lego is to Playmobil. Both can give you a school bus, but the
Lego school bus can be taken apart and reconstructed into a
spaceship. The Playmobil bus is single-use.

These are different abstractions, with different purposes.
Deep learning requires a little more work and insight, but
you get a lot of flexibility in return.

110

