Density Estimation

Normal distributions

In a few videos so far, we made use of the Normal
distribution, assuming that you’d seen it before, and
that you know more or less what its properties are.

In this video, we’ll take a step back and look at the
normal distribution from first principles. It's an
important tool in what is coming up in this lecture and
the next, so we need to make ourselves eminently
comfortable with the ins and outs.

the normal distrib n

Here is the one dimensional normal distribution.

One of the reasons that the normal distribution is so
popular is that it has a definite scale. If I look at
something like income distribution, the possible values
cover many orders of magnitude, from 0 to billions.
This is not the case with normally distributed
phenomena. Take height for instance: no matter how
many people I check, I will never see a person that is 5
meters tall.

The normal distribution is a way of saying: I'm not sure
about the value of x, and I can’t definitely rule any value
out, but I'm almost certain it’s near this particular
value.
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This is the formula for the probability density function
of the one-dimensional normal distribution. Itlooks
very imposing, but if you know how to interpret it, it's
actually not that complicated. Let’s first see where it
came from, and then try to figure out what all the
different parts mean.
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The Normal distribution was invented, or perhaps
discovered is a better word, by Carl Friedrich Gauss,
undisputably one of the three greatest mathematicians
in history.

Gauss was working as an astronomer, and trying to
estimate the positions and velocities from fallible
measurements.

We’ve already seen that if we have a bunch of values,
such as measuments of some quantity, and if they are
normally distributed, then their maximum likelihood
estimate works out as the mean. Of course, this is not
the order in which things were worked out historically.
Taking the means of a sequence of measurements has



been done since at least the third century BC, and the
Normal distribution only emerged at the end of the
18th century.

For Gauss, the challenge was to make this derivation
backwards. He knew the mean was an effective method
of estimation. Taking the principle of maximum
likelihood as a given, what kind of distribution would
give rise to the means as an effective estimator?

=Y
-

p= argmaxHﬂ (x) = arg maleogf (x)
: x ‘ x

dlogf.(x) 1
;Tfﬂwhenufﬁgx

assume f,, (x) = e 9+

0g.(x) 1
;Tfowhenufigx

Let’s see if we can reconstruct some of his thought
process. We may not have Gauss’ genius, but we do
have the benefit of having taking this particular walk
before in the other direction.

We take the arithmetic mean as a given, together with
the principle of maximum likelihood. We’ll not assume
all the finer details of probability, since which Gauss
did not have access to them either. Let’s just say that
mu represents the truth, which we are trying to
measure, and there is some function f of a
measurement x, in which mu is a constant, that is
larger for the measurements we are more likely to
encounter.

Assume that we get some measurements, and choose
the mu such that the product of these values over our
series of measurements is maximal. What properties
should f have for us to end up taking the mean?

We'll start, by taking the logarithm of f. This does not
change the optimum, and turns our product into a sum.
It’s easier to work with and it already brings us closer
to the computation of the mean.

We know, and Gauss knew, that the derivative of our
objective function is zero at the optimum. So the
derivative of our objective function should be zero
when mu is the mean of our observations.

To get rid of the logarithm, let's make a further
assumption: that f is simple some other function g, but
exponentiated (and taking the negative). That
simplifies things: the sum of the derivatives g for our
observations x, should equal 0 when mu is equal to the
mean. when fis large g is small so we can think of gas a
metric of how unlikely (and hopefully bad) our
measurement is.
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Our job is now to take the equation describing the
mean and to rewrite it so that it aligns with the
equation on the left, and we can read of what the
derivative of g is.

With a little rewriting, we see that this implies that the
sum of the differences between mu and the various xs,
the sum of our measurement errors, should equal one.
If we make g the square of a measurement error, we
see that its derivative leads to the desired question (we
can freely add a constant, since we are setting the
equation equal to zero.

This means that our f function is exp(x - mu)2. And
with that, we have the basic property of of our
distribution. It’s not a probability density, since it
doesn’t sum to one, but multiplying it by a constant
won’t change the minimum,so we can save that for
later.
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So, if we strip away the complexity, this is the only
really important part of the normal distribution. A
negative exponential for the squared distance to the
mean.

Everything else adding features, and making sure it
sums to one.
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What does this curve look like? To illustrate, we’ll set
the mean to zero.

Remember, we described the normal distribution as
having a definite scale. This means that we first need
to make outliers incredibly unlikely. An exponentially
decaying function like ex gives us that propert. Each
step of size 1 we take to the right more than halves the
probability density. After seven steps it's one
thousandth of where we started, afterfourteen steps
one millionth, and after twenty-one steps one-billionth.

Taking the negative exponential of the square, as our

function e** does, results in an even stronger decay,
and it has two more benefits.
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First, the function flattens out at the peak, giving us a
nice bell-shaped curve, where exp(-x) has an ugly
discontinuity at the top (if we make it symmetric).

Furthermore, it has an inflection point: the point
(around 0.7) where the curve moves from decaying
with increasing speed to decaying with decreasing
speed. We can take this as a point of reference on the
curve: to the left of this point, the curve looks
fundamentally different than to the right of it. With the
exponential decay, the function keeps looking the same
as we move from left to right, every seven steps we
take, the density halves. With the negative exponential
of the square, there is a place where the function keeps
dropping ever more quickly, and a place where it starts
dropping ever more slowly. We can use this to, as it
were, decide where we are on the graph, which will
help us determine a characteristic range of values for
our distribution.

The two inflection points are natural choices for the
range bounding the “characteristic” scale of this
distribution. The range of outcomes which we can
reasonably expect. This is a little subjective: any
outcome is possible, and the characteristic scale
depends on what we’re willing to call unlikely. But
given the subjectivity, the inflection points are as good
a choice as anything.

If you follow Gauss’ logic for the median rather than the
mean, you'll see that the corresponding distribution is
one with simple exponential decay (the so called
Laplace distribution). This fits our intuition that when
our data doesn’t have a definite scale (like income), we
should use the median rather than the mean.
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The inflection points are the peaks of the derivative.



y=e05¢

—— derivative

If we add a 0.5 multiplier to the inputs, the inflection
points hit -1 and 1 exactly. This gives us a curve for
which the characteristic scale is [-1, 1], which seems
like a useful starting point (we can rescale this later to
any range we require).

Additionally, when we now derive the mean, the
exponent 2 will cancel out against this one half, which
means we don’t even need to introduce the constant 2
multiplier.

To change the scale, we add a parameter sigma. This
will end up representing the the standard deviation,
but for now, we can just think of it as a way to make the
bell wider or narrower.

The square of the standard deviation is the variance.
Either can be used as a parameter.

We can now add the mean back in, with parameter mu.
This shifts the center of the bell forward or backward
to coincide without the desired mean.

Note that shifting a curve forward by mu points is the
same as shifting the coordinates backward by three
points. Like wise, we can think of the mulitplication by
sigma as keeping the curve the same, but just drawing
the ticks on the horizontal axis closer together or
further apart.

Finally, to make this a proper probability density
function, we need to make sure the area under the
curve sums to one.

This is done by integrating over the whole real number
line. If the result is Z, we divide the function at every
point by Z. This gives us a function that sums to 1 over
the whole of its domain. For this function, it turns out
that integrating results in an area equal to the square
of two times pi times the standard
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So that’s what the different parts of the normal
distribution do.

multivariate normal ( )
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We can do the same thing in multiple dimensions. This
gives us the multivariate normal distribution. We’ll
quickly run through how the different parts generalize
to higher dimensions.

We start by defining a curve that decays squared-
exponentially in all directions. Think of this as spinning
our original function around the origin.

The inflection points now become a kind of “inflection
circle”, where the derivative peaks. Inside this circle lie
the most likely outcomes for our distribution.

To give the inflection circle radius 1, we rescale the
exponent, as we did before before.

Note that the square of the norm is equal to the dot
product of a vector with itself, so we write that instead.



This time we’ll normalize first, and then introduce the
parameters.

This function is the probability density function of the
standard MVN (zero mean, and variance one in every
direction).

To define the density functions for other distributions
we’ll use a special trick. We'll start with this one, and
apply a linear transformation. We'll see that the
parameters of the linear transformation then become
the parameters of the result multivariate normal.

introducing parameters

If
X~N(0, 1)
Y=AX+t,and
p(x) is the density of X, then

what is the density q(y) of Y?

Here’s the formal way of doing that. Imagine that we
sample a point X from the standard normal
distribution. We then transform that point by a linear
transformation defined by matrix A and vector t,
resulting in a vector Y. What then is the density
function that defines our probability on Y?
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So, if we transform a sample from x into y, we get a new
distribution, with a new mean, and our inflection circle
becomes an inflection ellipse. Say we pick a pointy.
What's the probability density for seeing that point
after the transformation?

Consider, that the probability of ending up inside the
inflection circle on the left must be the same as the
probability of ending up inside the ellipse on the right.
And this is true for any contour line we draw:we get a
circle on the left, and an ellipse of the right, and the
probabilities for both must be the same.

This suggests that if we pick a point y on the right, and
we want to know its density, we can reverse the
transformation, to give us the equivalent point x on the
left. The density of that point under p(x), the standard
normal distribution, must be related to the density of y
under q(y). In fact, it turns out that q(y) is proportional
to the density of the reverse-transformed point.

The only thing we need to correct for, is the fact that
the matrix A shrinks of inflates the bell curve, so that
the volume below it does not integrate to one anymore.
The amount by which a matrix inflates space is its
determinant. So, if we divide the resulting density by
the determinant, we find a properly normalized
density.

This trick is a simple case of integration by substitution
https://en.wikipedia.org/wiki/
Integration_by_substitution#Application_in_probab



ility In the context of probability it is also called the
Change of Variable Theorem.

When dealing with normal distributions it can be very
helpful to think of them as linear transformations of
the standard normal distribution.
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We fill in A-1(x-t) to transform our standard normal
distribution pdfto the the pdf transformed by A and t.
We set mu equal to t.

Using the basic properties of the determinant, the
transpose and the inverse (you can look these up on
wikipedia), we can rewrite the result to the pdf we
expect.
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Here is the final functional form in terms of the mean
and the covariance matrix.




N(0,1)  :see numpy.random. randn

N (i,0%) : Xo+p with X ~N(0,1)
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One benefit of the transformation approach we used, is
that it's now very easy to work out how to sample
from an MVN. We can take the following approach.

We'll take sampling form a univariate standard normal
as read (it’s usually done by an algorithm called the
Box-Muller transform, if you're interested).

We can transform a sample from the standard normal
distribution into a sample from a distribution with
given mean and variance as shown above.

We can sample from the standard MVN by stacking d
samples from the univariate normal in a vector.

We can then transform this to a sample from an MVN
with any mean or covariance matrix by finding A and
transforming as appropriate.

Gaussian mixture model

Histogram of Final grade [Total Pts: up to 10] [891345
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Here is the grade distribution from a few years ago. It
doesn’t look very normally distributed (unless you
squint alot). The main reason it doesn;t normally
distributed, it because it has multiple peaks, known as
modes. This often happens when your population
consists of a small number of clusters, each with their
own distribution.

In this year, the student population was mainly made
up of two programs. We can imagine that students
from one program found the course more more
difficult than students from the other program, and
that the peak around 3.5 was that of students who only
partially finished the course. This gives us three sub-
populations, each with their own normal distribution.
The problem is, we observe only the grades, and we
can'’t tell which program a student is in.

We can describe this distribution with a mixture of
normal distributions.

(These days the student population consists of many
more programs and background, so the grade
distribution looks more normal).
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Here is how to define a mixture model. We define three
separate normal distributions, each with their own
parameters. We’ll call these components.

In addition, we also define three weights, which we
require to sum to one. These indicate the relative
contributions of the components to the total. In our
example, these would be the sizes of the three
subpopulations of students, relative to the total.

To sample from this distribution, we pick one of the
components according to the weights, and then sample
a point from that component.
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We’ll mostly look at the model in 1D, but it works the
same for any dimensionality.

Here’s three components that might broadly
correspond to what we saw in the grade histogram.

wi1=0.1

We scale each by their component weight. Since the
areas under these curves each were one before we
multiplied by the weights, they are now 0.1, 0.5 and 0.4
respectively.

That means that if we sum these functions, the result is
combined function with an area of one: a new
probability density.
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That looks like this. For each x we observe, each
component could be responsible for producing that x,
but the different components have different
probabilities of being responsible for each x.
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In the next video, we'll take another look at how to fit
some of these distributions to data.

Density Estimation

Maximum likelihood estimators

Now that we have a better understanding of why the
normal distribution looks the way it does, let’s have
another look at fitting one to our data.
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We’ve seen the maximum likehood estimator mu
already. It’s the artihmetic mean. In fact, as we saw in
the last video, this estimator was broadly used for
thousands of years before Gauss worked out the
distribution for which is a maximum likelihood
estimator.
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For the sake of completeness, let’s work out the
maximum likelihood estimator for the variance/
standard deviation
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This is the maximum likelihood estimator for the
variance. Taking the square on both sides gives us the
estimator for the standard deviation.

Note that it turns out that this estimator is biased: if we
repeatedly sammple a dataset and compute the
variance, our average error in the estimate doesn’t go
to zero.

For an unbiased estimator, we need to divide by n-1
instead. For large data, the difference has minimal
impact.

estimators for weighted data
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Sometimes we have a weighted dataset. For instance,
we might trust some measurements more than others,
and so downweight the ones we distrust in order to get
a more appropriate model. We’ll see dataset weights
crop up later in this lecture, and also, in the next
lecture.

For such cases, we can easily define a weighted
maximum likelihood objective. We minimize the log
likelihood as before, but we assing each term (that is,
each instance) a positive weight and maximize the
weighted sum.

For the normal distributions, the weighted maximum
likelihood estimators are what you’d expect: the same
as for the unweighted case, except the sum becomes a
weighted sum, and we divide by the sum of the
weights, instead of by n.



least squares regression We first encountered the principle of least squeares,

not in the context of descriptive statistics like the mean
and the standard deviation, but in the context of
regression.

You may ask whether this also leads to a normal
y distribution somewhere in the regression problem.

Y =XTw +b+E And indeed it does. When we fit a line using the least
E ~ N(0, o) squares loss, we are implicitly assuming a model with
~ s o (

noise. That noise, we are assuming to be normally
distributed.

L) for a linear model, it works like this: we assume that

y our features were generated by some random process,
which we don’t know the details of. Somehow a
random variable X was sampled. This sample was then
transformed by a linear function, parametrized by (w,

b), and to the result of that, a scalar E of normally
x distributed random noise was added (zero mean, with

some variance).

We don’t know the distribution that generated X and
we don’t know the variance on the noise distribution.
As it turns out, we can estimate w and b without
knowing these.

maximum likelihood for w and As we can see here, all elements from the normal

distribution disappear except the square difference
argmaxp(Y | X, w,b) between the predicted output and the actual output,
w,b
—argmaxtn [[N(we | < + b,0) and the objective reduces to least squares.
w,b A
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maximum likelihood estimators for the MVN
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For the multivariate normal distribution, these are the
maximim likelihood estimators.

The same things we said for the univariate case hold
here. The estimator for the covariance requires a
correction if you need unbiased estimates. And we can
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Finally, let’s look at the last of our modelsfrom the
previous video: the Gaussian mixture model. What
happens when we try to define the maximum likelhood
objective for this model?

maximum likelihood for the GMM

arg max
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Here we face a problem: there’s a sum inside a
logarithm. We can’t work the sum out of the logarithm,
which means we won’t get a nice formulation of the
derivative. We can do it anyway, and solve by gradient
descent, we can even use backpropagation, so we only
have to work out local derivatives, but what we’ll never
get,is a functional form for the derivative that we can
set equal to zero and solve analytically.

After the break we’ll discuss the EM algorithm, which
does’t give us an analytical solution, but it does allow
us to use the tricks we’ve seen in this video, to help us
fit a model.

Density Estimation

Expectation-maximization



alternating optimization

If your problem has two unknowns: fix one and solve for
the other, then fix the other and solve for the first. Repeat.

already, in the first lecture: the k-Means algorithm.
R R L Here, the two unknowns are where the centers of our

. ' clusters are, and which cluster each point belongs to. If
we knew which cluster each point belonged to, it

would be easy to work out the centers of each cluster. If

we knew the cluster centers, it would be easy to work
out which cluster each point belongs to.

Since we know neither, we set one of them (the cluster

centers) to an arbitrary value, and then assign the
« points to the obvious clusters. Then we fix the cluster

memberships and recompute the cluster centers. If we
repeat this process, we end up converging to a good
solution.

With this idea in the back of our mind, we can return to
the GMM. To fit this to data we can use what is
probably the most famous alternating optimization

031 method that exists: the expectation maximization

algorithm.
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hidden variable model

The GMM is an example of a hidden variable model:
the data is produced by picking a component, and then
sampling a point from the component.

We'll indicate which component we've picked by a
variable z. This is a discrete variable, which for a three-
component model can take the values 1, 2 or 3.

The problem is that when we see the data, we don’t
know z. All we see is the sampled data, but not which
component it came from. For this reason we call z a
hidden variable.

“completing” the data

Can we just marginalise z out?

We'd have to sum over all possible assignments of
components to instances.

For two components, and just 30 points, this sum has a
billion terms!

1. Which component generated each x; in our data: {z;}

2. What the parameters of the components are: Wik A {Zx}

Instead, we’ll apply the philosophy of alternating
optimization. First we state our two unknowns.

Clearly, if we knew which component generated each
point, we could easily estimate the parameters. Just
partition the data by component, and use the
maximum likelihood estimators on each component.
We’ll see later what the MLE is for the component
weights.

The other way around seems reasonable as well. Given
the components, and their relative weight, it shouldn’t
be too tricky to work out how likely each component is
to be responsible for any given instance.

key insight

We can't optimise for 6 and z together, but:
- Given some 6, we can compute p(z | x)

- Given z, we can optimise 8




EM (intuitive)

initialise components randomly

loop:

- expectation: assign soft responsibilities to each point

- maximization: fit the components to the data, weighted

by responsibility.

The EM algorithm (for GMMs) expands on k-means by
replacing the clusters with Gaussians, and by allowing
points to “belong” to each Gaussian “to some degree”.
In other words, each Gaussian takes a certain
responsibility for each point.

o

responsibilities (given the model parameters)
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Here is how we define the responsibility taken for
some point x by a particular component when the
parameters of the components are given. We simply
look at the three weighted densities for point x. The
sum of these defines the total density for x under the
GMM. The proportion of this sum that component 2
claims, is the responsibility that we assign to
component 2 for producing x.

If you allow subjective probability, this is just Bayes’
rule in action, the probability of component 2 being
responsible given that we've observed x. If you want a
purely frequentist interpretation of the EM algorithm,
you have to be strict in calling these responsibilities
and not probabilities. We cannot express a probability
over which component generated x, since it is a hidden
true value, which is not subject to chance.

For now, we'll just take this as a pretty intuitive way to
work out responsibility, and see what it gets us. In the
next video, we’ll see a more rigorous derivation that
even a frequentist can get behind.

In this case, the green component takes most of the
responsibility for point x.

%)
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We can now take the first step in our EM algorithm.
Here it is in two dimensions. We have some data and
we will try to fit a two-component GMM to it. The
number of components is a hyperparameter that we
have to choose ourselves, based on intuition or basic
hyperparameter optimization methods.

We start with two arbitrary components. Given these
components, we then assign responsibilities to each of
our points. for points that are mostly blue, the blue
component claims the most responsibility and for
points that are mostly red, the red component claims
the most responsibility. For the purple points each
component claims some responsibility.



model parameters (given the responsibilities)

Wi

My =

i
-) mx
X

> rix— ) x— )"

ni:E T;
X

For each component i, we now discard the parameters
mu and sigma, and recompute them to fit the subset of
the data that the component has taken responsibility
for.

Note that unlike the k-means algorithm, we never
strictly partition the data. Every point belongs to the
component to some extent. We do however get a
weighting of the dataset which means that some
instances should be much more important in where we
put the mean and the variance than others. Here, we
can use our weighted MLEs that we defined in the
previous video.

Our model isn’t just the parameters of the components,
we also need to work out the component weights. For
now, we'll appeal to intuition, and say that it seems
pretty logical to use the total amount of responsibility
claimed by the component over the whole data. In the
next video, we’ll be a bit more rigorous.

With this, we have the two steps of our alternating
optimization worked out: given components, we can
assign responsibilities, and given responsibilities, we
can fit components.

-2




0
-2
-2 0 (©) 2 -2 0 (d) 2
2
0
-2
-2 0 (d) 2 -2 0 (e) 2
2 2 .
L=20 530
. €S
ol
0 0 . .:g.‘—.‘-
wgte To
L7
(5
-2 o W
-2 0 ) 2 -2 0 f) 2

Expectation step

Maximization step




What's the point?

clustering, density estimation

Fraud detection, targeting treatment, customer
segmentation

- All unsupervised methods. Mostly useful for exploratory
analysis.

Build a Bayes classifier. Fit an GMM model to the points for
each class, and classify by maximum

- This is a non-naive Bayes classifier. The features are not
independent at all.

height

Here’s what that looks like with a single Gaussian per
class



height

With multiple Gaussians, we can fit the shape of the
data more naturally.

Density Estimation
A formal analysis of EM

In the last video, we explained how EM works to fit a
GMM model. We took a pretty informal approach, and
appealed to intuition for most of the decisions we
made. This is most helpful to get a comfortable
understanding of the algorithm, but as it happens, we
can derive all of these steps formally, as
approximations to the maximum likelhood estimator fo
the GMM model.

EM (formal treatment)

- Allows us to prove that EM converges (to a local
optimum)

- Shows that the sample mean/variance weighted by the
responsibilities are the correct solutions.

- Provides a decomposition that we can reuse for other
hidden variable models.

What do we get out of this, since we already have the
EM algorithm and is seems to work pretty well?

First, we can prove that EM converges to a local
optimum.

Second, we can derive the responsibilities and
weighted mean and variance as the correct solutions.
In the last video, if we had come up with five other
ways of doing it that also seem pretty intuitive, we
would have to implement and test all of them to see
which worked best. With a little more theory we can
save ourselves the experimentation. This is a good
principle to remember: the better your grasp of theory,
the smaller your search space.

And finally, the decomposition we will use here will
help us in other settings as well, starting next week we
we apply the principle to deep neural networks.
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Let’s start by going back to the objective that we
actually want to solve: the maximum likelihood
objective

hidden variable model

The problem, as we saw before, is the hidden, or latent
variable. The fact that we have to estimate both the
parameters and the responsibilities of each component
for each point together is

assume a distribution on z

Our first step is to assume some arbitrary function
which gives us a distribution on z for x. This could be a
very accurate distribution or a terrible one. We'll work
out some properties first that hold for any q.

Since in our specific example, z can take one of k
values, you should think of q(z|x) as a categorical
distribution over the components in our model. Fora
particular x, it tells us which components are most
likely. This is the same function as the responsibilities
we defined earlier, and indeed we will see that q will
become the responsibilities later, but right now, we are
making no assumptions about how q is computed: it
could be a completely arbitrary and incorrect function.

We can think of q(z|x) as an approximation to p(z|x,
theta), the conditional distribution on the latent space.

Why do we introduce q, when we can actually compute
p(z|x, theta)? Because q can be any function, which
means it’s not tied to a particular value of theta. q is
not a function of theta, which means that in our
optimization, it functions as a constant. As we shall see,
this can help us a great deal in our analysis.



a very useful decomposition

Inp(x|6) =L(q,0) +KL(q,p)

with :
p=plzx,6)
q(z | x) any approximation to p(z | x)
KL(q, p) Kullback-Leibler divergence

p(x,z|6)
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Given some g, we can show that the likelihood p(x |
theta) which we cannot easily optimize for,
decomposes into the following two terms.

The KL divergence, as we saw in lecture 5, is a distance
between two probability distributions. It tells us how
good of an approximation q is for the distribution p we
just compared it to. The worse the approximation, the
greater the KL divergence.

L is just a relatively arbitrary function. The isn’t much
meaning that can be divined from it’s definition, but we
can prove that when we rewrite the log-likelihood of x
into the KL divergence between p and q, L is what is
“left over”. L plus the KL divergence makes the log
likelihood. This means that when q is perfect
approximation, and the KL divergence becomes zero, L
is equal to the likelihood. The worse the
approximation, the lower L is, since the KL divergence
is always zero or greater.

In our current case, z is just a scalar, but we’ll treat it as
a (boldface) vector to highlight that in general, this
works for any kind of latent variable. We’ll need that
when we reuse this decomposition in later lectures.

Inp(x|0) =L(q,0) +KL(q,p)
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Here is the proof that this decomposition holds. It’s
easiest to work backwards. We fill in our statement of
the L and KL terms, and rewrite to show that they’re
equivalent to the log likelihood.

Inp(x|6)

Inp(x|0)

L(q,0) KL(q,p)

This is the picture that allthis rewriting buys us. We
have the probability of our data under the optimal
model (top line) and the probability of our data under
our current model (middle line). And for any q,
whether it's any good or not, the latter is composed of
two terms.



Inp(x[0)=L(q,0) +KL(q,p)

L(q,0) KL(q,p)

bad choice of g
L(q.0) KL(q,p)

good choice of q
L(q,0) KL(q,p)

Note that this is just a way of writing down the
probability density of our data given the parameters
(with the hidden variable z marginalized out). The sum
of these two terms is always the same. The closer p is
to g, the smaller the KL term gets.

In short L is a lower bound in the quantity that we're
interested in. The KL term tells us how good of a lower
bound this is.

E: Choose q to minimize the KL term. Keep 0 fixed.

M: Choose 6 to maximize the L term. Keep g fixed.

With this decomposition, it turns out that we can state
the EM algorithm very simply.

E: Choose g so that KL(q, p) = 0. Keep 6 fixed.

L(q,0) KL(q,p)

L(q.0)

Here’s what that looks like. Note that our objective is to
maximize the sum of these two bars, so it may at first
seem counter-intuitive to minimize something.
However, the decomposition holds for any q, so if we
re-select g, we don’t change the total length. We just
change the propotion that the q term takes.

E: Choose g so that KL(q, p) = 0. Keep 6 fixed.
L(q,6) KL(q,p)

L(q.0)

responsibilities (giyer,

the model parameters)

q(zlp) = p(z|x, ©)

Nix i,

NixTy;, W NGy Tharc

In our specific setting, the expectation step is easy to
work out. The KL divergence is minimal when q is a
perfect approximation to p. Since we keep theta as a
constant, we can just work out the conditional
probabilities on z given the parameters theta

The result is simply the responsibilites we already
worked out in slide 55.



M: Choose 6 to maximise L. keep q fixed.

L(q,0)

L(q,0) KL(q,p)

'
covxv?-"f)ev\ce'

In the M step, we change the parameters theta. This
means our q function is no longer a perfect
approximation to the conditional probability on z
under p, so the KL divergence is no longer zero.
However, since we chose theta explicitly to increase L,
we know that L increases, and so does the sum of L and
the KL divergence.

Note that if we do this, we can be sure that the
algorithm converges. The E step keeps the total length
of the bar the same, and the M step increases it. In
other words, the algorithm can only move uphill in the
surface of log likelihood. There’s no guarantee that it’ll
find the global optimum, but we know that it’ll
converge

M: Choose 6 to maximise L. keep ¢ fixed.

p(x,z|0)
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responsibilities likelihood

Let’s look at what this step looks like for the one-
dimensional GMM. If we take the division out of the
logarihtm, it becomes a term that does not contain
theta, so we can remove it from our objective.

The remainder is just a likelihood weighted by the
responsibilities we’ve just computed.

Note that the sum is now outside the logarithm. That
means we can work out an optimal solution for the
model parameters given the current q.
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If we take this criterion, and work out the maximum
likelihood, we find that for the mean and covariance we
we a weighted version of the maximum likelihood
objective for the normal distribution, woking them out
gives us the weighted versions of the maximum
likelihood estimators of the mean and the covariance.
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The weights should sum to one, so that part of our
optimization is actually a constrained optimization
problem. This gives us a good opportunity to practice
our Lagrange multipliers.

We define an L function that includes the constraints,
take it's derivative wrt to all its parameters (including
the multiplier alpha), and we set them equal to zero.
The result for the weights is an expression including
alpha, and the result for the lagrange multiplier
recovers the constraint, as it always does. Filling the
former into the latter shows us that alpha expresses
the total sum of responsibility weights over all
components and instances.



This means that the optimal weight for component 2 is
the amount of responsibility assigned to component 2,
as a proportion of the total.

M: Choose 6 to maximise L. keep ¢ fixed.

argmaxz q(z)Inp(x|z0)p(z]06)
o z

ﬂizz LN
x

1 .
Ly =— Z TYX
ni 4

Next lecture: hidden variable models with neural networks.

+

This week and the last, we’ve discussed a lot of
probability theory. With these tools in hand, we can go
back to our discussion on social impact, and try to
make it more precise.

Density Estimation

Social Impact 3




“The act of suspecting or targeting a person on the
basis of assumed characteristics or behavior of a [...]
group, rather than on individual suspicion.”

quote source: https://en.wikipedia.org/wiki/Racial_profiling i

Specifically, in this video, we’ll look at the problem of
profiling.

When we suspect people of a crime or target them for
investigation, based on their membership of a group
rather than based on their individual actions, that’s
called profiling.

Probably the most common form is racial profiling;
which is when the group in question is an ethnic or
racial group. Examples include black people being
more likely to be stopped by police, or Arabic people
being more likely to be checked at airports.

Other forms of profiling, such as gender or sexual
orientation profiling also exist in various contexts.

We saw an example of this in the first social impact
video: a prediction system (essentially using machine
learning) which predicted the risk of people in prison
re-offending when let out. This system, built by a
company called Northpointe, showed a strong racial
bias.

As we saw then, it’s not enough to just remove race as a
feature. So long as race or ethnicity can be predicted
from the features you do use, your model may be
inferring from race.

racial profiling
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POLICE RACIAL PROFILING OVERWHELMINGLY
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Profiling doesn;t just happen in automated systems.
And lest you think this is a typically American problem,
let’s look a little closer to home.

A few years ago, a Dutch hip-hop artist called Typhoon
was stopped by the police. The police admitted that the
combination of his skin colour and the fact that he
drove an expensive car played a part in the choice to
stop him. This caused a small stir in the Dutch media
and a nationwide discussion about racial profiling.

The main argument usually heard is “if it works, then it
is worth it.” That is, in some cases, we should accept a
certain amount of racism in our criminal procedures, if
it is in some way successful.

This statements hides a lot complexity: we're assuming
that such practices are successful, and we’re not
defining what being successful means in this context.
Our responsibility, as academics, is to unpack such
statements, and to make it more precise what is
actually being said. Let’s see if we can do that here.

We’ll focus on the supposed pros and cons of profiling
and on what it means for a profiling method to be
successful, regardless of whether it’s an algorithm or a
human doing the profiling.



drugs and race
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Since this is a sensitive subject, we’ll try to make our
case as precisely as possible, and focus on a specific
instance, where we have all the necessary data
available: illicit drug use in the US. The US has a
system in place to record race and ethnicity in crime
data. The categorization may be crude, but it'll suffice
for our purposes.

From these graphs, we see on the left that black people
engage in illicit drug use more than people of other
ethnicities, and that they are also arrested for it more
than people of other ethnicities. However, the rate of
use is only marginally higher than that of white people,
whereas the arrest rate can be as much as five times as
high as that for white people,

This points to one potential problem: racial profiling
may very easily lead to disproportionate effects like
those seen on the right. Even if there’s difference in the
proportion with which black people and white people
commit a particular crime, it’s very difficult to ensure
that the profiling somehow honors that proportion. But
we shouldn’t make the implicit assumption that that’s
the only problem. If the proportions of the two graphs
matched, would profiling then be justified? Is the
problem with profiling that that we’re not doing it
carefully enough, or is the problem that we’re doing it
atall?

We’ll look at some of the most common mistakes made
in reasoning about profiling, one by one.

sampling bias
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One problem with an automated system like that of
Northpointe is that there is a strong risk of data not
being sampled uniformly. If we start out with the arrest
rates that we see on the right, then a system that
predicts illicit drug use will see a lot more black drug
users than white ones. Given such a data distribution,
it’s not suprising that the system learns to associate
being black with a higher rate of drug use.

This is not because of any fundamental link between
race and drug use, but purely because the data is not
representative of the population. We have a sampling
bias.

It's a bit like the example of the damaged planes in



WWII we saw at the start of the fourth lecture: if we
assume a uniform distribution in the data, we will
conclude the wrong thing. In that case we weren’t
seeing the planes that didn’t come back. Here, we aren’t
seeing the white people that didn’t get arrested.

Note that it’s not just algrithms that suffer from this
problem. For instance, if we leave individual police
officers to decide when to stop and search somebody;,
they will likely rely on their own experience, and the
experience of a police officer is not uniform. There are
many factors affecting human decision making, but one
is that if they already arrest far more black than white
people, they are extremely likely to end up with the
same bias an algorithm would end up with.

So let’s imagine that this problem is somehow solved,
ande we get a perfectly representative dataset, with no
sampling bias. Are we then justified in racial profiling?

bias amplification

Figure 2:12 Past Month llicit Drug Use among
Persons Aged 12 or Older, by
Race/Ethnicity: 2002-2013
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You'd be forgiven for thinking that if a bias is present in
the data, that the model simply reproduces that bias. In
that case, given a dataset without sampling bias, we
would start with the minor discrepancies on the left,
and simply reproduce those. Our model would be
biased, but we could make the case that it is at least
reproducing biases present in society.

However, it’s a peculiar property of machine learning
models that they may actually amplify biases present in
the data. That means that even if we start with data
seen on the left, we may still end up with a predictor
that disproportionately predicts drug use for black
people.

An example of this effect is seen on the right. For an
image labeling tasks, the authors measured gender
ratios in the training set, for subsets of particular
nouns. For instances, for images containing both a wine
glass and a person, we see that the probability of
seeing a male or female person in the data is about
50/50, but in the predictions over a validation set, the
ratio shifts to 60/40.

It’s not entirely clear where this effect comes from. The
second paper quoted shows that it’s related to our
choice of inductive bias, so it’s a deep problem, that
gets to the heart of the problem of induction. Even the
Bayes’ optimal classifier can suffer from this problem.
For our current purposes it’s enough to remember, that
even if our input has biases that are representative,



there’s no guarantee that our output will.

It appears that this is a problem that may be
impossible to solve. But let’s imagine, for the sake of
arguments, that we somehow manage it. What if we get
a perfectly representative dataset with no sampling
bias, and we somehow ensure that our model doesn’t
amplify bias. Can we then do racial profiling?

prosecutor’s fallacy

Abusing conditional probability
p(black | drugs) vs. p(drugs | black)

The probability that a basketball
player is tall is different from the
probability that a tall person plays
basketball.

Much of racial profiling falls into the trap of the
prosecutor’s fallacy. In this case the probability that a
person uses illicit drugs, given that they’re black is very
slightly higher than the probability that they do so
given that they are white, so the police feel that they
are justified in using ethnicity as a feature for
predicting drug use (it “works”).

However, the probability that a person uses illicit drugs
given that they are black is still very much lower than
the probability of not using illicit drugs given that they
they are black. This probability is never considered.

As we see in the previous slide the rates are around
p(drugs|black) = 0.09 vs. p(~drugs|black) = 0.91. If the
police blindly stop only black people, they are
disadvantaging over 90% of the people they stop.

To help you understand, consider a more extreme
example of the prosecutor’s fallacy. Let’s imagine that
you're trying to find professional basketball players.
The probability that somebody is tall given that they
play professional basketball, p(tall| basketball) is
almost precisely 1. Thus, if you're looking for
professional basketball players, you are justified in
only asking tall people. However, the probability of
somebody playing professional basketball given that
they’re tall, is still extremely low. That means that if
you go around asking tall people whether they are
profesional basketball players, you’ll end bothering a
lot of people before you find your basketball player,
and probably annoying quite a few of them.



What if

the data is a fair representation of the population
and

the model doesn’t amplify bias

and

we've correctly used Bayes'rule?

So, have we now covered all our bases? We get a
dataset that is a fair representation, our model doesn’t
amplify biases, and we correctly use Bayes’ rule.

Can we then use the model to decide whether or not to
stop black people in the street?

The answer is still no.

At this point, we may be certain that our predictions
are accurate, and we have accurately estimated the
probability accurately that a particular black person
uses drugs illicitly.

However, the fact that those predictions are accurate
tells us nothing about whether the action of then
stopping the person will be effective, justified, or fair.
That all depends on what we are trying to achieve, and
what we consider a fair and just use of police power.
The accuracy of our predictions cannot help us
guarantee any of this.

predictions

actions

This is an extremely important distinction in the
responsible use of Al. There is a very fundamental
difference between making a prediction and taking
an action based on that prediction.

We can hammer away at our predictions until there’s
nothing left to improve about them, but none of that
will tell us anything about whether taking a particular
action is justified. How good a prediction is and how
good an action is are two entirely different questions,
answered in completely different ways.

= Google Translate 2 = Google Translate 2
encuisn ER— evaus o s
My friend is 2 doctor x My friend is a doctor x

Mi amigo es doctor Tranalatena are guncder spectc LEARN MORE

Mi amiga es doctora qunnn)
L)

Mi amigo es doctor mee)
)

Recall the Google translate example from the first
lecture. Given a gender neutral sentence in English, we
may get a prediction saying that with probability 70%
the word doctor should be translated as male in
Spanish and with probability 30% it should be
translated as female. There are almost certainly biases
in the data sampling, and there is likely to be some bias
amplification in the model, but in this case we can at
least define what it would mean for this probability to
be accurate. For this sentence, there are true
probabilities, whether frequentist or Bayesian, for how
the sentence should be translated. And we can imagine
an ideal model that gets those probabilities absolutely
right.



However, that tells us nothing about what we should do
with those probabilities. Getting a 70/30 probability
doesn’t mean we are justified in going for the highest
probability, or in sampling by the probabilities the
model suggests. Both of those options have positive
consequences, such as a user getting an accurate
translation, and negative consequences, such as a user
getting an accurate translation and the system
amplifying gender biases.

In this case, the best solution turned out to be a clever
interface design choice, rather than blindly sticking
with a single output.

cost imbalance

expected cost:
probability of misclassifiying ham x cost of misclassifying ham +

probability of misclassifying spam x cost misclassifying spam

[ 1
Preo\-‘.c&i.om action

This is related to the question of cost imbalance. We
may get good probabilities on whether an email is ham
or spam, but until we know the cost of misclassification
we don’t know which action to prefer (deleting the
email or putting it in the inbox). The expected cost
depends on how accurate our predictions are, but also
on which actions we decide to connect to each of the
predictions. This is an important point: cost imbalance
is not a property of a classifier in isolation: it'’s a
property of a classifier, inside a larger system that
takes actions. The cost imbalance for a system that
deletes spam is very different from the cost imbalance
in a system that moves spam to a junk folder.

Here, we should always be on the lookout for creative
solutions in how we use our predictions. Moving spam
to a junk folder instead of deleting it, showing users
multiple translations instead of just one, and so on. The
best ways of minimizing cost don’t come from
improving the model performance, but from rethinking
the system around it.

In questions of social impact, the cost of
misclassification is usually extremely hard to quantify.
If a hundred stop-and-searches lead to two cases of
contraband found, how do we weigh the benefit of the
contraband taken off the streets against the 98 stop-
and-searches of innocent individuals. If the stop-and-
search is done in a biased way, with all black people
being searched at least once in their lifetime and most
white people never being searched, then the stop-and-
search policy can easily have a very damaging effect on
how black people are view in society.

It’s very easy, and very dangerous to think that we can
easily quantify the cost of mistakes for systems like
these.



correlation and causation

A and B are correlated: | can predict A from B (and vice
versa)

A causes B: changing A causes a change in B (but not vice
versa.

Correlation does not imply causation.

No correlation without causation.

A large part of choosing the right action to take based
on a prediction, is separating correlation and
causation. A lot of social issues, in Al and elsewhere,
stem from confusions over correlation and causation,
so let’s take a cerful look at these two concepts.

Two observables, for instance, being black and using
illicit drugs are correlated, if knowing the value of one
can be used to predict the value of the other. It doesn’t
have to be a good prediction, it just has to be better
than it would be if we didn’t know the value of the first.

This doesn’t mean that the first causes the second. I
can from the smoke in my kitchen that my toast has
burned, and if somebody tells me that my toaster has
been on for half an hour, I can guess that there’s
probably smoke in my kitchen. Only one of these
causes the other. There are many technical definition of
what constitutes causaility, but in general we say that A
causes B if changing A causes a change in B. Turning off
the toaster removes the smoke from my kitchen, but
opening a window doesn’t stop my toast burning.

spurious correlations

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

source: https://www.tylervigen.com/spurious-correlations

When talking correlation, the first thing we need to be
on the lookout for is spurious correlations. According
to this data here, if we know the number of films
Nicolas Cage appeared in in a given year, we can
predict how many people will die by drowning in
swimming pools.

This is not because of any causal mechanism. Nicolas
Cage is not driven by drowning deaths, and people do
not decide to jump into their pools just because there
are more Nicolas Cage movies (whatever you think of
his recent career). It’s a spurious correlation. It looks
like a relation in the data, but because we have so few
examples for each, it’s possible to see such a relation by
random chance (especially if you check many different
potential relations).



wide and tall data Gathering more data can hurt or help you here.

few features The more features you have, the more likely it is that
one of them can be predicted from the other purely by
many features chance, and you will observe a correlation when there
g g isn’t any. If we see the target label as another feature,
g % this also tells us that using many features increases the
é z probability of overfitting: observing good predictions
£

on the training data without actually getting good
wide data performance. We can call this wide data.

tall data Adding instances has the opposite effect. The more

instances, the more sure we can be that observed
correlations are true and not spurious. We can call this
tall data.

Thus, if we are conservative with our features, and
liberal with our instances, we can be more confident
that any observed correlations are correct. The litmus
test is to state the correlations you think are true and
then to test them on new data. In life sciences, this is
done through replication studies, where more data is
gathered and the stated hypothesis from an existing
piece of research is evaluated be the exact same
experiment.

overfitting = spurious correlation In machine learning, we do this whenever we withhold

a test set.

This is essentially a way of guarding against spurious

correlations, or in other words, overfitting is just a
observed

data use to find correlations spurious correlation. The definition of a spurious

correlation is one that disappears when you gather
more data, so if our correlation is spurious, it should

witheId use to confirm correlations not be present in the withheld data.
ata

A good machine learning model finds only true
correlations and no spurious correlations. How to make

that distinction without access to the withheld data, is
the problem of induction.

no correlation without causation So if we rule out spurious correlations, what can we
say that we have learned when we observe a
correlation?

P °® If  see you have a runny nose, I can guess you have a

Y ® ™Y ) A\ /B cold. That doesn’t mean that having a runny nose
A B A B o causes colds. If I make the exam too difficult this year, it

C affects all grades, so somebody can predict from your
failing grade that other students are also likely to have
a failing grade. That doesn’t mean that you caused your
fellow student to fail. This is the cardinal rule of

statistics: correlation is not causation. It is one that

you’ve hopefully heard before.

There is another rule, that is just as important, and a



lot less famous. No correlation without causation. If
we observe a correlation and we’ve proved that it isn’t
spurious, there must be a causation somewhere.

Simplifying things slightly, these are the ways a
correlation can occur. If A and B are correlated then
either A causes B, B causes A, or there is some other
effect that causes both A and B (like me setting the
difficulty of the exam). A cause like C is called a
confounder.

It is important to note that C doesn’t have to be a single
simple cause. It could be a large network of many
related causes. In fact, causal graphs like these are
almost always simplifications of a more complex

actions and causality
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So let’s return to our example of illicit drug use in
America. We know that there’s a small correlation
between race and illicit drug use (even though there is
a far greater discrepancy in arrests). What is the causal
graph behind this correlation?

At the top we see what we can call the racist
interpretation. That is, racist in the literal sense: seeing
race as the fundamental cause of differences in
behaviour. Put simply, this interpretation assumes a
fundamental, biological difference in black people that
makes them more susceptible to drug addiction. Few
people hold such views explicitly these days, and there
is no scientific evidence for it. But it's important to
remember that this kind of thinking was much more
common not too long ago.

At the bottom, is a more modern view, backed by a
large amount of scientific evidence. Being black makes
you more likely to be poor, due to explicit or implicit
racism in society, and being poor makes you more
likely to come into contact with illicit drugs and makes
you less likely to be able to escape addiction.

There is a third effect, which I think is often
overlooked: poverty begets poverty. The less money
your parents have, the lower your own chances are to
escape poverty. Having to live in poverty means living
from paycheck to paycheck, never building up savings,
never building up resilience to sudden hardship, and
never being able to invest in the long term. This means
that on average, you are more likely to increase your
poverty than to decrease it.

The reason all this is relevant, is that for interventions
to be effective, they must be aligned to the underlying
causes. In the world above, racial profiling may actually
be effective (although it could still be unjust). However,
in the picture below, racial profiling actually increases
pressure on black people, pushing them further into
poverty. Even though the police feel like they’re
arresting more drug users, they are most likely
strengthening the blue feedback loop (or one similar to
it).



cost imbalance

expected cost:
probability of misclassifying guilty X cost misclassifying guilty +

probability of misclassifiying innocent x cost of misclassifying innocent
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If we ignore data bias, and assume a perfect predictor,
we still have to deal with the cost of misclassification.

Misclassifying a guilty person can feed into this blue
feedback loop. In the best case, it leads to
embarrassment and loss of time for the person being
searched. But there can also be more serious negative
consequences.

One subtle example is being found out for another
crime than the one you were suspected of, due to the
search. For instance, imagine that the if the predictor
classifies for driving a stolen car, and during the stop,
marijuana is found. This may at first seem like a win:
the more crimes caught, the better. However, the result
of doing this based on profiling is again that we are
feeding into the blue feedback loop.

There is a certain level of crime that we, as society
allow to pass undetected, because detecting it would
have too many negative consequences. It would cost
too much to detect more crime, or infringe too much on
the lives of the innocent.

This is true for any society anywhere, although every
society makes the tradeoff differently. However, if we
stop people because they are predicted, through
profiling, to be guilty crime X, and then arrest them for
crime Y, then we end up setting this level differently for
black people than for white people. Essentially, by
introducing a profiling algorithm for car theft, we are
lowering the probability that people get away with
marijuana possession, and we are lowering it further
for black people than for white people.

Causality plays a large role in setting the rules for what
is and isn’t fair. In law this is described as
differentiation, justly treating people differently
based on their attributes and discrimination, unjustly
treating people differently based on their attributes.

For instance, if we are hiring an actor to appear in in an
ad for shaving cream, we have a sound reason for
preferring a male actor over a female actor, all other
qualifications being the same. There is a clear,
common-sense causal connection between the
attribute of being male and being suitable for the role.

If we are hiring somebody to teach machine learning at
a university, preferring a male candidate over a female



one, all else being equal, is generally considered wrong,
and indeed illegal.

That is, differentiation is usually allowed, if and only if
there is an unambiguous causal link between the
sensitive attribute and job suitability.

So what if we:

- Sample a representative dataset,

- Prevent bias amplification,

- Apply Bayesian reasoning correctly,
- Carefully design sensible actions,

- Only follow causal patterns?

Can we then permit ourselves some profiling?

Let’s take one final look at our question, including
everything we've learned.

Say we somehow get a representative dataset, which is
difficult. We somehow prevent bias amplification,
which may be impossible. We apply Bayesian reasoning
correctly, which is possible, we carefully design
sensible actions based one some quantification of cost,
which is very difficult. And we take care to consider all
causal relations to avoid inadvertent costs and
feedback loops, which is difficult at best.

Imagine a world where we can do all this, and get it
right. Are we then justified in applying profiling?

Consequentialism: the consequences of our actions

determine how ethical our actions are.

What we have taken so far is a purely
consequentialist view. The consequences of our
actions are what matters. The more positive those
consequencesm the more ethical the system is, and
vice versa.
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Consider the famous trolley problem: there is a an out
of control trolley thundering down the tracks towards
five people, and you can throw a switch to divert it to
another track with one person on it. This illustrates
some of the pitfalls of consequentialist thinking.

The consequentialist conclusion is that throwing the
switch is the ethical choice. It saves five lives and
sacrifices one.



Now imagine a maverick doctor who decides that he
will kill one person, harvest their organs, and use them
to save five terminally ill people in need of transplants.
With two kidneys, two lungs and a heart he should
easily be able to find the patients to save.

From a consequentialist perspective, this is exactly the
same as the trolley problem. And yet, we can be certain
that many of the people who considered throwing the
switch in the trolley problem to be the ethical choice,
would not be so certain now.

Without taking a position ourselves, what is that makes
the difference between these two situations? Why is
the second so much less agreeable to many people?

Consequentialism: the consequences of our actions determine
how ethical our actions are.

Deontological ethics: moral principles determine how ethical
actions are.

Kant: “So act as to treat humanity, whether in thine own person
or in that of any other, always as an end, never merely as a
means.

The ethics of dignity. John Laird, 1940

Without going into details, we can say that some
actions are in themselves more morally disagreeable
than others, regardless of the consequences. This
quality, whatever it is, leads to deontological ethics.
Ethical reasoning based on fundamental moral codes,
regardless of consequences.

Such codes are often tied to religion and other aspects
of culture, but not always. Kant’s categorical imperative
is an example of a rule that is not explicitly derived
from some religious or cultural authority. Broadly, it
states that to take an ethical action, you should only
follow a rule if you would also accept it as a universal
rule, applying to all.

One aspect that crops up in deontological ethics is that
of human dignity. This may be an explanation for the
discrepancy between the trolley and the doctor.
Flipping the switch is a brief action made under time
pressure. This is in contrast to the premeditated
murder and organ harvesting of an innocent person.
The latter seems somehow a deeper violation of the
dignity of the person, and therefore a more serious
violation of ethics.

Kant, again, considered this a foundational principle of
basic morality, to treat another human being as a
means to an end, rather than as an end in themselves is
to violate their dignity.

Consider the difference between killing a human being
in order to eat them and killing a human being to get
revenge for adultery. From a consequentialist
perspective, the first has perhaps the greater utility: in
both cases, someone dies, but in one of them we get a
meal out of it. From the deontological perspective of
human dignity, the first is the greater sin. When we
cannibalize someone, we treat them as a means to
filling our stomach, without regard for their humanity.
When we kill out of revenge, even though it may be
wrong or disproportional, we treat the other as a
human being and our action is directly related to one of
theirs.



It is fundamentally unfair to hold an individual responsible for
the the actions of others that share their attributes.

Everybody has the right to to be judged on their own actions.
hold responsible:
subject to a traffic stop, not give parole, search at an airport, not

give a credit card, make it more difficult to get a job, subject to
financial auditing.

fundamental rights

To bring this back to our example, we can now say that
our analysis of racial profiling is entirely
consequentialist. We have been judging the cost of our
actions and trying to maximize it by building the
correct kind of system. It is perhaps not surprising that
a lot of Al ethics follows this kind of framework, since
optimizing quantities is what we machine learning
researchers do best.

The deontological view, specifically the one focused on
human dignity, gives us a completely different
perspective on the problem. One that makes the
correctness and efficacy of the system almost entirely
irrelevant. From this perspective it is fundamentally
unjust to hold a person responsible for the actions of
another. If we are to be judged, it should be on our own
actions, rather than on the actions of another.

To prevent crime from being committed, or to make
some reparations after a crime is committed, some
people need to suffer negative consequences: this
ranges from being subjected to traffic stops to paying a
fine. A just system only subjects those people to these
negative consequences, that committed or planned to
commit the crime. From this perspective, racial
profiling, even if we avoided all the myriad pitfalls, is
still a fundamental violation of dignity. It treats the
time and dignity of Black people as a means to an end,
trading it off against some other desirable property, in
this case, a reduction of crime.

While human dignity is often posed as hard constraint:
something that should never be violated, in many cases
this cannot be reasonably achieved. For instance, any
justice system faces the possibility of convicting
innocent people for the crimes of others. The only way
to avoid this is to convict no one, removing the justice
system entirely. So, we allow some violation of human
dignity in order that we can punish the guilty.

However, if we do have to suffer a certain probability
that our dignity will be violated, we can at least ask
that such violations are doled out uniformly.

Dutch Rutte government resigns
over child welfare fraud scandal

Most of my examples in this video were from a few
years ago, and our community began seriously working
on these probably around the time the ProPublica
piece about the Northpointe system broke, almost five
years ago now. You may expect, that after all that time,
and so much scrutiny, we have learned our lesson, and
that at least such gross mistakes as the Northpointe
scandal won’t be made again.

Less than a month ago as I record this, however, the
Dutch government fell. In a parliamentary investigation
at the end of last year, it was found that the tax service
had wrongly accused an estimated 26 000 families of
fraudulent claims for childcare benefits, often requiring
them to pav back tens of thousand of euros. and driving



them into financial difficulty.

There were many factors at play, but an important
problem that emerged was the use of what were called
“self-learning systems.” In other words, machine
learning. One of these, the risk-indicator, candidate lists
for people to be checked for fraud. The features for this
classification included, among other things the
nationality of the subject (Dutch/non-Dutch). The
system was a complete black box, and investigators
had no insight into why people were marked as high
risk. People with a risk level above 0.8 were
automatically investigated, making the decision to
investigate an autonomous one, made by the system
without human intervention.

https://www.groene.nl/artikel/opening-the-black-
box

https://autoriteitpersoonsgegevens.nl/sites/
default/files/atoms/files/
onderzoek_belastingdienst_kinderopvangtoeslag.p
df

mlcourse@peterbloem.nl

One of the biggest criticisms of the tax service in the
child welfare scandal is how few of the people involved
understood the use of algorithms in general, and the
details of the algorithms they were using specifically.

This hopefully goes some way towards explaining why
we've felt it necessary to discuss social impact in these
lectures. We're teaching you how to build complex
systems, and history has shown again and again that
policy makers and project managers are happy to
deploy these in critical settings without fully
understanding the consequences. If those responsible
for building them, that is you and me, don’t have the
insight and the ability required to communicate the
potential harmful social impacts of these technologies,
then what chance does anybody else have?

image source: https://www.trouw.nl/nieuws/ouders-
bij-debat-toeslagenaffaire-mijn-leven-is-naar-de-
klote~bc3f3e52/



