We saw decision trees for the first time in the very first
lectures, and we’ve seen them a few more times since. But
we never actually discussed how to train them. In this
lecture, we’ll look at the details of that.

|section|Decision trees|
|video|https://www.youtube.com/embed/1]xBgetslISY|

Trees and ensembles

Decision trees

gradient boosted decision trees Decision trees by themselves are not a very popular model

in modern machine learning. They are quick to train, but
they can be prone to overfitting, and regularizing them
hurts performance a lot.
.D.A:s: . 0’}‘0 . ..zg. . The main setting in which trees are used are in ensembles,
i m =3 °..'.: hicad m 3 :.:.g:?- i m a model that combines a lot of other models in order to
‘ ‘ ‘ arrive at a prediction. Spefically, the method of gradient
boosted decision trees, is a very popular approach for
achieving high performance with relatively little effort. In
this lecture, we will build this picture up step by step: we
will first discuss decision and regression trees in the first
v : two videos, and then different ways to create model
ensembles in the last two videos.
Decision trees in their simplest form work on data with
rating genre aspectratio outcome categorical features. We'll use this dataset as a running
PG scifi 1.85:1 overlooked example: each instance (row) is a movie, and the target
drama 1.85:1 won class is to predict whether a movie won an oscar, was
1851 nominated merely nominated, or overlooked.
R drama 1.85:1 nominated
drama 2.39:1 nominated

2.39:1 nominated

R 1.85:1 won
PG drama 2.39:1 won
PG scifi 1.85:1 overlooked

scifi 2.39:1 overlooked

http://mlvu.github.io
https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/

decision tree This is what a trained decision tree might look like. Each
internal node asks the value of a particular feature, and
sends the instance to one of its children dependending on
the value of that feature.
drama scifi
| overlooked
PG R 1.85:1 2.39:1
ov nom won nom won
droma 2301 | 2 To classifiy an instance by this decision tree, we start at the
root (the node at the top), and work our way down by
answering the question in the node.
If we see a movie with a G rating, the genre drama, and a
drama 2.39:1 aspect ratio, we follow the tree to the highlighted leaf
| node and label the example as won (i.e we predict that this
movie will win an oscar).
2.39:1 So, given the space of all possible trees, how do we find one
\ that fits our data well?
won

standard algorithm (ID3, C45)

start with an empty tree
extend step by step, adding internal nodes
greedy (no backtracking)

choose the split that creates the least uniform distribution
over the class labels in the resulting segmentation

This is how the basic algorithm is set up. We start with an
empty tree, and add one node at a time. We don’t backtrack:
once a node is added it stays in the tree, and we keep
adding nodes until we can add no more.

The node we add at any given moment, is the node that
creates the least uniform distribution on the classes, after
the split. Let’s look at an example to see how this works.

23,12, 11

PG

rating

ooonw

oooonw

ooonw

genre

d s
oonnww | oon
oonwww ooon

oonnwww oonn

Here, we’ve plotted our data for two features (ignoring the
third for the moment). We're choosing the root node of our

tree

23,12, 11

ooonw

oonnww

oooonw

oonwww

ooon

ooonw

oonnwww

oonn

If we split by rating, we get three segments (the three rows
on the right). Tallying up the proportions of each class, we
see that the proportions of the segments are not that
different from the proportions in the whole. In other words,
knowing the value of the rating doesn’t doesn;doesn’t
change the information we have about the class very much.

23,12, 11

d s
‘ \ PG
o o

10,3,3 6,58 7,4,0

ooonw

oooonw

ooonw

oonnww

oonwww

oonnwww

ooon

oonn

On the other hand, if we split by genre we see that the
resulting distributions are much more different: knowing
that a movie has the genre scifi, allows us to say with near
certainty that it won’t win an oscar.

23,12, 11

2,2,2 2,1,3 2,2,3

oonnww

oonwww

oonnwww

If we split by genre and then by rating, we get this
segmentation of the instance space. Each of these regions,
corresponding to a leaf node is called a segment.

We choose a separate split for each node we extend. For
each of the three children of the genre node, we may choose
different features to split on.

rating?

note 2

There’s no use (with categorical features) in splitting on the
same feature twice. Every instance that encounters the
lower genre node will have the yellow genre, so we’re not
splitting the data at all.

stop conditions

When the maximum depth has been reached.
output label: majority class

When all feature values are the same
output label: majority class

When all class values are the same
output label: left over class

The maximum depth is an optional hyperparameter. We can
also train without a maximum depth and rely only on the
other two stop conditions.

how do we define “uniformity”

In order to make this into a proper algorithm we need to
make this more precise. The best feature to split on is the
one that creates (averaged over all child nodes) the most
non-uniform class distribution in the resulting segment.

How do we measure the non-uniformity of a distribution?
It's straightforward for two classes (the further from 50/50
the less uniform), but for more than two classes, it’s not so
clear cut. Here we see two distributions. In the first, the
proportion of the red class is bigger than in the second, but
in the second the remainder is divided up between blue and
orange in a more non uniform way. Which of these two

distributions is less uniform?

p(X): data source

H(p) =) p(IL(x)

xeX

== p(logp(x)

xeX

To answer this, we need to look back to the first probability
lecture, where we encountered Entropy.

The more uniform our distribution is (the more unsure we
are) the higher the entropy. This kind of uniformity over the
class distribution is what we are trying to achieve in our
splits.

a b cd ab cd
H(p) = 2 bits H(p) = 1.75 bits
So we can use entropy to establish how uneven a class
distribution is, and the more uneven, the better we like the
23,12, 11 split. But to evaluate this split here, we need to look at four

different distributions: the three after the split and the one
before (remember, we are evaluating all possible splits over
the whole tree, so the incoming distribution may differ
between candidates).

conditional entropy

p(Outcome = won | Genre = drama)

HOIG=d)=— 3 plold)logp(o]d)

o€{o,n,w}

H(O|G)=EgH(O|G=g)=) p(gH(O|G=09)
9

To apply this to the multiple children that a split creates, we
can use conditional entropy. Conditional entropy is just
the entropy of a conditional distribution, summed over all
values of the conditional, weighted by the marginal
probability of that value.

information gain of G

The information gain measures how much knowing the
value of G decreases the entropy of O (i.e. increases what we
know about 0).

$:23,12,11

d s
\
[l o
5:10,3,3 S4:6,5,8 Ss:7,4,0
_ ISi]
Is(G)=H(S)—) s

In practice that gives us this formula, for the information
gain of a split. If the set of instances before the splitis S, and
the split gives us subsets S;, the information gain is the
entropy of S minus the sum of the entropies of the split sets,
each weighted by the proportion of instances of S contained
in Si.

When we compute the entropy of a set like S, we just use
the relative frequencies to estimate the probabilities. For
instance, we estimate the probability of the red class in S as
23/(23+12+11).

start with a single unlabeled leaf
loop until no unlabeled leaves:
for each unlabeled leaf | with segment S:
if stop condition: label majority class of S

else: split | on feature F with highest gain Is(F)

Trees and ensembles

Numeric features and targets

|section|Numeric features and targets|
|video|https://www.youtube.com/embed/y6pHc1iB6a0|

numeric features

split at threshold t

00 0 W o onwnn nno w

$=6,54

S6=5,0,1 Sa=1,53

If our dataset contains numeric features, we can deal with
this by choosing a threshold t. The node splitting on a
numeric features splits the segment in two: the instance for
which the feature is lower than t go to one child, and the
instances for which the features is higher go to the other.

To compute the optimal threshold we only need to look at
numeric values halfway between two instances with a
different class. We compute the information gain for each
and choose the threshold which provides the highest
information gain.

» male
6.0 & female

P
o oo

body mass (kg)

-
o

male female male female

We saw a classifier with numeric features in the opening
lecture.

http://mlvu.github.io

body mass (kg)

1.9

2.0 2.1 2.2 23 2.4
flipper length (dm)

When training an actual decision tree on these two numeric
features, we saw quite a complex decision boundary
emerge.

This is possible with only two features because with
numeric features it does make sense to split twice on the
same feature; we just have to split on a different threshold
each time.

overfitting

Accuracy

0.75

07

065

06

055

05

On training data ——
On test data -——

30 40 50 60 70 80 90 100
Size of tree (number of nodes)

source: Machine Learning, Tom Mitchell

Which brings us to the problem of overfitting. The larger
the tree grows, the more likely it is to overfit the data. For
this plot, the size of the tree is limited to a particular
maximum. As the maximum grows, the training accuracy
increases, but the test accuracy decreases. A clear sign that
the model is overfitting.

Source: Machine Learning, Tom Mitchell

To reduce overfitting, we can prune a tree.

After training the full tree, we work backwards from the
leaves. For each leaf, we check (on withheld data) whether
the tree classifier better with the leaf or without. If it works
better without, we remove the node.We keep pruning
leaves until the performance stops improving.

T

»

using validation data

for hyperparameter selection

for controlling search

only for final testing

»

It’s important to note that when we use a validation set to
guide search, that we are using validation data to select our
model. This means that if we are also using a validation set,
for instance to select whether we’ll use a kNN classifier or a
decision tree, the pruning should happen on a withheld part
of the training data, and not on the same validation data
that we use to do our hyperparameter selection.

To see why, imagine what happens when we train our final
model (supposing that we've selected a decision tree).
During training, we can’t use the test set to do our pruning.
We can only see the test set when we’ve decided what our
final model is going to be. The first train/validation split
should simulate this,situation, so we can’t use the orange
validation set for controlling search.

This also goes for early stopping in neural networks.

PG

regression trees

rating genre

scifi

drama

drama

drama

drama

scifi

aspect ratio
1.85:1
1.85:1
1.85:1
1.85:1
2.39:1
2.39:1
1.85:1
2.39:1

1.85:1

box office
$50M
$64m
$172mM
$74m
$0.4M
$62M
$4m
$23m

$21M

We've seen classification trees that use numerical features,
but what if the target label is numerical? In this case, the
model is called a regression tree.

how do we label the leaves?

d s
d &N
44 353 7.3

Si=1{72,56,4} Sa=(59,41,6} S={3,18,1}

We can label the leaves with the mean or the median of the
training instances in the resulting segment.

what do we use instead of entropy?

$={72,56,4,59,41,6,3,18, 1}

d s
\
o ‘ o

Sr=1{72,56,4} Sq={59,41,6} S;=1{3,18,1}

IS
S|

Var(S;)

Is(V) = Var(S) —)

We can’t compute entropy over the target values because
most likely, they’ll all be different. However variance
measures a very similar property: the bigger the spread in
the set of output labels, the less certain we are about what
the value of the leaf node should be. The best split results in
a large reduction of average variance over the created
segments.

105

100

95

90 4

85

80 1

150 160 170 180 190

As we saw in the first lecture, here’s what a regression tree
looks like over one numeric feature.

2015/11/

And here’s what it looks like for two numeric features.

source: http://healthcare-economist.com/2015/11/16/
what-are-regression-trees/

generalization hierarchy

constant function

regression/decision
stump

full-depth tree

high bias,

low variance,
underfitting
[} ®

low bias,

T high variance,

overfitting

Tree models are a classic example of a model class that
provides a generalization hierarchy. At one end, the
model class provides both very simple, low capacity models
like constant models, which output just one value for all
instances (i.e. a tree without splits) and stumps, models
that make just one split. These are low capacity models
with high bias and low variance, that generalize a lot.

At the other end are full-depth tree models, which are very
likely to memorise irrelevant details of the data, and overfit
alot.

Single decision trees are not very popular any more. To
make them effective, we need to train many of them and
combine them into a single model. These are called decision
or regression forests, and they’re an example of a model
ensemble, which we’ll discuss in the next part.

http://healthcare-economist.com/2015/11/16/what-are-regression-trees/

Trees and ensembles

Ensembling

Ensembling is the business of combining multiple models
into one. The hope is that this gives you a model that is
more than the sum of its parts.

|section|Ensembling|
|video|https://www.youtube.com/embed/9ikKZYxsfbg|

Combining multiple models into a more
powerful model: an ensemble.

Combine predictions by :

- majority vote (classification)

- average (regression)

- weight by confidence, validation accuracy

- stacking

Your collection of models is called the ensemble. In the
simplest form of ensembling, each model in the ensemble
can be trained in isolation as you would normally train it.

After you train a bunch of separate models, you need to
somehow combine their predictions. The simplest
approach in classification is to take a majority vote among
the ensemble. The simplest approach in regression is to
average the outputs. You can also take a weighted vote,
perhaps giving greater weight to the predictions of models
that have greater confidence, or models that perform better
on a held out validation set.

A more complex approach is stacking.

http://mlvu.github.io

models on. These could be any three models. For instance,

height age the three different models we saw in the first lecture, three

181 % m m m : neural networks, with different initializations, or three kNN

181 50 m m f

166 P § f i f models with different values of k. Each of them gives us a

171 38 f m f f prediction for every instance in our dataset.

152 36 f f m m

156 40 f m f f

167 40 f Ms: f My: f Ms: f

170 45 m m f m

178 50 m m m m

191 50 m m f f

166 38 f f m m

164 42 f f m f

178 4 m m m m o

features themselves, for another classifier. The simplest way

height age Mi M Ms to think of this is as adding these predictions to our dataset

181 46 mm f m as columns.

181 50 m f f m

166 44 ffff We then train a new model, called a combiner, on this new,

171 38 m f f f . .

15 BT extended data. The combiner can choose to how to combine

156 0 m f f f the “expert advice” of the original models, and it can even

167 40 fert use the original features to learn which expert to listen to in

170 45 m f mm

178 50 mm m m which part of the feature space.

191 50 m f fm

166 383 f mmf

164 2 fmff

178 a4 m m m m "

— i general‘ the combinerisa Simple, low-variance model

like a logistic regression.

combiner: usually logistic regression If we use stacking in combination with differentiable
If NN are used for the ensemble, the whole thing becomes models like neural nets, then the stacked model is also fully
one big neural network. differentiable, and can be finetuned end-to-end by
We can even refine the whol ble end- d using
’ backpropagation.
[com

bias and variance

Low Variance High Variance

Low Bias

High Bias

image source: reading)

That is all very ad-hoc. To get a better handle on exactly
what we’re trying to achieve with ensembling, we need to
look back to bias and variance.

Here is a little visual reminder.

If we have many darts hitting close together, but far away
from the bulls-eye, we have high bias. If the darts are spread
out, but their average is the bulls-eye, we have high
variance. It's important to remember that in this analogy
sampling a dataset and training a model together counts as
one dart. To get a second dart, we need a new dataset to
train a new model on. That’s not usually a luxury we have,
so normally we can’t be exactly sure whether our error is
due to high bias or high variance, but with tricks like
resampling the data, we can often get a pretty good idea.

image source: http://scott.fortmann-roe.com/docs/
BiasVariance.html

aka. an unstable learner

High Variance 100

85
80
150 160 170 180 190

3000

We’ll start with learners, a model together with its search
algorithm, that have high variance. We also call these
unstable learners. These may get a good performance, but
slight perturbations in the data can throw that performance
off.

These are the kinds of models that tend to show overfitting,
like kNN regression with a low k values, or a regression tree
with no regularization. Bias and variance are only precisely
defined for regression problems, but the basic intuition
carries over to classification. An unstable learner is one that
tends to overfit.

bootstrapping

Sample, with replacement, a dataset of the same size as the
whole dataset.

On average, about 63.2% of the dataset will be included. The rest will be duplicated instances.

Each bootstrapped sample lets you repeat your
experiment.

Note that some classifiers will respond poorly to presence
of duplicate instances.

Better than cross validation for small datasets.

In lecture Methodology 2, we saw a method for simulating
the sampling of multiple datasets form the source of our
original data: bootstrapping. We can use bootstrapping
both to get an idea of our bias/variance tradeoff and as a
way to help us build an ensemble.

Before we do that, however, lets’ see why bootstrapping
works so well. It's more than just an intuitive trick. We can
make precise exactly how it approximates our data
distribution.

http://scott.fortmann-roe.com/docs/BiasVariance.html

empirical distribution

To make this clear, we’ll imagine that we’re sampling single

scalars from a normal distribution.
probability density
0.75 | In this case, we can look at the cumulative density
0.50] function (CDF). This tells us the probability of sampling a
025 | point below x. Note that this function returns a probability,
000 i) N not a density. It always groes from 0 to 1 over the domain of
Lo cumulative density P(X <x) the probability distribution. Both the cumulative density
function and the probability desnity function uniquely
0.5 determine the probability distribution.
0.0 T T T T T T T
-30 -25 -20 -15 -1.0 -05 0.0 0.5 1.0
If we sample 5 points from the original normal distribution,
08 probability density and then re-sample one point from that dataset, we are
064 essentially sampling from the green CDFE. This is called the
041 empirical distribution: the distribution we get by
0.2 resampling one point in our dataset.
0.0 ™ -« ™ ™ ™ —-
cumulative density P(X < x)
1.00
0.75 1
0.50 1
0.25
0.00 ™ ™ N T T T T T T
-3.0 =25 -2.0 -15 -1.0 -0.5 0.0 0.5 1.0
If we increase the size of the original data (to 50 points), we
. probability density see that the empirical CDF becomes a better approximation
064 of the true CDF
0.4
0.2
0.0 — T o T T
cumulative density P(X < x)
1.004
0.751
0.50
0.25 1
0.00 ™ ™ T T T T T T T
-3.0 =25 -2.0 =15 -1.0 -0.5 0.0 0.5 1.0

0.8

0.4+

0.2+

probability density

0.0

1.004

0.75 4

0.50

0.25 4

cumulative density P(X < x)

At 500 points, the empirical CDF and the original CDF are
almost indistinguishable. This is why bootstrapping is often
preferred over other resampling methods like cross
validation. In this was we can show that a bootstrapped
sample from a large dataset mimics the original data
distribution.

This can help us to measure the bias and variance of a
learner. It can also help us to build an ensemble.

bagging: bootstrap aggreggating

- resample k datasets, and train k models

This collection is our ensemble

- The ensemble classifies by majority vote.

For class probabilities, use the relative frequency among the votes.

This is called bootstrap aggregating, or bagging for short.
We don’t change the way we train the models in our
ensemble, we just resample the data by bootstrapping.

This is most often done with classifiers. In that case, after
the ensemble is trained, we simply take a majority vote to
get the ensemble prediction. If we want class probabilities,
we can use the relative frequencies of each class among the
predictions.

Here’s a simple example. We train a set of linear classifiers
on bootstrap samples of our data. Each produces a slightly
different linear decision boundary (indicates by a dotted
line). We now build an ensemble that looks at what each of
these classifiers says, and picks the majority class among
those predictions. This gives us a piecewise linear decision
boundary: every time two decision boundaries in the
ensemble cross, the majority changes. So long as they don’t
cross, we end up following one of the original linear
decision boundaries.

source: adapted from Machine Learning by Peter Flach,
figure 11.1

random forests

Bagging with decision trees.

Subsample the data and the features for each model in the
ensemble.

Reduces variance, few hyperparameters, easy to parallelise.

No reduction of bias.

One simple instantiation of bagging is the random forest.
Here, we train a boostrapped ensemble of decision trees
and for each we subsample both the instances, and the
features we include (both the rowas and the columns of the
data matrix).

ensembling & bagging

Used in production (and competitions) to achieve extra
performance on top of a particular model.

Rarely used in research. We know we can improve any
model by boosting.

But it doesn't say anything about the model itself.
Can be expensive for big models. Ensembling with large
deep learning models is rare in production.

Still happens in (Kaggle) competitions.

Bagging reduces variance, what about reducing bias?

Trees and ensembles

Boosting

|section|Boosting|
|video|https://www.youtube.com/embed/mSLRpkynW9Y|

http://mlvu.github.io

the hypothesis boosting question

s000
4000
3000
2000
1000

o

-1000

2000

3000

regression/decision q
stump
!

44 353 7.3

High Bias

In the previous video, we saw the ensembling method of
bagging in action.

Bagging helps for models with high variance and low bias
(models that tend to overfit). If we have the opposite, a
learner with high bias and low variance, can we achieve the
same? This is the hypothesis boosting question , where
hypothesis is a synonym for a learner or model. Is there an
ensembling method that allows us to create a series of
models from a family with high bias, like linear models or
decision stumps, and to create an ensemble that together
has low bias (possibly at the expense of a higher variance).

In other words, can we turn an underfitting model into
an overfitting model by ensembling? Can we, for
instance, put lots of linear classifiers together to draw
complex, highly nonlinear shapes.

boosting

w height age class
1 181 46 male
1 181 50 male
1 166 44 female
1 171 38 female
1 152 36 female
1 156 40 female
1 167 40 female
1 170 45 male
1 178 50 male
1 191 50 male
1 166 38 female
1 164 42 female
1 178 44 male *

The key to achieve this is to train a series of models, one
after the other. Contrast this with bagging, where the
models could be trained in parallel. The idea of boosting is
that in each subsequent model, we look at what the
previous models did to change what our next model is
going to do. Specifically, we look at which instances the
previous models got wrong.

Most boosting methods work by adding a weight to each
instance in the data.

For each new model, we lower the weights of the points that
the previous models got right, and increase the weight of
the points that the previous models got wrong. We then
train the next model to focus on this reweighed version of
the data.

train some classifier mo
for t from 1 to k:

Mea(x) = mo +aimi(x) + ... +acime(x)

ourensemble so far

increase w for instances misclassified by M

normalise weights

train m; on reweighted data, assign m: a weight at
the better m,, the higher a,

M is our final model.

Here is a generic boosting algorithm. The idea is that we
train an ensemble of k classifiers. We start with a single
model mo, and we add a classifier to the ensemble one at a
time. At each step, we see how the current ensemble does,
check which instances it gets wrong, and train the next
model to focus on those (by increasing their weight). We
then assign the new classifier m. a weight at which
determined how big a role it plays in the ensemble, and we
add it. At each step t the classification the ensemble makes
is a weighted sum over all the classifiers we’ve trained so
far.

To turn this idea into a proper algorithm, we need to make a
few choices. For instance:

- How do we assign the weights to the dataset based on the
current ensemble performance? We know that mistakes
should lead to higher weights, but what function exactly
should we use?

- How do we train a model on weighted data?

Once we've trained a model, how much should its weight
ar in the ensemble be? It makes sens to make the weight
higher if the model performs better, but what exactly
should the function be?

training on weighted data

Weighted loss function:

loss(0) = Zwi(fo (x:) — ti)?

Or, resample your data, by the weights.

wi determines how likely x;is to end up in the resampled data.

Let’s start with this question: how do we train on a
weighted dataset? If we have a loss function, we can just
make the sum over the loss of each instance a weighted
sum. We saw examples of weighted maximum likelihood
loss in the lecture on density estimation.

If our model isn’t trained by an explicit loss function, like
for instance the tree models we saw in the first two parts of
this lecture, we can instead resample the dataset, and
make the instance with higher weights more likely to be
sampled.

You can think of this as a kind of weighted bootstrapping.

AdaBoost

Weak learners m: output -1 for Neg, 1 for Pos.
target values y; are also -1 and 1

Me1(x) = mo +a1mi(x) + ... + acimea(x)
outputs a value between -se and =, sign of the output s the class.

Mi(x) = Me1(x) + aimi(x)

= exp (—YiM¢(x1))

=X

i

Next, we need to decide how to set the instance weights wi
and how to set the model weights a:.

We'll first take a look at AdaBoost (which stands for
adaptive boosting), which is a principled derivation for how
to set these.

We assume we’ve already trained the ensemble up to model
m1, giving us ensemble model M:.1. We now need to make
two choices: which model m: to choose (or what loss to
minimize when training this model) and which model
weight a: to assign it.

To do so, we first define the error (aka the loss) for the
ensemble at step t, and then choose m: and a: to minimize
this loss. This is a slightly unusual loss, compared to what
we've seen so far. We assume that the ensemble produces a
real value (anywhere between negative and positive
infinity) and that its sign corresponds to the predicted class.

We then multiply this by the true sign yi to get a value that
is large and positive if the model assign the correct sign and

avalue that is large in magnitude. The loss is the
exponential of the negative of this value. If the ensemble
gets the class right, it ends up to the left in the above graph,
and if it gets it wrong it end up to the right. We sum this loss
over all instances to get the total loss at time t.

From this loss we can derive an analytical answer to our
questions of what the new instance weights should be and
what the model weight should be.

— e—yth(Xi)
e_yi(Mtfl(xi)‘Fatmt(xi))
— e*ythfl(xi) e*Hialml(Xi)

— Wiefyiatmt(m)

We can rewrite the per-instance loss to separate the error
cause by the ensemble so far, and the loss caused by our
choice of model m:. The first is a constant (since the
ensemble up to m.1 has already been chosen), which
becomes the weight w; of instance xi.

AdaBoost: choosing m

choose m¢ to minimize

:Zwie*yia‘mx(xi)
i
= E wie ¢+ E wie®t

correct incorrect <= :
according to m,

=e % E wi + et E wi

correct incorrect
=e "W, +e*W;
— W, +e* W,
= (W, + W) + (e2% —)W,

For the total loss, we can split the sum into the instance that
are correctly classified and the instances that are
incorrectly classified by the new classifier m:. This means
the exponents become constants in the sum and can be
move to the front.

Line five is not an equal function, but minimising line four is
the same as minimising line 5. This follows by multiplying
the whole quantity to be minimized by the constant exp(-
ai). The result is that the multiplier of the first term
becomes 1 and the multiplier of the second term becomes
exp(2ai)

In the last line, all the greyed out parts are constant with
respect to m:: Wc and Wi each depend on which classifier
we choose, but their sum is just the sum of all the weights
provided by the ensemble so far.

In the last line, we add Wi to the first term and subtract it
from the second.

The take-away here is that choosing m: to minimize the

error Ey, consists of just minimising the sum of the weights
of the instances misclassified by m..

AdaBoost: choosing a To choose a;, we just compute the derivative of the error

with respect to to ay, set it to zero and solve for a..
choose a; to minimize =e "W, +e**W;
—a a Intuitively, the formula for a: states that the better the
0 de~ 4t de® . . .
— = —W.+ —W; proportion of correct to incorrect labelings, the more model
oa day oag t should weigh in the ensemble. The logarithm ensures a
— kind of diminishing return of weight: getting 11 instances
=—e "W, +e"'W; & ght: §eTing
correct instead of 10 has much more impact on the weight
than getting 101 instances correct instead of 100.
L We
a = —-1In
2w
for details, see: AdaBoost and the Super Bowl of Classifiers, Raul Rojas. L

AdaBoost

train some classifier mo
for t from 1 to k:

Mea(x) = mo +aimi(x) + ... +acimea(x)
our ensemble so far

wi = e YiMi—1(xi)

to choose m::
minimize sum of weights w; of incorrect classifications

1. W,
to choosea: a; = 3 In Wf

M is our final model.

http://www.inf.fu-berlin.de/inst/ag-ki/adaboost4.pdf

works even if M only classifies just slightly better than
chance

- i.e.decision stumps | !
L]

variants: AdaBoost, LogitBoost, BrownBoost

bagging vs boosting

If we visualise the learners, we can see clearly why boosting
is so much more powerful than bagging. Since bagging
works in parallel, every member of the ensemble will end
up looking roughly the same, providing little variation in
the ensemble. If we start with underfitting classifiers (like
linear ones), the ensemble decision boundary doesn’t look
much different from the individual ones.

In boosting, since each learner is trained in sequence, based
on what the previous learners did, we get much more
variation, giving us a combined decision boundary that can
be much more powerful than what the original decision
boundaries looked like.

Adapted from Machine Learning by Peter Flach, figure 11.2

gradient boosting

Boosting for regression models

Main intuition: fit the next model to the residuals of the
current ensemble.

When we want to boost regression models, we can look to
gradient boosting. The idea here is that we don’t reweight
the dataset, but instead, we look at the residuals of the
ensemble to far, and try to train a model to predict those. If
we can keep doing this succesfully, we can eventually
subtract all residuals to get a perfect prediction.

gradient boosting

To illustrate, let’s start with a constant model. We’ll
minimize squared error, so the optimal constant is the
mean of the data.

gradient boosting ()

mo +my

m; predicts the residuals of mo

We take the residuals of the previous model, and train a
new model, m1, to predict the residuals. The new ensemble
model adds these predictions to the predictions of the first.

gradient boosting ()

This ensemble model has new residuals, which we can then
train another model m2 to predict, add that to the model.
and so on.

gradient boosting

initial model Mo(x) = ¢
for t from 1 to k:

for all iz ri <- Mea(xi) - yi

r; are the residuals of the ensemble so far
fit model m: to dataset {x;, ri}

Mi(x) = M (%) + yimi(x)

v optimise through line search, or just slowly decay

This is the algorithm in detail. We start with an ensemble
model consisting of only a constant predictor. At each
iteration, we compute the residuals for the current
ensemble model, and add a predictor for the residuals to
the ensemble. The new model is added with a weight
gamma, which helps us if the new model happens to fit the
residuals poorly.

In contrast to adaboost, there is no principled way to set the
weights. We simply search for a good value by optimization,
or slowly decay the weights.

Ms(x) = Ma(x) + ysms3(x)
=Mi(x) + y2ma(x) + ysms(x)

= Mo(x) + yima(x) + y2m2(x) + ysms(x)

Imagine a model which simply stores a single output for
each instance

To see why we call it gradient boosting, imagine a model
which simply stores a single value wi which is the value it
will predict for instance xi. This is a perfectly overfitting
model, of course, and we cannot expect it to learn anything,
but we can think of its negative gradient as a kind of ideal
direction for where we want a more realistic model to go. If
we could control all the outputs of our model for all
instances individually, we would want to follow this
negative gradient to minimize the loss.

We can'’t, of course, in a realistic model, changing one
parameter changes multiple predictions at the same time,
but the ideally, this is the gradient on our “output space”
that we want to approaximate.

If our loss function is the mean squared error loss, then the
gradient for this model are the residuals

05 (M(xi) —yi)?
Ti:%:M(Xi)_Ui

In other words, the residuals are the gradient of the model
loss for instance i with respect to the output for instance i.

By adding the residuals to the previous model, we are
performing a kind of gradient descent for models that don’t
support it (like regression trees). We are training a model to
predict where we’d like to be after one step of gradient
descent, and adding that model to our ensemble. the
ensemble is following the approximate gradient in output
space.

l=(y-v?

Vo

X1

Compare this to what we saw in backpropagation. There,
we also work out the derivative of the loss with respect to
the network output y (we called it a local derivative in this
context).

We then took this derivative and backpropagated it down
the network to work out derivatives for the weights. We
can think of gradient boosting as a way of
accomplishing this for models where backpropagation
isn’t possible. Instead, we train a model to predict the
effect of the gradient update step on the output space, and
we bolt that model onto our original.

pseudo-residuals

~_ Oloss(M(xi), yi)
T TTOMM)

The benefit of this perspective is that it allows us to
generalise the idea of gradient descent to other loss
functions. We can simply work out this derivative, and train
the next model in our ensemble to predict it. We call this a
pseudo-residual.

The resulting value isn’t as intuitive as a proper residual,
but training the next model to predict the pseudo residuals
works just as well to minimize the loss.

loss(mi, yi) = [mi —yil

_ olm; —yi

Z)mi
olmy —yil 0my —yi
omy —yi omy

= sign(m; —y4)

For instance, here is how it works for the mean absolute
error loss (also known as the L1 loss): the absolute value of
the difference between output and target. As we’ve seen
before, minimizing absolute errors instead of squared
errors, leads to gradients xomposed of the sign, and the
median as a minimizer.

Therefore, if we want to use gradient boosting to minimize
the MAE loss, we should train the next model in our
ensemble to predict only the sign, -1 or +1, of the residuals
of the ensemble so far, and add that to the current
predictions.

gradient boosting vs AdaBoost

Gradient boosting AdaBoost

GradientBoostingClassifieror AdaBoostClassifier
pip install xgboost
Each model fits the (pseudo) Each model fits a
residuals of the current reweighted dataset.
ensemble.

Each model refines its own

The ensemble optimises a global reweighted loss.
loss.

Even if the individual models don't optimise a well-
defined loss

mlcourse@peterbloem.nl

mailto:mlcourse@peterbloem.nl

