Sequences

Markov models

In this lecture we’ll look at data that naturally forms a
sequence. Language, music, stock prices. All of these
can be modelled most naturally as a sequence of tokens
of information coming in one after the other.

Before we look at how to model sequences, we’ll look
at some basic things to take into account when

interpreting such data.

numeric 1-dimensional

We'll start by looking at the different types of
sequential datasets we might encounter.

As with the traditional setting (a table of
independently sampled instances) we can divide our
features into numeric and discrete.

A single 1D sequence might look like this. We could this
of a stock price over time, traffic to a webserver, or
atmospheric pressure over Amsterdam.

In this case, the data shows the number of sunspots
observed over time.

numeric n-dimensional

M —
)
im0, 2000

2500 3000

FTSE100

Sequential numeric data can also be multidimensional.
In this case, we see the closing index of the AEX and the
FTSE100 over time. This data is a sequence of 2D
vectors.

symbolic (categorical) 1-dimensional

the, cat, sat, on, the, mat

the _cat _sat_on _the_mat

If the elements of our data are discrete (analogous to a
categorical feature), it becomes a sequence of symbols.
Language is a prime example. In fact, we can model
language as a sequence in two different ways: as a
sequence of words, or as a sequence of characters.

symbolic n-dimensional

the/ART cat/NOUN sat/VERB on/PREP the/ART mat/NOUN

Franz Schubert
Allegetto R

) — - - —

i T =

_ Pe gl ¢ | o w| & £| & 4

We can also encounter sequences with multiple
categorical features per timestamp.

For instance. music, or tagged language. The more
complex the sequence grows, the more difficult it can
be to represent. We'll stick with simple examples for
this lecture.

spam

spam

spam

spam

Then there is the question of what we’re trying to
predict.

One possibility is that we have a normal classification
or regression task, but the instances are not
represented by feature vectors bu by sequences. Tis
slide shows a simple example: email classification.
Each email is a sequence (of words or or characters),
and each carries one target label (ham or spam).

Among the instances themselves, there is not any
strong sequential ordering. Emails do have a
timestamp, but this ordering is usually ignored.

An entirely different setting is one where the dataset as
awhole is a sequence, and the instances are the
elements in the sequence. For instance, in our sunspot
example, we may consider each point in our sequence
as a single instance consisting of a single feature.

In that case, we often want to predict the future values
of the sequence based on what we’ve seen in the past.

single sequence: feature extraction

1353423455432132.

P T Y G P P
[T Y S O
w AL s W - owoN
P T VY

One simple way to achieve this, is to translate it to a
classic regression problem by representing each point
by a fixed number of values before it; in this case the 3
preceding values.

This gives us a table with a target label (the value at
time t) and 3 features (the 3 preceding values). With
this data in hand we can grab any standard regression
model, train it, and use it on the values we’re currently
observing, to give us a prediction for the future.

Many other features are possible: the mean over the
whole history. The mean over the last 10 points, the
variance over the last 10 points, and so on. This is a
great way to solve this kind of sequence prediction task

by translating it to a known abstract task, rather than
designing a whole new approach, specific to the
sequence setting.

time

training data test

train
train

train

train

However, remember what we said in lecture 3: when
your data has a meaningful ordering in time, you
should keep it ordering in that way when you make
data splits. You don’t want to train on data that is in the
future comopared to your test data. In production, you
won’t have that luxury, so to make your test setting a
good simulation of production, you should keep your
data ordered by time.

If you can expect to retrain you model periodically,
then you can simulate this in your test split, by
retraining after every batch of instances instances
you've seen of the test set, and adding them to the
training data. This is called walk forward validation.

summary: sequential data

Sequences: consisting of numbers, vectors or symbols

Dataset: consisting of a sequence per instance, or a
sequence of instances.

For a sequence of instances, carful with your test and validation

Both can be converted to fit classic machine learning
through feature extraction.

Rest of the lecture: 1D symbolic sequences.

Extension to nD and/or numeric is often trivial

In the rest of the lecture, we’ll cover with methods that
deal with sequences natively, without the need for
feature extraction.

Markov models

Probabilistic model for sequences
Similar to Naive Bayes

Estimates probabilities of small subsequences from relative
frequencies in the data.

The first method we will look at is Markov modelling.

modeling sequences: probability

p(“congratulations you have won a prize”)

= p(W;=congratulations, Wo—you, Ws=have, W, =won, W5—a, W —prize)

P(W1, W, W3, Wy, Wi, We)

The fundamental idea, here, is that we want to model
the probability of a sequence occurring.

When modelling probability, we usually break the
sequence up into its tokens (in this case the words of
the sentence) and model each as a random variable.
Note that these random variables are decidedly not
independent: if the previous word is an article like “a”,
you’re much more likely to see a noun like “prize”
following it, than another article.

This leaves us with a joint distribution over 6 variables,
which we would somehow like to model and fit to a
dataset. How do we use our dataset to estimate the
probability that we’ll see this sentence in the future?

estimating probabilities

_ #“congratulations you have won a prize”
n #all 6 word subsequences

p(“congratulations you have won a prize”)

One simple trick we’ve used in the past to estimate
probabilities is to take the relative frequencies of
occurrences in the data.

We could collect a large amount of natural language
data and simply count how often the sequence
“congratulations you have won a prize” occurs in the
data, and then divide it by the total number of 6 word
sequences in the data.

The problem is that we’d need an extremely large
amount of data for all sequences of interest to have
been seen, and if our sequences get longer, like full
emails, we’ll have no chance of collecting a dataset
where every email we’re interested in has been seen
before.

What we need to do, is break our sequence up into
subsequences, estimate their probability and combine
the probabilities of the subsequences, to give us the
probabilty of the whole sequence.

slide 21, Probabilistic Models

p(x,y) =pxly)ply)

To do so, we'll use this rule from the Probabilistic
Models lecture. If we have a joint distribution, we can
break it up into two factors: the marginal distribution
on one of the variables, times the distribution with that
variable in the conditional.

chain rule of probability

p(%’l, Wi, Wy, W)
= p(Wa, Wa, Wa | Wy)p(W1)
= (Wi, Wy | W, Wy)p(Wa | Wi)p(Wy)

= PIW4 | Wa, W, Wi)p(Wa | Wa, W)p(Wa | Wi)p(W1)

p(prize | a, won, have, ,congratulations)

This gives us the chain rule of probability (which has
nothing to do with the the chain rule of calculus).

The chain rule allows us to break a joint distribution on
many variables into a product of conditional
distributions. In sequences, we often apply it so that
each word becomes conditioned on the words before it.
We could apply it in any order we like but it makes
most sense to condition each word on its preceding
tokens.

This tells us that if we build a model that can estimate
the probability p(x|y, z) of a word x based on the words
y, z that precede it, we can then chain this estimator to
give us the joint probability of the whole sentence x, y,

p(sentence) = H p(word | all words before word)

wordéEsentence

— Z log p(word | all words before word)
word€sentence

p(prize | a, won, have, ,congratulations)

In other words, we can rewrite the probability of a
sentences as the product of the probability of each
word, conditioned on its history.

If we use the log probability, this product becomes a
sum. This is helpful, because these probabilities get
very small, and we don’t want them underflowing to

Zero.

This view solves part of our problem. If we can figure
out how to estimate the probabilties of a particular
word occurring, given all the words that precede it, we
can chain these probabilities together to give us the
probabilities of a whole sentence, or an even longer
sequence of words (like a whole email).

language model

p(W | the, man, fell, out, of, the)

window

aquarium
the man fell out of the ...

pool

cycling

Note that this is no easy task.

A perfect language model would encompass everything
we know about language: the grammar, the idiom and
the physical reality it describes. For instance, it would
give window a very high probability, since that is a very
reasonable way to complete the sentence. Aquarium is
less likely, but still physically possible and
grammatically correct. A very clever language model
might know that falling out of a pool is not physically
possible (except under unusual circumstances), so that
should get a lower probability, and finally cycling is
ungrammatical, so that should get very low probability
(perhaps even zero).

The problem is most sentences of this length will never
have been seen before in their entirety. A simple way to
get a basic model is to limit how far back we look in
the sentence.

Markov assumption

p(prize | a, won, have, ,congratulations) =

p(prize | a, won)

This is called a Markov assumption. We just take the
probability of a word given all the words that precede
it, and we assume that it's equal to the probability of
the word conditioned only on the k words that precede
it.

This is a bit like the naive Bayes assumption: we know
it’s incorrect, but it still yields a very usable model. The
number of words we retain in the conditional is called
the order of the Markov model: this is a Markov
assumption for a second-order Markov model.

Markov model

p(prize, a,won, have, , congratulations)
—p(prize | a,won) p(a|won,have) p(won |have,you)
p(have | , congratulations) p(| congratulations) p(congratulations)

. #“won a prize” < trigram
p(prize | a,won) & ———————

won a <= bigram
—_—

2nd order Markov model

Using the Markov assumption and the chain rule
together, we can model a sequence as limited-memory
conditional probabilities. These probabilities can then
be very simply estimated from a large dataset of text
(called a corpus).

To estimate the probability of prize given “won a” we
just count how often “won a prize” occurs as a
proportion of the times “won a” occurs. In other words,
how often “won a” is followed by prize.

These n-word snippets are called n-grams. “won a
prize” is a trigram, and “won a” is a bigram.

This type of language model is often called a Markov
model, because of the Markov assumption of limited
memory. The size of the memory is referred to as the
order of the Markov model. The higher the order of
your model, the more you can model, but the more data
you’ll need, to make sure that you've seen all the n-
grams you're interested in often enough.

Google Books Ngram Viewer
Q. you have won a prize x @

1800-2019 - Englieh (2019) = Caselnsensitve Smoothing ~

you have won a prize

0000000020 You have won a prize

r W o frm o0 o o oo o0 2000

With the kind of datasets you can download and run
yourself, you can estimate good statistics for brigrams
and trigrams. If you have a larger corpus, like Google’s
corpus of all books, you can easily go up to 5-grams.

what does this buy us?

ingle sequence vs set-of-sequences
sing

Sequence classification

sequences as instances

Sequence prediction
tokens as instances

a8
VW AA

So, now that we have worked out a first way to
approximate probabilities for sequences, what can we
do with this?

We can use this to tackle both the case where our data
consists of a separate sequence per instance (like in
our spam classification example), and the case where
our data consists of a single sequence, and we're trying
to predict the next token.

sequence classification

p(spam | “congratulations, you have won a prize”)

We'll start with a sequence-per-instance example: the
spam classification task. We’ll see how to approach this
with a Markov model.

Ultimately, what we want to know is the the probability
of the class, given the contents of the message.

Bayes classifier

p(spam | Wy, ..., Wy) « p(Wi,..., W, | spam)p(spam)

We’ll train a generative classifier. First, we’ll use Bayes
rule to flip around the probabilties.

The marignal probability p(spam) we can estimate as
as the proportion of spam emails in our data set. For
the probability of the message given the class, we’ll use
our language model.

conditional on class

p(prize, a, won, have, you, congratulations | spam)

=p(prize | a, won, spam) p(a | won, have, spam)
p(won | have, you, spam) p(have | you, congratulations, spam)
p(you | congratulations, spam) p(congratulations, spam)

. Fspam'‘Won a prize”
p(prize | a, won, spam) ~ — —————
Fspam‘WoON @

We use the chain rule and the Markov assumption to
define the probability that a message occurs. This is
exactly as before, except that now, everything is also
conditioned on the class spam.

We then estimate the different conditional
probabilities by computing the relative frequencies of
bigrams and trigrams, as before, but we compute them
only over the spam part of our data.

algorithm: 2nd-order markov model classifier Here is the complete algorithm, for a classifier using a

training: second order Markov model. First, we split our data by
for each class c: class. We will train a separate language model for each
fornin1,2,3: class.

count n-grams in all text belonging to class ¢ .
Then, in each of these subsets, we count all

classification: occurrences of all unigrams, bigrams and trigrams.
given text wi, ..., Wi This is all the “training” we do.
ple Wi, wm) o p(wi, ..., Wi [c)p(c)

Then, to classify a new sequence, we need to compute
P wm [€)= the probability of the sequence given the class, and
powilc)plwz (i) [T plwilwis,wiosio) multiply it by the class marginal probability.

i€(3,...,m 2

In practice, as noted before, we use log probabilities, to
keep low probability values from underflowing.

We can also use a Markov model on unlabelled data, to
predict the future. In this case, all we need is simply a
large amount of natural language text.

w

ERCEIYEEN
ARV

— » seed: [i, was, walking]
probability p(x | i, was, walking) = p(x | was, walking)

m_ _ 1 n B _ _

a aardvark absolute ... down . with ... zygomatic zygote
plx | was, walking)

sample: x = down

new seed: [i, was, walking, down]

LooP

sequential sampling from a language model One interesting thing we can do with such a Markov

model, is to sample from it, step by step. We start with
start with a small seed sequence s = [w1, w», ws] of tokens. a seed of a few words, and then work out the
| probability distribution over the next word, given the
oop: e
last n words. We sample from this distribution, append
Sample next word w according to p(W=w | wy, w, ...) the sample to our text and repeat the process.

appendwto s
PP Note that with the Markov assumption, we only need

the last n elements of the sequence to work out the
probabilities.

Sequential sampling is also known as autoregressive

sampling. In the context of Markov models, the
sampling process is often called a Markov chain.

sequential sampling: Markov chain

Go thy

ways, wench; serve them, joining their best friend to ransom straight,

And make him dead, deceased, she’s dead, she’s good, thou hast thou dost thou
dost excuse.

Is thy son to church?

CAPULET Ready to love now
Doth grace that I beseech your high majesty.

SIR WALTER BLUNT, with tears: mine ear. Prithee,
tell her you both of Rome of your will: I
pray you, daughter, he is my soul, he proclaim'd
By Richard that thou dead:

Then, as herbs, grace himself an hour.

source http://www.schmipsum.com/

Here is is a bit of text sampled from a Markov model
trained on the works of Shakespeare. Even with such a
simple language model, we can see some quite realistic
patterns appearing.

Markov modeling: final comments

0-order Markov model: Naive Bayes

For spam classification higher orders don't improve performance. For other tasks they do.

Short documents are vastly more likely than long ones

Doesn't matter for classification. In other settings, conditioning on length may be necessary.

Laplace smoothing

Same as before: adapt the estimator by adding pseudo-observations

1 «“ a prize”
p(prize | a,) & 1+ #*won a prize”

V is the vocabulary (the set of all n-grams to the
language model). As before, we can give the pseudo
observations a smaller weight than 1, to have less
impact on the estimate.

VI T Zwon
Sequential sampling can lead to amusing, results, but
Garkov o s it’s unlikely to fool a human reader for very long. If we

rowgaeone | € AR Y [y oy

LG
ﬁ D\ A

by Josts Mitlara:
"ia i Davis

- \J {

ol

Garfield generated by a Markov model

source: httpsi//blog.codinghorror.com/markov-and-you/

apply

In the remainder of the lecture, we'll look at ways of
dealing with sequences in a deep learning setting.

Sequences

Deep learning on sequences

In this video we’ll look at

sequences in deep learning

Sequence models operate on inputs of different lengths.

input: raw sequence data

deep learning is end-to-end learning

layers: sequence-to-sequence layers
CNNs, RNNs, Self-attention

output:
sequence (next token prediction, translation)
single vector (classification, regression)

more dek E\ hub.io (lectures § and 12
< detail: divu.githubd >)
: 9

3

The basic idea of sequence models is very similar to
other deep learning model. The main characteristic
that we need to ensure is that the model can handle
input sequences of different lengths.

We feed the model with raw data, with no feature
extraction, so that we don’t lose any information. We
build our model out of sequence-to-sequence layers, of
which we’ll see three examples in this lecture. These
take a sequence of vectors as their input, and produce a
sequence of vectors as their out

And finally, we need to produce some output. We can
either produce a sequence of the same length as the
input, for instance if we want to predict the next token
at each stage, or we can output a single vector to
represent the whole sequence, for instance when we
want to classify the sequence.

We’'ll look at each of these three stages in detail.

As before, if you are actually implementing these
things, you’ll need some details that we won’t discuss
here. You can go to dlvu.github.io to see our lectures
for the MSc course deep learning, where we discuss the
same subjects, but provide some of the fines details
too.

First, the input. As we’ve seen, when we want to do
deep learning, our input should be represented as a
tensor. Preferably in a way that retains all information
(i.e. we want to be learning from the raw data, or
something as close to it as possible).

Here is an example: to encode a simple monophonic
musical sequence, we just one-hot encode the notes,
and encode the note sequence as a matrix: one
dimension for time, one dimension for the notes. We
can do the same thing for characters or even words in
natural language sequences.

source: https://violinsheetmusic.org

vocabulary

One thing is different from what we’ve seen so far in
deep learning data: if we have multiple sequences of
different lengths, this leads to a data set of matrices of
different sizes.

batching sequences
&

O

X
° [
[

original length padding

In principle, this is not a problem, we want to build
models that can deal with sequences of any length (and
can generalise over sequences of variable lengths), so
they should be able to handle this.

However, within a batch it’s usually required that all
sequences have the same length. One way to deal with
this, is to sequences of similar length together (for
instance by sorting the data by length) and then pad
the shorter sequences with zero vectors, so that all
sequences are the same length.

At this point, we have translated a batch of input
sequences into a 3-tensor, which can be consumed by
any deep learning model.

embedding vectors

= =

T

embeddings

Al

One-hot vectors are fine if if you have a small
vocabulary of symbols (like seven notes), but if you
want to model 100 000 words, you're using a lot of
memory that is mostly filled with zeros.

An alternative method is to use embedding vectors.
The idea here is that you assign each input symbol in
your vocabulary a vector of random values. You then
translate a symbolic input sequence into a sequence of
vectors by mapping the input symbold to their
corresponding embedding vectors. The dimensionality
of the embedding vectors is a hyperparameter, but it's
usually set between 64 and 1024.

The fundamental trick of embedding vectors is that we
treat these vectors as parameters of the model. We
feed this input sequence to the model (we’ll describe
what that looks like later), compute the loss,
backpropagate, and we get gradients on all parameters
of the model, including these embedding vectors. As we
train, these vectors become useful representations of
our words in some high dimensional space.

embedding models

For a large set of discrete objects {x}, with no features

- Represent object x with embedding vector v«

Dimensionality of v is a hyperparameter

- Represent sequence ¥, y, z as vector sequence Vs, Vy, V;

Also works in non-sequence settings, example next lecture.

- Treat v's as parameters.

Compute loss, update by gradient descent

Think of embeddings as learned features.

Individual in space are not but directions often are.

Embedding vectors occur in many contexts, so let’s
define them more broadly. In any setting where you
have a large collection of discrete objects, and no
features for these objects, you can represent them with
embedding vectors. You assign a unique vector to each
object in your set, and use these vectors to represent
the objects you want to learn over. If you are training
on a sequence of objects, you turn this into a sequence
of embedding vectors.

Once you've computed your loss, you update the values
of the embedding vectors by gradient descent, possibly
using backpropagation to compute the gradients.

We can think of the embeddings as learned features:

we don’t have features for our objects, so we simply
assign them some random features, and then tweak the
values of these by gradient descent.

pretraining embeddings

Use large amount of unlabeled text to train word
embeddings quickly and efficiently.
Ref. semi-supervised learning

Use pretrained embeddings in more expensive models.

options: Word2Vec, GloVe

In addition to training embeddings together with the
other parameters of our model, embeddings also
provide a good opportunity for pre-training. If we
have a large amount of unlabeled text available, and we
can think of a cheap way to use it to train word
embeddings, these can then be re-used in larger, more
elaborate models.

We'll take a quick look at the Word2vec model as an

example.

Word2Vec (skipgram version)

shall i compare thee to a summers day thou art more lovely ...
x
X t
compare shall
compare i
compare thee y
compare to
thee i softmax |
thee compare
thee to
thee a
to compare
to thee
to a
to summers
a thee Vx
a to
a summers
a day
cummers tn

100 000

We start with a large corpus: a data set of natural
language. From this we create a very simple dataset.
We slide a window of, say, five words, along the text,
and match every word to the words that appear in its
context. The task is to predict, for a given input word,
the distribution on the words appearing in the context.

We model this very simply by creating embedding
vectors for all words in our vocabulary. We then feed
these to a single-layer neural network with one output
for every word in our vocabulary and with a softmax
output. If we have 100 000 words in our vocabulary,
then we can think of this as a one-layer classification
network with 100 000 classes, and the embedding as
input features. We train both the embedding and the
weight of the network in concert.

If training is succesful, we know that our embedding
vectors now contain the information about which
words are likely to appear in their context. The basic
idea is that this information captures a lot of their
meaning (this is sometimes called the distributional
hypothesis).

The softmax activation over 100K outputs is very
expensive to compute, and you need some clever tricks
to make this feasible (called hierarchical softmax or
negative sampling). We won’t go into them here.

WOMAN
/ AUNT

UNCLE

QUEENS

KINGS

QUEEN QUEEN

KING KING

Vking + Vwoman = Vman = Vqueen

“feminizing” vector

If we investigate what the Word2Vec embeddings look
like after training, we can tease out some interesting
properties. For instance, it seems like there is a
direction in the resulting embedding space, that, if we
move along this direction, pushes male words towards
their female counterparts. What's more, if we subtract
the embedding of the word woman from the
embedding of the word man, we we find roughly this
direction.

Compare this with the “smiling vector” we saw in the
autoencoder lecture. Word2Vec isn’t an autoencoder,
but we are learning a similar kind of latent space
model.

Basic format: sequences of vectors

Batch sequences of similar length
Pad to equalize length within batch

Represent symbols with:

- one-hot vectors
For small vocabulary

- embedding vectors

For large vocabulary

Embedding vectors can also be pre-trained.

Semi-supervised learning: use large amounts of unlabelled data to boost performance.

So, these are the most important methods for
representing input sequences so that deep learning
models can understand them. We need to somehow
translate our input to a sequence of vectors.

If we have a symbolic input, we can do this by
representing the symbols with one-hot vectors if the
vocabulary is small, and with embedding vectors if
the vocabulary is larger.

Pre-training your embedding

layers: sequence-to-sequence layers
CNNs, RNNs, Self-attention

sequences in deep learning

Now that we know how to represent our input, we
need some layers that we can stack together to build a
deep neural net for sequences.

input: length t sequence of vectors

more generally, a sequence of tensors

output: length t sequence of vectors
dimension may be different, but t is the same

defining property: the same layer (same weights) can be
applied to sequences of different lengths.

sequence-to-sequence layers

The next ingredient we need is layers that we can stack
on top of each other. These need to be sequence-to-
sequence layers. These are layers that take sequence
of vectors as input and produce a new sequence of
vectors as output. The input and output

The defining property of a sequence-to-sequence layer
is that they can consume sequences of different lengths
with the same set of weights. That is, in one iteration of
gradient descent, we can feed the layer a sequence of 5
words, get a loss and update its weights, and the next
iteration we can feed it a sequence of 15 words, and get
aloss and a gradient on the same weights.

fully connected vs repeated MLP Here is an example: imagine that we need a layer that

consumes a sequence of five vectors with four
Fully connected layer: X MLP applied to each input: v elements each and produces another sequence of five
vectors with four elements each.

out @ @ @ @ @ @ @ @ @ @ A fully connected layer would simply connect every

I I I I input with every output, giving us 400 connections

) with a weight each. This is not a sequence-to-sequence
16 shared weights

—_—
an
4x4 conn

layer. Why not? Imagine that the next instance has 6
n @ @ @ @ @ vectors: we wouldn’t be able to feed it to this layer
without adding extra weights.

The version on the right also uses an MLP, but only
applies it to each vector in isolation: this gives us
4x4=16 connections per vector and 80 in total. These
eighty connection share only 16 unique weights, which
are repeated at each step.

This is a sequence-to-sequence layer. If the next
instance has 6 vectors, we can simple repeat the same
MLP again, we don’t need any extra weights. This is the
basic idea of the sequence-to-sequence layer. If we see
an input with a new length, we can take the layer, keep
the weights the same, but configure the layer to accept
a sequence of the required length.

Of course, this second option may technically be a
sequence-to-sequence layer, but it doesn’t actually
learn over the time dimension. The value of vector 5 is
in no way influenced by the values of input vectors 1
through 4, because there are no connections between
them. Luckily, there is a layer that we’ve seen already,
that is a sequence-to-sequence layer and allows for
information to be propagated along the time
dimension.

NB: We call the sequence dimension “time”, but it
doesn’t necessarily always represent time.

1D Convolution This is the 1D convolution that we first saw in the deep

learning lecture.

Note that the number of (distinct) weights depends
only on the size of the kernel and the number of input
and output channels. If we see a longer or shorter
sequence, we just repeat the same kernel more often,
but we don’t need extra weights.

—_

kernel size
All we need to do to fit our definition of a sequence to

sequence layer is to add a little padding so that the
input and output have the same length.

Note that even though we are now allowing
information to propagate from one position in the
input to another position in the output, we're only

allowing this over a finite distance. This is a bit like the
finite memory of the Markov model. We can use the
history (and future) of the sequence but only a fixed,
finite part of it.

NB: Note that the MLP example from the last slide is
equal to a 1d convolution with a kernel size of 1.

causal sequence-to-sequence

W,

kernel size

In many settings, it's not reasonable to let the model
look into the future. For instance when you only have
this information for your training data, but you don’t
expect to have it in production. In that case it’s
important to wire up your sequence to sequence layer
so that each output node only has connections to the
corresponding input node and to ones before it.

This is called causal sequence to sequence layer. And
pictured here is a a causal convolution.

Note that this doesn’t imply that we're performing

causal inference: that is, we're not making guaranteed
distinctions between correlation and causation, as we
discussed in the social impact videos. It’s simply a way

sequences in deep learning

output:
sequence (next token prediction, translation)
single vector (classification, regression)

The convolution layer is hopefully enough to give you a
concrete idea of what a sequence to sequence layer
looks like. In the next video we’ll see another way of
building seugence to sequence layers.

So, now we have an input format: a sequence of
vectors, and a type of layer, which translates a
sequence of vectors to another sequence of vectors.
Finally, we need to give our network some output:
something that allows it to compute a single loss, so
that we can start our backpropagation.

model configurations

input output
sequence-to-sequence

POS tagging, machine translation, |:| |:| [”] |:| |:| - D D DD D D

robot control, generation

sequence-to-label DDDDDD _ D

classification, regression

label-to-sequence |] —_ [] D DD D D

generative models

There’s number of ways we can configure our model,
depending on what we're trying to achieve.

Here are three basic configurations we may want to
build.

sequence-to-sequence

targets

output sequence I:I D I:I I:I I:I I:I
seaueneetorseauence e _

“hidden” units

S

A sequence-to-sequence task is probably the simplest
set-up. Our dataset consists of a set of input and target
sequences.

We simply create a model by stacking a bunch of
sequence to sequence layers, and our loss is the
difference between the target sequence and the output
sequence.

POS tagging

<art> <noun> <verb> <prep> <art> <noun>

targets . @ O . . s

token probabilities D D D D D Dlsoftmax

sequence-to-sequence
layer(s)
embedding vectors I I I I I I

2345 324 3 2893

inputs
P the cat sat on the mat

Here’s a simple example of a sequence to sequence
task: tag each word in a sentence with its grammatical
category. This is known as part-of-speech tagging. All
we need is a large collection of sentences that have
been tagged.

For the embedding layer, we convert our input
sequence to positive integers. We have to decide
beforehand what the size of our vocabulary is. If we
keep a vocabulary of 10 000 tokens, the embedding
layer will create 10 000 embedding vectors for us.

It then takes a sequence of positive integers and
translates this to a sequence of the corresponding
embedding vectors. These are fed to a stack of s2s
layers, which produce a sequence of vectors with al
many elements as output tokens. After applying a
softmax activation to each vector in this sequence, we
get a sequence of probabilities over the target tokens.

In the rest of the lecture we will omit the embedding
layer, assuming that some suitable input
representation has been chosen.

sequence-to-sequence: autoregressive modeling
targets h
inputs h e | | [! !

One interesting thing we can build with a sequence-to-
sequence model is an autoregressive model.

We feed some sequence, and to set the target as the
same sequence, shifted one token to the left. We then
feed the input through several causal layers, so that the
network can only look backward in the sequence. And
we produce a probability distribution on the output
characters.

This effectively trains the model to predict the next
character in the sequence, but it does so for the whole
sequence in parallel.

Note that this only works with causal models, because
non-causal models can just look ahead in the sequence

to see the next character.

D
~

o o
J ~ ~
J ~ ~ ~

o [[[[
< N
=
N1
Q

< < < <
S
causal s2s

EEERNEN

causal s2s

1 oy, y

inputs h e | 1 [!

Each of these outputs gives us the probability of the
next character in the sequence, given the preceding
characters.

start with a small seed sequence s = [ci, 5, ¢3, ¢4, C5, C6] Of
tokens.

loop:
on!
wo Markov assum‘ahun,

Sample next char c according to p(C=c|ci, ¢, ...)
feed the whole seed to the network D

append ctos

EDEENEN

sequential sampling

After the network is trained, we can start with a small
seed of tokens, and sequentially sample a likely
sequence. This is exactly what we did with the Markov
model, but now we have a potentially much more
powerful model, with a potentially infinite memory.

After training, we feed the model the whole seed each
time and look only at its last output to give us a
probability distribution on what the next token will be.
The other outputs are only used during training.

We’ll see some examples of data generated this way
this after we've explained LSTM networks.

sequence-to-label
classification, regression

jm —

model configurations

So that’s what we can do with sequence-to-sequence
model.

If we have a sequence labeling task, like the email spam
classification example we saw earlier, We'll need to
construct a model that consumes sequences of variable
lengths, but at some stages reduces them down to a
single label (like a class promability vector).

s2l: global pooling

sequence-to-sequence layer

sequence-to-sequence layer

. target \
Q . I V\a M\‘?

global sum/avg/max pooling
output sequence - - i - - -
“hidden” units

output sequence

sequence-to-sequence layer
“hidden” units

sequence-to-sequence layer

inputs

global unit

HEEN

Another approach is to simply take one of the vectors
in the output sequence, use that as the output vector
and ignore the rest. If we train the neural network to
classify only on this unit, it will hopefully learn to put
the right information into this output vector.

If you have causal s2s layers, it's important that you
use the last vector, since that’s the only one that gets to
see the whole input sequence.

For some layers (like recurrent ones), this kind of
approach puts more weight on the end of the sequence,
since the early nodes have to propagate through more
intermediate steps in the s2s layer. For others (like self-
attention), all inputs in the sequence are treated
equally, and there is little difference between a global
unit and a pooling layer.

model configurations

label-to-sequence
generative models

I — (ooooo

Finally, if we want to train a generative model on
sequences, we may want to start with a label, for
instance a latent vector, or a representation of the type
of thing we want to sample, and map that to a
sequence.

label-to-sequence

Igigigigigi

sequence-to-sequence layer

"hidden” units |:| |:| |:| |:| |:| |:|

sequence-to-sequence layer
~

. e
inputs €,
/b(-‘M

The simplest way to achieve this, is just to take your
input vector and to repeat it into a sequence of the
same vector over and over again.

For some layers, like recurrent ones, there are other
ways to feed a single vector in addition to the input
sequence, but we won’t detail that here.

Deep learning on sequences:
- input: sequence of vectors
- layers: sequence-to-sequence

- output: global pooling or global unit for sequence
labelling tasks

Sequences

Recurrent neural networks and LSTMs

recurrent neural network

y
o
h
.Oﬂ%—‘

copy

previous hidden layer

(] o O (@}
x h

One of the most popular neural networks for
sequences is the recurrent neural network. This is a
generic name for any neural network with cycles in it.

The figure shows a popular configuration. It’s a basic
fully connected network, except that its input x is
extended by three nodes to which the hidden layer is
copied.

Adapted from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

To keep things clear we will adopt this visual
shorthand: a rectangle represents a vector of nodes,
and an arrow feeding into such a rectangle annotated
with a weight matrix represents a fully connected
transformation.

We will assume bias nodes are included without
drawing them.

visual shorthand

A line with no weight matrix represents a copy of the
input vector. When two lines flow into each other, we
concatenate their vectors.

Here, the added line copies h, concatenates it to x, and
applies weight matrix W.

X1

We can now apply this neural network to a sequence.
We feed it the first input, x1, result in a first value for
the hidden layer, hi, and retrieve the first output yi.

The hidden nodes are initialise to zero, so at first the
network behaves just like a fully connected network.

RNNs on sequences

<
<
S

We then feed the second input in the sequence, x1. We
now receive the previous hidden layer, h1, concatenate
it to the input, and multiply it by W, to produce the
second hidden layer h>. This is multiplied by V to
produce the second output.

RNNs on sequences

And so on.

how to train RRNs?

Provide an input sequence x and a target sequence t.

Backpropagation Through Time (BPTT).

In principle, we

X1 X2 X3 X4 Xs X6

Instead of visualising a single small network, applied at
every time step, we can unroll the network. Every step
in the sequence is applied in parallel to a copy of the
network, and the recurrent connection flows from the
previous copy to the next.

Now the whole network is just one big, complicated
feedforward net, that is, a network without cycles.
Note that we have a lot of shared weights, but we know
how to deal with those.

The hidden layer is initialised to the zero vector.

Now the whole network is just one big, complicated
feedforward net. Note that we have a lot of shared
weights, but we know how to deal with those.

RNNs: thing to note

Sequence-to-sequence layer
fixed set of weights, variable input length

Requires sequential processing along the sequence
No Markov assumption: potentially infinite memory

In practice: quite limited memory

the problem of long-term dependence Basic RNNs work pretty well, but they do not learn to

remember information for very long. Technically they
can, but the gradient vanished too quickly over the
timesteps.

I was born in France, as matter of fact in
a little village near Paris, it's famous for You can’t have a long term memory for everything. You
its pain-au-chocolat, | lived there until |

French need to be selective, and you need to learn to select

was 16, when | moved to Amsterdam,

soI'mfluentin... Dutch words to be stored for the long term when you first see
Aquarium them.

In order to remember things long term you need to
forget many other things.

vanishing gradients One of the reasons that neural networks don

remember too well is that the weights between an
input long ago and the current output get a gradient
that has to travel through a lot of layers in our network.
If these are sigmoid activated layers, these gradients
will vanish much more strongly than the gradients
between input 6 and output 6, so the network will
always learn more from short term correlations
between the input and the output than from long term
correlations.

n We could fix this with ReLU activations and other

tricks, but in the late 1990s most of this tricks weren’t
available yet. Instead the LSTM was invented, which
solved this problem, by moving the activations out of
the way of the gradient travelling backwards in time.

Long short-term memory

Selective forgetting and remembering, controlled by
learnable “gates”

Possibly the first successful deep neural network

An enduring solution to the problem are LSTMs. LSTMs
have a complex mechanism, which we’ll go through
step by step. To do so, we'll first set up a visual
notation.

concatenate _|_’
W
_

apply weights

w
sigmoid activation ——QL]

1,
o w
tanh activation ———Q0]
4

element-wise operation

Here is our visual notation.

Y Y4 Ys Y Y
1C; [cs ' Ce l
o o o o 0
Y4 Ys Y6
A i N i .

The basic operation of the LSTM is called a cell (the
orange square, which we’ll detail later). Between cells,
there are two recurrent connections, y, the current
output, and C the cell state.

Y Yt

O
o

S
©

Xt Xt+1

Here is what happens inside the cell. It looks
complicated, but we’ll go through all the elements step
by step.

Ce

The first is the “conveyor belt”. It passes the previous
cell state to the next cell. Along the way, the current
input can be used to manipulate it.

Note that the connection from the previous cell to the
next has no activations. This means that along this
path, gradients do not decay. It’s also very easy for an
LSTM cell to ignore the current information and just
pass the information along the conveyor belt.

Wi

Here is the first manipulation of the conveyor belt. This
is called the forget gate.

It looks at the current input, concatenated with the
previous output, and applies an element-wise scaling
to the current value in the conveyor belt. Outputting all
1s will keep the current value on the belt what it is, and
outputting all values near 0, will decay the values
(forgetting what we’ve seen so far, and allowing it to be
replaces by our new values in the next step).

i

in the next step, we pass the

gate

sigmoid

T

tanh

vector
to add

l

®

input

The gating mechanism a single input vector, projects it
to two different vectors, one using a sigmoid and one
using a a tanh activation.

The gate is best understand as producing an additive
value: we want to figure out how much of the input to
add to some other vector, in this case the one on the
converyor belt. If the current input is important we
want to add most of it, at the risk of forgetting what we
have in memory, and it the current input is
unimportant, we want to ignore it.

The tanh should be though of as a mapping of the input
to the range [-1, 1]. This is the value we will add to the
conveyor belt.

The sigmoid acts as a selection or attention vector. For
elements of the input that are important, it outputs 1,
retaining all the input in the addition vector. For
elements of the input that are not important, it outputs
0, so that they are zeroed out. The sigmoid and tanh
vectors are element-wise multiplied.

Finally, we need to decide what to output now. We take
the current value of the conveyor belt, tanh it to
rescale, and element-wise multiply it by another
sigmoid activated layer. This layer is sent out as the
current output, and sent to the next cell along the
second recurrent connection.

Now, when we look at all the paths that the gradients
take back down the network, we see that there are
many of them, in purple that cross activations, and
these will likely die out over a few cells, and never
contribute to learning long range dependencies.

However, there are also paths for the gradient, in green,
that travel over the conveyor belt and only encounter
linear operations. This means that these gradients are
perfectly preserved as they travel back through time,
and can be used to pick up on long range dependencies.
This is where the name comes from. The conveyor belt
functions as a long term memory preserving good
gradients, and the rest of the functions as a short term
memory, making nonlinear projections of the input and
using them to manipulate the output and the contents
of the conveyor belt.

LSTM language model

p(prize | a, won, have, ,congratulations)

)
tiow:
assump
. MaroV
NB: e

That’s a lot of complexity. Let’s see what it buys us. The
best way, by far, to illustrate the power of LSTMs is to
apply the sequential sampling trick.

character level language model

p(X| u,_have,_wo)

So, now that we have a powerful, recurrent sequence-
to-sequence layer, let’s see what it can do. We'll train a
languange model autoregressively, as we did with the

markov model, but this time we’ll train it at character-
level.

We cut a corpus of text into large chunks of character
sequences, and we feed these to our model, teaching it
to predict the next character at each position in the
sequence.

sequential sampling from a language model

start with a small seed sequence s = [c;, ¢, c3] of tokens.
loop:

Sample next char c according to p(C=c|cy, ¢, ...)

feed the whole seed to the network

append ctos

After training, we start with a small seed of characters,
and we sample sequentially. Note that this time we
have no Markov assumption, so we keep feeding the
whole sequence to the network very time we sample.

some examples

The Unreasonable Effectiveness of Recurrent

Neural Networks
Andrej Karpathy

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Shakespeare

PANDARUS :

Alas, I think he shall be come
approached and the day

When little srain would be
attain'd into being never fed,
And who is but a chain and
subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries,
produced upon my soul,

Breaking and strongly should be
buried, when I perish

The earth and thoughts of many

Remember, this is a character level language model.

Wikipedia

Naturalism and decision for the majority of Arab
countries' capitalide was grounded

by the Irish language by [[John Clair]], [[An
Imperial Japanese Revolt]], associated

with Guangzham's sovereignty. His generals were the
powerful ruler of the Portugal

in the [[Protestant Immineners]], which could be
said to be directly in Cantonese

Communication, which followed a ceremony and set
inspired prison, training. The

emperor travelled back to [[Antioch, Perth, October
25[21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the

[[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest
of India with the conflict.

Copyright was the ion of i in the

slop of Syrian influence that
was a famous German movement based on a more

Note that not only is the language natural, the
wikipedia markup is also correct (link brackets are
closed properly, and contain key concepts).

Z5T72I]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the

[[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest
of India with the conflict.

Copyright was the ion of i in the

slop of Syrian influence that

was a famous German movement based on a more
popular servicious, non-doctrinal

and sexual power post. Many governments recognize
the military housing of the

[[Civil Liberalization and Infantry Resolution 265
National Party in Hungary]],

that is sympathetic to be to the [[Punjab
Resolution]]

(PJS) [http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics
Adjoint for the Nazism, Montgomery

was swear to advance to the resources for those
Socialism's rule,

was starting to signing a major tripad of aid
exile.]]

The network can even learn to generate valid (looking)
URLs for external links.

<page>
<title>Antichrist</title>
<id>865</id>
<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:12%</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>
</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve">#REDIRECT
[[Christianity]]</text>
</revision>
</page>

Sometimes wikipedia text contains bits of XML for
structured information. The model can generate these
flawlessly.

LaTeX

sequence

\/

Another way to train a model to generate sequences is
to use the generator network that we saw previously.
We sample a single vector from a standard normal
distribution and feed it to a sequence-to-sequence
network

sequence

In the previous video we saw that we could achieve
this by repeating the input vector into a sequence, but
when we use RNNs, there is another option. We can
feed the latent vector to the network as the initial
hidden state. We canthen set the input sequence to
zero, or as we will see later, use it for something else.

o
sequence to sequence (variational) AE

Of course, if we want to train a generator network we’ll
need either a discriminator or an encoder.

For an autoencoder we can simply use a sequence-to-
label network as our encoder, and interpret the last
vector of the output as the latent vector representing
the whole input.

MusicVAE

https://magenta.tensorflow.org/music-vae

source: https://magenta.tensorflow.org/music-vae

L

teacher forcing

This works well for music but we’ve lost the fine touch
of the sequential sampling, where we could build up a
sentence character by character, finetuning the details
one at a time.

Instead a single small latent vector needs to represent
all information in the sequence: this is great to capture
the global pattern, but not for deciding on the finer
details. This is similar to what we saw with images: the
VAE reconstructions we recognizable people but the
finer details of the image had been washed out.

Here, we can combine the best of both worlds. Since
we’d left the input sequence blank, we can feed the
decoder a character-shifted version of the input as well
as the latent vector. This way, we are training a decoder
that gets global information from the latent vector, and
generates the finer details by autoregressive sampling.

interpolation

AE

i went to the store to buy some groceries .
i store to buy some groceries

i were to buy any groceries .

horses are to buy any groceries .

horses are to buy any animal .

horses the favorite any animal .

horses the favorite favorite animal .

horses are my favorite animal .

VAE

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

source: Generating Sentences from a

The example we saw in the autoencoder lecture was
also trained in this way: using a variational
autoencoder with teacher forcing.

source: Generating Sentences from a Continuous Space
by Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew
M. Dai, Rafal Jozefowicz, Samy Bengio
https://arxiv.org/abs/1511.06349

gather data, Google set up a website, where it
challenged users to quickly draw a sketch of something

=
i

using their mouse. The drawing was captured as a
sequence of points in the plane.

Researchers then trained a variational sequence-to-
sequence autoencoder with teacher forcing and a
mixture density output at each step of the sequence. In
short, quite a complex model. The result, however was
worth it. Here, we see two interpolation grids from the
» latent space of this model, smoothly interpolating
between vairous ways of drawing cats and various

source: A Neural Representation of Sketch Drawings, Ha and Eck (2017)

ways of drawing owls.

(lectures § and 12)

more detail: divu.githubio

micourse@peterbloem.nl

summary

Sequence modeling: we can use existing methods through
feature extraction, but be careful about validation.

Markov models: simple, finite-memory sequence modeling

For classification or generation

Word2Vec: word embeddings reflecting similarity,
semantics

LSTMs: incredibly powerful language models. Tricky to
train, very opaque.

recurrent connections, convolutions We’ve seen two examples of (non-trivial) sequence-to-

NN sequence layers so far: recurrent neural networks, and
1 1 1 ri convolutions. RNNs have the benefit that they can

D D D D potentially look infinitely far back into the sequence,
but they require fundamentally sequential processing,
making them slow. Convolution don’t have this

uod

drawback—we can compute each output vector in

12Ae| NNY

Ke| @ LA

parallel if we want to—but the downside is that they

are limited in how far back they can look into the
= = sequence.

sequential processing <« finite “memory”

o2 Self-attention is another sequence-to-sequence layer,
and one which provides us with the best of both

worlds: parallel processing and a potentially infinite
memorv.

self-attention

Best of both worlds: parallel computation and long
dependencies.

Simple self-attention: the basic idea

Practical self-attention: adding some bells and whistles.

We'll explain the name Llater.

103

self-attention

self-attention

Y1 Y2 V3 Ya Y5 Ye

e DL H N

Yi :Z WijXj
j

with Z Wiy = 1
j

~§ BRI

X1 X2 X3 X4 X5 Xg

104

At heart, the operation of self-attention is very simple.
Every output is simply a weighted sum over the inputs.
The trick is that the weights in this sum are not
parameters. They are derived from the inputs.

Note that this means that the input and output
dimensions of a self-attention layer are always the
same. If we want to transform to a different dimension,

we’ll need to add a projection layer.

Yi=) Wi
j

ro_ T
Wij = Xi Xj

/
exp Wi;

\\r_i']. - 7
/
21 eXp Wiy

O [< NS

W31 X3 W32 X3 Ws3 X3 Ws4q X3 W35 X3 Wse

C :

Xq X5 X6

:
)
i i_i%i -~

In simple self-attention w;; (x; to yi) usually has the most weight

not a big problem, but we’ll allow this to change later.

Simple self-attention has no parameters.

xi (like an embedding layer) drives the self attention.

ized

There is a linear operation between X and Y.

non-vanishing gradients through Y = WXT, vanishing gradients through W = softmax(XTX).

N
X———Y VUt

107

No problem looking far back into the sequence.

In fact, every input has the same distance to every output.

More of a set model than a sequence model. No access to the sequential
information.
We'll fix by encoding the sequential structure into the embeddings. Details later.

Permutation equivariant.

for any permutation p of the input: p(sa(X)) = sa(p(X))

108

movie m

user u [] score = uymy + ugma + ugms

sayl|
sayI|
saI|

no features? embedding vects

Vu¥

If we had features for each movie and user, we
could match them up like this. We multiply how
much the user likes romance by how much
romance there is in the movie. If both are positive
of negative, the score is increased. If one is
positive and one is negative, the score is
decreased.

Note that we’re not just taking into account the
sign of the values, but also the magnitude. If a
user’s preference for action is near zero, it doesn’t
matter much for the score whether the movie has
action.

global max pooling |;|
output sequence m D D D D m
simple self attention

~- 100001

embedding layer

) o & e & e
inputs & & @ O < R

& & VU

As a simple example, let’s build a sequence
classifier consisting of just one embedding layer
followed by a global maxpooling layer. We’'ll
imagine a sentiment classification task where the
aim is to predict whether a restaurant review is
positive or negative.

If we did this without the self-attention layer, we
would essentially have a model where each word
can only contribute to the output score
independently of the other. This is known as a bag
of words model. In this case, the word terrible
would probably cause us to predict that this is a
negative review. In order to see that it might be a
positive review, we need to recognize that the
meaning of the word terrible is moderated by the
word not. This is what the self-attention can do for
us.

Yterrible

J
I

Vnot

|

|

Vterrible

this restaurant was not too terrib|

If the embedding vectors of not and terrible have
a high dot product together, the weight of the
input vector for not becomes high, allowing it to
influence the meaning of the word terrible in the
output sequence.

BELLS AND WHISTLES: STANDARD SELF-ATTENTION

- scaled dot product
= key, value and query transformations

« multi-head attention

The standard self attention add some bells and
whistles to this basic framework. We’ll discuss the
three most important additions.

SCALED SELF-ATTENTION

S

th R
put dumehsiop\

VUu¥

Scaled self attention is very simple: instead of
using the dot product, we use the dot product
scaled by the square root of the input dimension.
This ensures that the input and output of the self
attention operation have similar variance.

Why Vk? Imagine a vector in Rk with values all c.
Its Euclidean length is Vkc. Therefore, we are
dividing out the amount by which the increase in
dimension increases the length of the average
vectors. Transformer usually models apply
normalization at every layer, so we can usually
assume that the input is standard-normally
distributed.

KEYS, QUERIES AND VALUES

the ke[l

<>

the query
the val

4 this restaurant was not too terrib|

In each self attention computation, every input
vector occurs in three distinct roles:

- the value: the vector that is used in the
weighted sum that ultimately provides the
output

+ the query: the input vector that corresponds to
the current output, matched against every other
input vector.

+ the key: the input vector that the query is
matched against to determine the weight.

ATTENTION AS A SOFT DICTIONARY

d={'a":1, 'b'" : 2, 'c'" : 3}
A A key value
d['b'] =3 1Y é
< £
N n a 1
P(‘s,,
b 2
C 3
" VU

In a dictionary, all the operations are discrete: a
query only matches a single key, and returns only
the value corresponding to that key.

ATTENTION AS A SOFT DICTIONARY

Attention is a soft dictionary
= key, query and value are vectors

- every key matches the query to some extent

as determined by their dot-product

« a mixture of all values is returned

with softmax-normalized dot products as mixture weights

Self-attention
Attention with keys, queries and values from the same set.

VUt

If the dot product of only one query/key pair is
non-zero, we recover the operation of a normal
dictionary.

KEY, QUERY AND VALUE TRANSFORMATIONS

introduce matrices K, Q, V for linear transforms

and associated biases

I
kiszi+bk T

qi:QXi+bq |:|
vi = Vx; + b,

17

To give the self attention some more flexibility in
determining its behavior, we multiply each input
vector by three different k-by-k parameter
matrices, which gives us a different vector to act
as key query and value.

Note that this makes the self attention operation a
layer with parameters (where before it had none).

MULTI-HEAD ATTENTION

inverts

this restaurant was not too terrible

~_

property of

Vu¥

In many sentences, there are different relations to
model. Here, the word meaning of the word
“terrible” is inverted by “not” and moderated by
“to0”. Its relation to the word restaurant is
completely different: it describes a property of the
restaurant.

The idea behind multi-head self-attention is that
multiple relations are best captured by different
self-attention operations.

o osiaronn
TR

concatenate

multi-head self-attention

00000 EEREEMA

self-attention 1 self-attention 2
K1: 01: AVAl KZI QZI V2
ooo0oo0Do0 EERElEE
split

TSIy

The idea of multi-head attention, is that we
project the input sequence down to several lower
dimensional sequences, and apply a separate low-
dimensional self attention to each of these. After
this, we concatenate their outputs, and apply
another linear transformation (biases not shown)

Self-attention: sequence-to-sequence layer with
 parallel computation

- perfect long-term memory

Fundamentally a set-to-set layer, no access to the sequential structure of
the input.

A large part of the behavior comes from the parameters upstream.

transformer:

Any sequence-based model that primarily uses self-attention to propagate
information along the time dimension.

more broadly:

Any model that primarily uses self-attention to propagate information
between the basic units of our instances.

pixels -> image transformer

graph nodes -> graph transformer

TRANSFORMER BLOCK

JUANTL

feed-forward

class Block(nn.Module):

def forward(self, x):

y = self.layernorm(y)

res

|
' |

y = self.attention(x) layer normalization

X=X+Yy

self-attention

y = self.layernorm(x)

layer normalization ‘

y = self.linear(x)

T

The basic building block of transformer models is
usually a simple transformer block.

The details differ per transformer, but the basic
ingredients are usually: one self-attention, one
feed-forward layer applied individually to each
token in the sequence and a layer normalization
and residual connection for each.

Note that the self-attention is the only operation
in the block that propagates information across
the time dimension. The other layers operation
only on each token independently.s

WHAT ABOUT AUTOREGRESSIVE MODELS?

targets e | | o 1 1
ol
transformer block o y\o‘: cous

transformer block

transformer block

inputs h e I | o ! VU‘!

123

What about autoregressive modeling?

If we do this naively, we have a problem: the self-
attention operation can just look ahead in the
sequence to predict what the next model will be.
We will never learn to predict the future from the
past. In short the transformer block is not a causal
sequence-to-sequence operation.

MASKING: MAKING SELF-ATTENTION CAUSAL

XT

f- apply mask softmax F

—0o0 0 0
xT w’ U
w’ w w
W =X"X W+ —o0 ifj>1 W =softmax(W’) YT = wxT

il

The solution is simple: when we compute the
attention weights, we mask out any attention from
the current token to future tokens in the
sequence.

Note that to do this, we need to set the raw
attention weights to negative infinity, so that after
the softmax operation, they become 0.

WHAT ABOUT AUTOREGRESSIVE MODELS?

Since the self attention is the only part of the

— | | X X transformer block that propagates information
argets e o ! !
across the time dimension, making that part
|:| |:| |:| |:| |:| |:| causal, makes the whole block causal.
T bl With a stack of causal transformer blocks, we can
easily build an autoregressive model.
causal transformer block
causal transformer block
1 inputs h e 1 1 4 ! VU«V
POSITION INFORMATION I To really interpret the meaning of the sentence,
we need to be able to access the position of the

TN

transformer block

This is not a real restaurant, it's a filthy burger jeint:

transformer block

This is not a filthy burger joint, it's a real restaurant:

transformer block

PRERAN

words. Two sentences with their words shuffled
can mean the exact opposite thing.

If we feed these sentences, tokenized by word, to
the architecture on the right, their output label
will necessarily be the same. The self-attention
produces the same output vectors, with just the
order differing in the same way they do for the
two inputs, and the global pooling just sums all
the vectors irrespective of position.

POSITION EMBEDDING I
word embeddings:

transformer block

Vthe, Vman; Vpetss Veat; Vagain

position embeddings:

V1,V2,V3,V4,Vs5,. ..

transformer block

] I e

added N Vihe + V1 Vihe + V4

127) OF just oaceverj the man pets the cat again

The idea behind position embeddings is simple.
Just like we assign each word in our vocabulary an
embedding vector, we also assign each position in
our vocabulary an embedding vector. This way, the
input vectors for the first “the” in the input
sequence and the second “the” are different,
because the first is added to the position
embedding vi1 and the second is added to the
input embedding v,.

This break our equivariance: the position
information becomes part of our embedding
vectors, and is fed into the self attention. This is
very effective, and very easy to implement. The
only drawback is that we can’t run the model very
well on sequences that are longer than the largest
position embedding observed during training.

From self-attention to transformers:

« define a transformer block

« mask the self-attention if a causal model is needed
« stack a bunch of transformer blocks

« add positional information to the input vectors

UNICORNS

ote, previously unex
surprising to the researchers was the fact th¢ the unicorns spke
perfect English.

The scientist named the population, after their distinctive horn,
Unicorn. The: sily e or e
sly unknown

Now, after almost t
phenomenon is finally

from the University of La
> 1 e exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks

d further into the valley. “By the
the water looked blue, with some

total compute

Total Compute Used During Training

10000
P
H
&
. I I I I I I
S & & & S e > ® P S
& & éf ey LS j"jg’ X P g@“
& LS & g4

Language models are few-shot learners. Brown et al 2019

130

Note the logarithmic scale.

