Embedding models

Recommenders

In this lecture, we’ll take the idea of embedding vectors
we first saw in the previous lecture, and we’ll look at
some other places it can be applied.

Our first topic is a very common task for machine
learning: recommender systems. This is something that
isn’t quite classification or regression and is best
modeled as an abstract task in its own right.

NETFLIX

The basic, standard example of a recommender system
is recommending movies to users.

That’s no accident. The modern concept of a
recommender system was probably born in 2006 when
Netflix, then mainly a DVD rental service, released a
dataset of user/movie ratings, and offered a 1M$ prize
for anybody who could improve the RMSE of their
current predicted ratings by 10% from.

This not only sparked an interest in recommendation
as a task, but also probably started the craze for
machine learning competitions that later led to
websites like Kaggle.

We'll use the movie task as a running example, but
we’ll also look at some other settings that translate to
the same abstract task.
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Let’s start by looking at the Netflix task, with what
types of data we have available. The defining property
of the abstract task of recommendation is that the
primary source of data is explicit user ratings: we ask
users to tell us which movies they like, and hopefully,
they’ll oblige. They do this only for a few movies, and
from the small set of user/movie pairs that we know
the rating for, we must predict the rest.

Predicting ratings based on explicit feedback is
sometimes known as collaborative filtering. The
users collaborate by providing ratings, to help filter the
movies they’ll like out of the large amount of available
movies.



The main drawback here is that the information can be
very sparse: we'll only get a few ratings per user, and
some users won'’t give any ratings at all. We’ll look at
some ways to deal with that in the next video. For now,
we’ll see what we can do with just explicit feedback.
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Movie recommendation is the canonical use case for
recommender systems, but the system applies to many
other systems.

Amazon was probably the first to use personalised
recommendation to help users navigate their website.
The principle is similar to Netflix. These are many
users, a large database of items. We have some
information about which users liked which items in the
past, so we can predict which ones they’ll like in the
future.
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Another use case is news stories, helping people find
the articles they’re interested in.
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In the most general sense, the abstract task of
recommendation is applicable to any situation where
you have two large sets of things and a particular
relation between them.

The relation can be binary (it holds or it doesn’t) or it
can come with a numeric value that indicates the extent
to which it holds. This could even be negative for when
the relation doesn’t hold.

Often, one side of the relation is a set of users and
another is a set of items, but this need not always be
the case. For instance, is you have a large collection of
ingredients and a large collection of recipes, in which
the ingredients occur, you could model this as a



“recommendation” task. The resulting prediction may
help to give ideas for which ingredient/recipe
combinations would work well together.

The key property of the abstract taskl is that in
principle, you have no information, no features, of the
two types of objects beyond which ones are linked to
each other. Or, if you do have some features as well, you
consider it secondary information, and you want to
base your predictions primarily on the property linking
the two classes of objects.
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The edges we predict may be unlabeled, in which case,
we should simply predict whether or not a link exists,
or they be be labeled. They can be labeled with classes,
for instance if users can like or dislike a movie, or they
can be labeled with a number, for instance with a
numeric rating given to the movie.

If we have something like a five star rating, it's up to us
whether we prefer to model it as a relation labeled
with a class or a relation labeled with a number.

Recommendation is probably the most widely
deployed machine learning method.

In fact, in many social media platforms,
recommendation is the primary means of navigation.
When you load your facebook feed, your twitter
timeline or your youtube homepage, the main content
you see, is based on recommendation. You see the
items in their database, that the algorithms think
you're going to like (or at least engage with), based on
your past behavior.
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In fact recommendation algorithms are now so
prevalent, that they are becoming a central component
in the fabric of society. For a large proportion of the
population, ofr instance, recommendation algorithms
decide which news stories they see, and which analysis
of those stories they’re exposed too.

The consequences are difficult to oversee, and many
issues have been discussed over the past few years.
Filter bubbles may shield people from encountering
different viewpoints. Optimizing algrithms for
engagement may drive people towards more extreme
viewpoints. And all this put together may even make
the process of democracy more easy to manipulate.



In other words, it is not entirely clear at the moment
whether recommendation algorithms are a force for
good, or something that has grown too big for us to
entirely oversee the consequences of. Either way, it
pays to understand exactly how they work.
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In the rest of the lecture, we’ll keep to the movie
recommendation use case, to keep things concrete, but
verything we say can easily be adapted to other
instances of the abstract recommendation task.

We'll start with the case where we have numeric
ratings, which may be negative if a user dislikes a
movie and positive if they like it. Surprisingly, this is
the easiest setting to handle. We'll see later how to
extend this to non-negative ratings, to class-labeled
ratings and to unlabeled ratings.

We can view the space of all possible ratings as a
matrix with the users along one axis, and the movies
along another.

For some user/movie combinations we have a rating.
Most of the matrix is empty, and these are the values
that we want to predict.

The problem, as we said before, is that we have no
representation for the users or for the movies. The only
thing we have is two big sets of “atomic” objects, when
we’d like to know when two users or two movies are
similar.

embedding models

Model object x by embedding vector vx.

Define a loss that we can backpropagate to learn

Learn the parameters of {v,} from data.

We’ve seen this problem before, in the word
embedding problem. There, each word was an atomic
object. What we did was represent each word by its
own vector, and then learn the values of the vectors to
perform some downstream task.



embedding vectors
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We'll apply the same trick here. We assign a vector of
initially random numbers to each user and to each
movie, and we will optimize the contents of these
vectors to give us good representations. The number of
elements k in each vector is a hyperparameter that we
can set freely, but we must use the same k for both the
user and the movie embeddings.

We arrange the embeddings into two matrices U and M.
These are the parameters of our model.

To see how to learn these values, let’s imagine first
what we might do if we could set them by hand. In

other words, how might we solve the problem if we
could craft feature vectors for each movie and each
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In that case, we can image setting the values by hand to
represent various aspects for the users and for the
movies that match each other. We might encode, for
instance in one feature how much a user likes romance.
We can make this negative for a strong dislike of
romance and positive for a strong affinity of romance.

We could then then encode in the corresponding movie
feature, how much romance the movie contains.

;
score function

score(u,m) = u'm

useru score = u;my + UMy + Uzmg

3
Qo
<,
[l
3

]

Based on these representations, we need to come up
with a score function. Some function that takes the
two representations and outputs a high positive
number if the user is well-matched to the movie, a
large negative number if the user will probably dislike
the movie, and a number near zero if the user will be
ambivalent about the movie.

There are a few options, but a particularly simple one
is the dot product between the user embedding and
the movie embedding. This neatly expresses how
much of a match the two are: if the user loves romance
and the movie contains loads of it, the romance term in
the sum becomes very big. The same if both values are
negative (the user hates romance and the movie is very
unromantic). for mismatches, the term becomes
negative and the score is brought down.

A second effect is one of magnitude. If the user is
ambivalent to romance (i.e. the romance feature is
zero), that term doesn’t count towards the total (and
for small values, the term contributes a little bit).

Other score functions are possible, but the dot product
is by far the most popular, and we’ll stick with that for
the rest of the lecture.



In a matrix multiplication A x B = C, each element of C
contains the dot product of one row of A with one
column of B. This means that multiplying UT with M
will gives us a matrix of rating predictions for every
user/movie pair.

In other words, our aim is to take the rating matrix R,
and to decompose it as the product as two factors U and
M.

This is why this kind of approach to recommendation
is sometimes called matrix factorization (or matrix
decomposition). Multiplying U and M together should
produce a matrix that is as close as possible to the rain
matrix we have,

optimization problem

Given R choose Uand Msothat UTM ~ R
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So our problem is that for a given incomplete matrix R
of ratings, we want to find two smaller matrices U and
M that multiply together into a rating matrix that is
somehow close to R.

To turn this into an optimization objective, we need to
define how to measure how close together to matrices
are. The simplest option is to measure the Frobenius

norm of the difference between the two matrices.

This sounds complicated, but it’s just the same as the
vector norm, but applied to matrices: we sum the
squares of the elements of the matrix together and take
the square root of the sum.

Minimizing the square of this value, is just minimizing
the sum of the squared differences between the true
rating matrix and our predictions. In other words, we
compute predictions by taking the dot product of the
user embedding and the movie embedding, we
compute the error of our prediction by subtracting
this from the true rating, and we minimize the sum of
squared errors.



We have a lot of missing values in R

One problem is that R is not complete. For most user/
movie pairs, we don’t know the rating (if we did, we
wouldn’t need a recommender system.

missing values

B L.
@I
& i cacs

The matrix R is actually an incomplete matrix. We often
fill in the unknown ratings with zeroes, but they are
really unknown values.

If we compute the squared errors for the whole matrix,
we are essentially telling our model to predict a zero
rating for all of these unknown values (when actually
the true ratings here may be very high or very low.

known ratings
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The solution is simple: we define the loss only for the
known ratings.

This is straightforward to do if we have both positive
and negative ratings, for instance likes and dislikes. We
just compute the squared errors only over the known
values of the matrix, eliminating other terms from the
sum.

finding U and

two options:
- alternating optimization

- gradient descent

So, now that we have our optimization objective, how
do we work out good values for our embedding
vectors?

The obvious choice is gradient descent. This is
probably the most versatile and scalable option, but
there is an alternative: alternating optimization.



alternating least squares (ALS)

Alternative to gradient descent: R = UTM.
- If we know M, solving for U is easy
- If we know U, solving for M is easy

So, starting with a random U and M.
loop:
fix M, compute new U

fix U, compute new M

We won'’t dig into it deeply, but here is the basic
principle. The equation R = UT is is a simple linear
equation with two unknowns. It’s easy to solve
analytically if we had one unknown (using basic linear
algebra methods).

ALS has some computational benefits for small
datasets, but in practice, gradient descent seems to be
more flexible, for instance in dealing with missing
values, different loss functions and in and adding
various regularizers.

gradient descent
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The simplest way to apply gradient descent is to
implement recommendation in an automatic
differentation system. If we do that, we can just define
U and M as parameters, compute our loss and
backpropagate. However, it’s instructive to work out
the gradients for the squared error loss by hand.
They’re not that complex, and they give us some insight
into exactly how the algorithm updates the embedding
values.

To do this, these are the gradients we need to work out.
The gradient of the loss L for the k-th embedding value
of the embedding of user ], and similarly for the movie
embeddings.

stochastic gradient descent
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To apply gradient descent, we need to work out the
gradients for our parameters: the embeddings of the
users and the embeddings of the movies.

We could implement the loss computation in a deep
learning system, and let backpropagation take care of
this, but we can actually work out the gradients
ourselves. It’s instructive to do that here, and to see
how gradient descent updates the parameters.

stochastic gradient descent
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We update the k-th value of the embedding for user 1,
by computing the error vector for user | over all movies,
and taking the dot product with the k-th feature over
all movies.

Imagine that the k-th value of the user and movie
embeddings represents how romantic the user and
movie are respectively. Now imagine that we had a
movie that we think is very romantic and a user that
we think is very romantic, that is, the both have high
values for the k-th value in their embedding. Since the
embeddings match well, we end up giving a high rating.

Now imagine that the actual rating was much lower, so
that we end up with a negative error: element Ein is a



large negative number. The update rule tells us what
this means. The movie’s k-th element was high, and
we're taking that as a constant at the moment.
Therefore, we can only assume that the large error was
due to the user. We update the user’s k-th value by the
error multiplied by the movie’s k-th value, subtracting
a large value.

In short, assuming that both the movie and the user
were romantic gave us a large error, and we are treting
the movie as a constant, so we conclude that the user
must be less romantic than we throught.

stochastic gradient descent
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When we look at the update for the movie, wesee the
opposite. If the same thing happened: the user and the
movie both have a high k-th value, we assume both are
romantic, we give the pair a high rating and geta
negative error, then we end up making the movie less
romantic, since we are treating the romanticness of the
user as a given.

In practice, of course, we apply both update rules. So
both the move and the user end up getting a little less
romantic.
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Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
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vectors in two dimensions. The plot reveals distinct genres, including clusters of
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source: Matrix Factorization Techniques for
Recommender Systems, Yehuda Koren et al (2009).

binary ratings: logarithmic loss

°® likes/dislikes P
wn oo
score(u,m) = o(u'm) = p(u likes m) =1—p(u dislikes m)
loss(U, M) = — Z log p(u likes m) — Z log p(u dislikes m)
1) €Riikes 1, €Raistikes

1
p(u dislikes m) /
0 / p(u likes m)

Tum

If the rating system is binary, like the like/dislike on
Youtube and Netflix, then the scores for each user/item
pair are best understood as classes. We can turn our
dot product score into a binary class by applying a
sigmoid to the dot product and applying a logarithmic
loss. We interpret the value after the sigmoid as the
probabiltiy that the user will like the movie, and 1
minus that value as the probability that the user will
dislike the movie, and we take the negative logarithm
of the probability of the correct option as our loss.



positives only
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In many recommender systems, we only get positive
ratings. You can “like” something, but you can’t dislike
it or assign a number.

The benefit of such rating systems is that users are
much more likely to give ratings. First, because it’s less
work, and second because it has a direct benefit for the
user. They’re no just doing it to improve their
recommendations (which they may not care about),
they are effectively bookmarking the things they like,
so that they can easily find them again. Thus you're
likely to get many more ratings if you build your
system this way.

The downside is that the modeling task is much more
complicated. It’s like a classification task where the
only labels you get are positive and unknown. For the
unknowns, you don’t know how many positives there
are, and how many negatives.

If we just optimize the score function to be as big as
possible for the known likes, then there’s nothing
stopping the system from making the ratings as high as
it can for all user/movie pairs.

negative sampling

Assume that the proportion of likes to dislikes is vanishingly small.

hyperparameter

Treat negative samples as dislikes
Train with logarithmic loss

Sample random movie user pairs as negative training samples

Take r negative samples for each positive one, with r a

A common and very effective trick is to sample random
pairs of users and items and assume that these are
negatives. Usually the proportion of positive user/
movie pairs is vanishingly small compared to the
proportion of pairs that are negative, or pairs for which
the users are ambivalent, so if we sample a random
pair, we can be almost certain that the user won’t like
the movie.

With these negative samples in hand, we can treat the
problem as a binary classification problem and re-use
what we learned for class-labeled ratings.

next video: extra information
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So far, we've assumed that we don’t have any
information about users and movies by themselves:
only the links between them. In practice, this isn’t true
at all: Netflix has lots of extra information about both
the users and the movies in its database. It’s just that
we’ve assumed that the ratings are the most
informative, so that we should start there.

Of course, ideally, we don’t want to dismiss any
information we have. In the next video, we’ll look at
how we can extend a recommendation system with
extra sources of information.



Embedding models

Improving recommenders

In this video, we’ll look at how we can take the basic
model from the last video, and extend it to improve its
performance.

improvements

- control for user bias
- control for movie bias
- regularization

- use implicit feedback
- use side information

ET
- control for temporal bias Ada 3141 PY
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These are the topics we’ll deal with.

Most of these tricks are based on the system that
ultimately won the Netflix prize, so we’ll assume that
we have numeric ratings.

Num. Users with Avg. Rating of

=l

112141618 2 22242628 3 32343638 4 42444648 5

source: https//wwwhackingnetfix.com/2006/10/netfiix_prize_d.html u

The average rating for each user is different. Some
users are very positive, giving almost every movie 5
stars, and some give almost every movie less than 3
stars.

If we can explicitly model the bias of a user, it takes
some of the pressure off the matrix factorisation, which
then only needs to predict how much a user will
deviate from their average rating for a particular

movie.

The same is true for movies. Some movies are
universally liked, and some are universally loathed.



b: generic bias
bi: user bias

bj: movie bias

score(i,j) = u;'m;j + b +b; +b

We model biases by a simple additive scalar (which is
learned along with the embeddings): one for each user,
one for each movie, and one general bias over all
ratings.

We can think of these parameters as taking some of the
weight off the embeddings. If user i is very positive,
and we didn’t have bias terms, we’d need to set their
embedding so that it’s postive for all movies. With the
bias term, the dot product just needs to model the
distance to the user’s average rating.

L2 regulariser

argmin loss(L, M)+ A, |[U[[F* +An|[M]|F°
u,m

The more weights we add for the users and the movies,
the more likely our model is to overfit. If this is a
danger, then it may help to regularize a little. We can to
this by a simple regularization term over the
parameters.

cold start problem

NETFLIX NETFLIX
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One big problem in recommender systems is the cold
start problem. When a new user joins Netflix, or a
new movie is added to the database, we have no ratings
for them, so the matrix factorization has nothing to
build an embedding on.

I this case we have to rely on implicit feedback and
side information.

implicit feedback

Proxies for possible ratings:
- Page views
- Wishlist

- Record cursor movement




using implicit “likes”

Movies watched by the user, but not rated
Movies browsed by the user

Movies liked by similar users

Movies hovered over with the mouse

Ni: all movies implicitly liked by user i

All of these are useful information, but we don’t want
to treat them the same as our regular likes. ultimately,
they’re much less reliable and they should be
interpreted differently.

new embedding Mimp
= 5 i

jEN;

There are different ways of handling this problem, but
this is the method used in the system that won the
Netflix prize.

We add a second matrix of movie embeddings Mimp,
and then compute a new user embedding which is the
sum of the x-embeddings of all the movies user x has
implicitly “liked”. That is, we simply sum up the
embeddings of all the movies the user has in some way
been associated with. This sum functions as a second
embedding for the user i.

Ni is the set of movies with which user i is associated
througn implicit information.

Note that there is a slightly counter-intuitive step here:
we are learning movie embeddings, but their only
function is to become a representation of the user.

imp __ Z
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score(i,j) = (u; + u™)Tm; + b, +b; + b

We then add the implicit-feedback embedding to the
existing one before computing the dot product.

To understand what’s happening, let’s look at the edge
cases. If the implicit associations don’t help at all, all
embedding vectors mimp will simply go to zero. If they
help for some movies but not for others, then only the
vectors of some movies will become non-zero.

The fact that the movie recommendations are used for



extra information As we noted in the last video, we do usually have
features for the movies and the users as well, it’s just
that the ratings are more predictive. Can we use the
features for the users and movies to boost our
EI,mj performance, and to help with the cold start problem?

»

More Like This

Here’s some of the information we may have for users

side information

and movies.

about movies about users This is essentially a big instance/feature matrix like
length country we’ve seen already in the classic setting: one for the
genre language movies and one for the users.
actors, director oS
synopsis login times ) . i . .
awards bio The challenge is to integrate this with the ratings, so

social media profile that we can extend the relatively sparse information

connection to other users .
we get from those by generalising over the sets of users

and movies.

categories: the feature applies or it doesn'’t.

User features: age, login, browser resolution, social media

Binary features only, for simplicity

A:: all features that apply to user u

implicit feedback, and add another matrix of

side embedding vector: one embedding for each feature
u = Z that can apply to a user. We sum up all the features that
SAL apply to user i and get another representation for the
user.
Y

We then assign each feature an embedding, and sum

over all features that apply to the user, creating a third
user embedding.
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score(i,j) = (u; + uiimp +uf®)Tm; + b; + b +b

We add it to the sum inside the dot product. We could
do the same for the movie information, but we will take
that as read, to keep the score simple

time

source: Collaborative

The Netflix data is not stable over time. It covers about
7 years, and in that time many things have changes.
The most radical change comes about four years in,
when Netflix changed the meaning of the ratings in
words (these appeared in mouseover when you
hovered over the ratings). Specifically, they changed
the one-star rating from “I didn’t like it” to “I hated it".
Since people are less likely to say that they hate things,
the average ratings increased.

Similarly, if you look at how old a movie is, you see a
positive relation to the average rating. Generally,
people who watch a really old movie will likely do so
because they know it, and want to watch. Whereas for
new movies, more people are likely to be swayed by
novelty and advertising. This means that new movies
have a temporal bias for lower ratings.

score(i,j,t) = ui(t)ij +bi(t)+Db5(t)+b

The solution is to make the biases, and the user
embeddings time dependent. For the movies we make
only the bias time dependent, since the properties of
the movie itself stay the same. For user embeddings,
we can actually make the embeddings time dependent,
since user tastes may change over time.



A very practical way to do this is just to cut time into a
small number of chunks and learn a separate
embedding for each chunk. Note that all the matrices
stay the same size. There are just fewer ratings in R.

The more chunks we cut time into, the better we can
model the time-dependency, but the worse our
individual embeddings get, since we have less and less
data per chunk.

) ——Plain
EN UM —— With biases:
SN
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Figure 4. Matrix factorization models' accuracy. The plots show the root-mean-square

error of each of four individual factor models (lower is better). Accuracy improves when
the factor model's dimensionality (denoted by numbers on the charts) increases. In

addition, the more refined factor models, whose descriptions involve more distinct
sets of parameters, are more accurate. For comparison, the Netflix system achieves
RMSE =0.9514 on the same dataset, while the grand prize’s required accuracy Is
RMSE = 0.8563.

Here is how the different additions to the basic matrix
factorization ultimately served to reduce the RMSE to
the point that won the authors the Netflix prize.

When your task consists of linking one large set of things
to another large set of things, based on sparse examples,
and little intrinsic information, matrix factorization may
be appropriate.

Extend your models with biases, regularizers, implicit likes,
side information and temporal dynamics.

That's it for recommendation. In the last videos in the
lecture we’ll take a few quick looks at other places
where embedding models can give us a new
perspective, and we’ll finish up with some general
notes on how to validate embedding models



Embedding models

PCA revisited

In the previous video, we saw that we could get
embeddings by thinking of our data as a big matrix,
and decomposing it into matrics of embeddings.

We can think of this as two traditional data matrices in

| useri | “features” of user i one: if we consider the users as instances, then the
movies are a big set of binary features. If we consider
R the movies as instances, then which users they are

liked by are their features.

{amow Jo saineay,

classic ML: factoring the data matrix In the classical machine learning setting, our data can

also be seen as a matrix (usually with an instance per

row, and a feature per column.
features
What would happen if we apply matrix factorization to

this matrix?

NB: In the following we’ll assume that the data have

instances

been mean-subtracted (the mean over all rows has

Lis been subtracted from each row).
v
welll assuwme L
tracte
con-sub!

If we apply the same principle as we did with the
recommender system, we are looking for two matrices,
W and C: the first containing “embeddings” for our
instances and the second “embeddings” for our
features, such that their dot product reconstructs, as
much as possible, the value of a particular feature for a
particular matrix.

If we do this succesfully,we get a dimensionality

reduction. One based on a linear transformation.

wi: a low-dimensional embedding, from which x; can be
reconstructed with low MSE.




the first principal component ¢,

Our first dimensionality reduction method, PCA, was
also based on a linear transformation.

how much of k-th PC to add
_ Haprnepsconpenet

in the reconstruction of x
x

Getting rid of

assume C1C =1

wcT =X
W =XC

In PCA, we assume that the principal components were
unit vectors and orthogonal to each other. We can do
the

by assuming that the columns of C are linearly
independent. In this case, we can rewrite W in terms of
C,and reduce the parameters of the model to just the
“feature embeddings”.

from matrix factorisation to PCA

argmin |[X — WCT|?
Ww,C
arg min || X — XCC"|]?
(¢
such that: CTC =1

solution:

- eigendecomposition

- singular value decomposition

- gradient descent / alternating least squares

This gives us a constrained optimisation problem that
is very close to PCA. It's not entirely equivalent, but
PCA is one of the solutions to this problem.

See: peterbloem.nl/blog/pca-2 for the full story.



incomplete PCA

arg min E (Xij — [WTCly)?
c ..
i,j€known

Dimensionality reduction/data completion

This perspective e allows us to modify the PCA
objective with the tricks we’ve seen in the
recommender setting.

For instance, if our data has missing values, we can
focus the optimization only on the known values,
giving us a mixture of dimensionality reduction and
data completion.

We can then learn on the low-dimensional
representations, or reconstruct the data to give us
imputations for the missing data

L2 regulariser

) 2
arg min [|X — T +v: ZHW1H22+YQZ||C1H22
. - 3

We can also add a regularizer to constrain the
complexity of our embeddings.

L1 regulariser: sparse PCA

. 2 2 2
argmin X — WCTle” +v1 3 lwilh®+v2 Y llglh
. : j

An L1 regularizer, as we know, promotes sparse
models: models for which parameters are exactly zero.
In this case that means that our embeddings are more
likely to contain zeroes, which can make it easier to
interpret the results.

PCA Sparse PCA

Here’s an example of a dataset reduced to 3D. It’s a bit
difficult to see, but the points in the sparse PCA should
be more axis aligned.



other variants

logistic PCA classic pcA

binary data: logistic PCA

apply logistic function, use log loss

positive data: non-negative PCA

use non-negative matrix factorization -

If our data has binary values, then we can reduce it
with the same trick we saw before: apply a sigmoid and
fit the log loss. As you can see on the right, this often
gives us much better separation in the reduced
dimensionality.

If we have binary data that is largely missing, for which
we only know some of the postives, non-negative
matrix factorization gives us non-negative PCA.

Powerful and flexible, but:

- Usually no analytical solution
Gradient descent always an option

- Sequential computation required to get ranked components.
Standard PCA returns ranked components analytically

Embedding models

Graph models

In this video, we’ll look at how some of these concepts
can be applied to graphs. This is a complex subject, so
we’ll only give a very high-level overview, without
going into many details.

social graphs
protein interaction
traffic networks

knowledge graphs

Graphs are an even more versatile format for capturing
knowledge than matrices and tensors. Many of the
most interesting datasets come in the form of graphs.



link prediction

Assume the graph is
incomplete,

predict which links are
missing

In link prediction, we assume the graph we see is
incomplete (which is usually the case) and we try to
predict which nodes should be linked .

recommendation as link prediction

john ——— jurassic_park

\

schindlers_list

mary
inception

sandra =——————————— memento

We can see recommendation as a particular instance of
the link prediction problem. Here, the graph is
bipartite: we have two different types of nodes (users
and movies), and links are always from one type to the
other.

link prediction

Sy
_

score(i,j) = n-LTn]-

In general link prediction, we graph may not be
bipartite, so we just learn a single embedding matrix
for all nodes. We can then compute a score for the
likelihood of a link existing in the graph between nodes
i and j with the dot product, and train the embeddings
to learn the known links, and use them to predict new
links.

This way we can predict which proteins might interact
with each other, which people in a social network may
be friends (or should be friends) and so on.

In short, we apply the principle of matrix factorization
to the adjacency matrix of a graph. We can then use all
the tricks from the first two videos to optimize our

knowledge graphs

. likes . .
(et john m——————— jurassic_park
o0t

male / \

mary

d,rs%d
schindlers_list spielberg
inception —

female nolan

sandra =——————— memento

Wilcke, Xander,Peter Bloem, and Victor De Boer. The knowledge graph as the default data
i o 1.1-2(2017):39-57.

Knowledge graphs are graphs where nodes represent
concepts or entities, and links are labeled with a
relation. It’s a bit like a lot of different recommendation
tasks rolled into one.

Note how the extra knowledge of different relations
can potentially help our predictions of other relations.
For instance, knowing that John likes Memento, and
that Memento is directed by Chrisopher Nolan, may
allow us to conclude that John may like Inception at
well.



knowledge graph link prediction

R

score(i,1,j) ZN“‘ - Ry - Ny

k
I®I®I lsum
i T j

There are many ways to do link prediction in
knowledge graphs, but a very simple approach is to
learn node embeddings as before, but to also learn a
separate embedding for the different relation types.

This score function is called “distmult”, but many
others exist with differing levels of complexity.

We can think of this as decomposign a 3-tensor into the
product of three embedding matrices.

node classification

fraud prediction
nodes: people, links: transactions

fake news detection
nodes: sites,links: hyperlinks

genre prediction

nodes: users and movies, links: ratings

E embeddings labels

Node classification is another task: for each node, we
are given a label, which we should try to predict.

If we have vector representations for our nodes, we can
use those in a regular classifier, but the question is,
how do we get those embeddings, and how do we
ensure that they capture the required information?

We can’t just assign node embeddings like before, and
apply gradient descent on the classification loss. That
would ignore the graph structure entirely and would
train each embedding in isolation to produce a
particular clasification. We wouldn’t generalize
between nodes.

no mixing

mixing node embeddings

one mixing step

many mixing steps

The principle we will be using to learn/refine our
embedding is that of mixing embeddings. To develop
our intuition, imaging that we assign all nodes random
3D embeddings, with values between 0 and 1. For the
purposes of visualization, we can then interpret these
as RGB colors. We start with an entirely random color
per node.

We then apply a mixing step: we replace each node
color by the mixture (the average) of itself and its
direct neighbors. At first, the embeddings express
nothing but identity, each node has its own color. After
one mixing step, the node embeddings express
something about the local graph neighbourhood: a
node that is close to many purple nodes will come
slightly more purple itself.

After many mixing steps, all nodes have the same
embedding, expressing only information about the
entire graph. Somewhere in-between we find a sweet
spot: where the embeddings express the node identity,
but also the structure of the local graph neighborhood.



The simplest way to mix node embeddings is just to

mixing node embeddings: average the neighbors
make the new node embedding the sum or average of
of all the embeddings of the neighbors.

We can achieve this mixing by multiplying the
embedding vector by the adjacency matrix: this results
in the sum of the embeddings of the neighbouring
nodes. We also add self-loops for every node so that the

options for normalizing A: current embedding stays part of the sum.

- A+1, row-normalised (works on most graphs) If we sum, the embedding will blow up. with every

- A +1, symmetric normalisation (only on undirected graphs) mixing step. In order to control for this we need to

normalize the adjacency matrix. If we row-normalize,
we get the average over all neighbours. We can also use
a symmetric normalization, which leads to a slightly
different type of mixing but only works on undirected
graphs.

See this article for more details: https://
tkipf.github.io/graph-convolutional-networks/

graph convolutional network (GCN) This is the principle used in graph convolution

networks. The word convolution is used because they

Start with some node embeddings No. were inspired by image convolutions, but the

connection is loose, so don’t read too much into it.
Compute a new embedding for each node: the average of

its neighbor’s embeddings:

AN The idea is that we start with some node embeddings,

Apply fully connected NN layer to each node embedding In order to make the mixing trainable, we add aa
independently: multiplication by a weight matrix. This matrix applies a

N, = o(ANgW +b) linear projection to the mixed embeddings.

The sigmoid activation can also be ReLU or linear. What

works best depends on the data.

A layered structure, where we both mix and transform
=of ) the initial embeddings.

0 =0(Ac(ANyW)V)

The output O is a matrix in which each column

after k layers, the embedding mixes in information from k represents one of our nodes based both on the initial
hops away embedding and the local network structure. We can
then use the representations i O to perform our

classification.




targets  neg  pos pos neg  neg

outputs
apply fully connected layer Vx + ¢
softmax activation

average neighbors
Ni: hidden layer

apply fully connected layer Wx + b
Sigmoid, RelU ot inearactivation

log loss

p(pos)
plneg)

average neighbors

Ng: initial embeddings

Here is how we do node classification with graph
convolutions. We ensure that the embedding size of the
last layer is equal to the number of classes (2 in this
case). We then apply a softmax activation to these
embeddings and interpret them as probabilities over
the classes.

This gives us a full batch of predictions for the whole
data, for which we can compute the loss, which we then
backpropagate.

The mixing trick works for link prediction too. We
simply apply a few GCN layers to mix up our
embeddings, and then use them to predict our

When we do link prediction, we can perform some
graph convolutions on our embeddings and then
multiply them out to generate our predictions. We
compare these to our training data, and backpropagate
the loss.

Depth is a problem: high connectivity diffuses information

Usually full-batch: no straightforward way to break up the
graph into minibatches.

Pooling is not selective: all neighbours are mixed equally
before weights are applied.

The weights do not affect which neighbours receive attention

Embedding models

Validation

In this video, we’ll look at some of the peculiarities of
testing a trained embedding model



validation Ot is important to carefully consider our validation
protocol. In other words: how do we withhold test data
to train on.

Let’s start with recommender systems. At first, you
might think that it’s a good idea to just withhold some

x ‘

users.

However, this doesn’t work: if we don’t see the users

) during training, we won’t learn embeddings for them,
test ?
which means we can’t generate predictions.

validation How about if we withhold some movies? The same
thing happens.

test ‘
=

=

ed features

i

TSIAOW JO 591183},
o

“features” of user i

the features of our users are their ratings over all movies

the features of our movies are their ratings from all users.

inductive vs transductive learning This is related to the difference between inductive and

transductive learning. [ the transduction setting, the
features  labels features  labels learning is allowed to see the features of all data, but

the labels of only the training data.

test t t

inductive transductive




inductive vs transductive learning

Embedding models only support transductive learning.

If we don't know the objects untilafter training, we won't have embedding vectors.

Word2Vec: we need to know the whole vocabulary at
training time.

Recommendation: we need to know all users and movies.

Graph models: we need to know the whole graph.

training algorithm all users, and all movies, but
withhold some of the ratings.

graph

graphs: node classification In the case of node classification, we provide the

algorithm with the whole graph, and a table linking the
node ids to the labels. In this table, we withhold some

node id labels
E% of the labels.




from last lecture as well.

No training on data from the future

ratings, nodes can have timestamps

All training data should come before all validation data,
which should come before all test data.

Abstract task: recommendation
Good for any situation where you have two large sets of objects, with relations between them

Matrix factorization: helpful perspective on
recommendation, and also in other settings (PCA)

Graph models: generalisation of recommendation, apply
graph convolution to look deeper into the graph.

micourse@peterbloem.nl




