
Reinforcement Learning
Part 1: The abstract task

Machine Learning
mlvu.github.io

Vrije Universiteit Amsterdam

In	this	lecture	we’ll	look	at	reinforcement	learning.	
Reinforcement	learning	is	7irst	and	foremost	an	
abstract	task:	like	regression,	classi7ication	or	
recommendation.

the adaptive intelligent agent

2

The	7irst	thing	we	did,	in	the	7irst	lecture,	when	we	7irst	
discussed	the	idea	of	machine	learning,	was	to	take	it	
of)line.	We	simpli7ied	the	problem	of	learning	by	
assuming	that	we	have	a	training	set	from	which	we	
learn	a	model	once.	We	reduced	the	problem	of	
adaptive	intelligence	to	a	function	from	a	dataset	to	a	
model		by	removing	the	idea	of	interacting	with	an	
outside	world,	and	by	removing	the	idea	of	continually	
learning	and	acting	at	the	same	time.	

Sometimes	those	aspects	can	not	be	reduced	away.	In	
such	cases	we	can	use	the	framework	of	
reinforcement	Learning.	Reinforcement	learning	is	
the	practice	of	training	agents	(e.g.	robots)	that	interact	
with	a	dynamic	world,	and	to	train	them	to	learn	while	
they’re	interacting.

reinforcement learning

3

learnerpolicyEnvironment

state

reward

action

Reinforcement	learning	(RL)	is	an	abstract	task,	and	it	
is	one	of	the	most	generic	abstract	tasks	available..	
Almost	any	learning	problem	you	encounter	can	be	
modelled	as	a	reinforcement	learning	problem	
(although	better	solutions	will	often	exist).	

The	source	of	examples	to	learn	from	in	RL	is	the	
environment.	The	agent	7inds	itself	in	a	state,	and	
takes	an	action.	In	return,	the	environment	tells	the	
agent	its	new	state,	and	provides	a	reward	(a	number,	
the	higher	the	better).	The	agent	chooses	its	action	by	a	
policy:	a	function	from	states	to	actions.	The	policy	is	
essentially	the	model	that	we	learn.	As	the	agent	
interacts	with	the	world	the	learner	adapts	the	policy	
in	order	to	maximise	the	expectation	of	future	rewards.	

In	order	to	translate	your	problem	to	the	RL	abstract	
task	you	must	decide	what	your	states	and	actions	are,	
and	how	to	learn	the	policy.	

The	only	true	constraint	that	RL	places	on	your	
problem	is	that	for	a	given	state,	the	optimal	policy	
may	not	depend	on	the	states	that	came	before.	Only	
the	information	in	the	current	state	counts.	This	is	
known	as	a	Markov	decision	process.

toy example

4

state: current
location

reward: 1 if we’ve found
the dust. 0 otherwise.

action: left, right,
up, down

dust

Here	is	a	very	simple	example	for	the	7loor	cleaning	
robot.	The	room	has	six	positions	for	the	robot	to	be	in,	
and	in	one	of	these,	there	is	a	pile	of	dust.	For	now	we,	
assume	that	the	position	of	the	dust	is	7ixed,	and	the	
only	job	of	the	robot	is	to	get	to	the	dust	as	quickly	as	
possible.	Once	the	robot	7ind	the	dust,	the	world	is	
reset,	and	the	robot	is	placed	in	a	random	position.	
This	is	not	a	very	realistic	example,	but	it	pays	to	start	
very	simple.	(If	you	really	wanted	to	solve	this	speci7ic	
problem	you	would	simply	use	A*)	

The	environment	has	six	states	(the	six	squares).	The	
actions	are:	up,	down,	left	and	right.	Moving	to	any	
state	yields	a	reward	of	zero,		except	for	the	G	state,	in	
which	case	it	gets	a	reward	of	1.	

tic-tac-toe

5

Opponent/
Game engine

state of the board
after their move

reward:
 1 if we won
-1 if we lost
 0 otherwise

action: my move

Games	can	also	be	learned	through	RL.	In	the	case	of	a	
perfect	information,	turn-based	two	player	game	like	
tic-tac-toe	(or	chess	or	Go).	The	states	are	simple	board	
positions.	The	available	actions	are	the	moves	the	
player	is	allowed	to	make.	After	an	action	is	chosen,	the	
environment	chooses	the	opponent’s	move,	and	
returns	the	resulting	state	to	the	agent.	All	states	come	
with	reward	0,	except	the	states	where	the	game	is	won	
by	the	agent	(reward	=	1)	or	the	game	is	lost	(reward	
-1).	A	draw	also	yields	reward	0.

cart pole

6

physics engine/
real world

angle of pole

reward:
-1 if poll vertical
 0 otherwise

left, right

image source: https://medium.com/@tuzzer/cart-pole-balancing-with-q-learning-b54c6068d947

7source: https://www.youtube.com/watch?v=VCdxqn0fcnE

Here	is	an	example	with	a	slightly	faster	rate	of	actions	
chosen:	controlling	a	helicopter.	The	helicopter	is	7itted	
with	a	variety	of	sensors,	telling	it	which	way	up	it	is,	
how	high	it	is,	it’s	speed	and	so	on.	The	combined	
values	for	all	these	sensors	at	a	given	moment	form	the	
state.	The	actions	following	this	state	are	the	possible	
speeds	of	the	main	and	tail	rotor.	The	rewards,	again,	
are	zero	unless	the	helicopter	crashes,	in	which	case	it	
gets	a	negative	reward.	To	train	the	helicopter	to	do	
speci7ic	tricks	(like	7lying	upside	down),	we	can	give	
certain	states	a	positive	reward	depending	on	the	trick	

source:	https://www.youtube.com/watch?
v=VCdxqn0fcnE	

DeepMind Atari

8source: https://www.youtube.com/watch?v=V1eYniJ0Rnk (Two Minute Papers)

One	bene7it	of	RL	is	that	a	single	system	can	be	
developed	for	many	different	tasks,	so	long	as	the	
interface	between	the	world	and	the	learner	stays	the	
same.	Here	is	a	famous	experiment	by	DeepMind,	the	
company	behind	AlphaGo.	The	environment	is	an	Atari	
simulator.	The	state	is	a	single	image,	containing	
everything	that	can	be	seen	on	the	screen.	The	actions	
are	the	four	possible	movements	of	the	joystick	and	the	
pressing	of	the	7ire	button.	The	reward	is	determined	
by	the	score	shown	on	the	screen.	

The	amazing	thing	here	is	that	the	system	was	not	pre-
programmed	with	any	knowledge	of	any	of	the	games.	
For	several	of	the	games	the	system	learned	play	the	
game	better	than	the	top	human	performance.	

source:	https://www.youtube.com/watch?
v=V1eYniJ0Rnk	

also possible

9

probabilistic state
transitions

partially observable
states

G

Here	are	some	extensions	to	RL	that	we	won’t	go	into	
(too	much)	today.		

Sometimes	the	state	transitions	are	probabilistic.	
Consider	the	example	of	controlling	a	robot:	the	agent	
might	tell	its	left	wheel	to	spin	5	mm,	but	on	a	slippery	
7loor	the	resulting	movement	may	be	anything	from	0	
to	5	mm.	

Another	thing	you	may	want	to	model	is	partially	
observable	states.	For	example,	in	a	poker	game,	there	
may	be	7ive	cards	on	the	table,	but	three	of	them	might	
be	face	down.		

image	source:	http://www.dwaynebaraka.com/blog/
2013/10/03/why-most-csr-budgets-are-wasted/	

a policy network

10

state

action

po
si

tio
n

an
gl

e

le
ft

rig
ht

softmaxs s

Before	we	decide	how	to	train	our	model,	let’s	decide	
what	it	is,	7irst.	There	are	many	ways	to	represent	RL	
models,	but	most	of	the	recent	breakthroughs	have	
come	from	using	neural	networks.	Our	job	is	to	map	
states	to	actions,	to	states	to	a	distribution	over	
actions.	We	represent	the	state	by	two	numbers	(the	
position	of	the	cart	and	the	angle	of	the	pole)	and	we	
use	a	softmax	output	layer	to	produce	a	probability	
distribution	over	the	two	possible	actions.		

If	we	somehow	7igure	out	the	right	weights,	this	is	all	
we	need	to	solve	the	problem:	for	every	state,	we	
simply	feed	it	through	the	network	and	either	choose	
the	action	with	the	highest	probability,	or	sample	from	
the	outputs.	

So	now	all	we	need	is	a	way	to	7igure	out	the	weights.	

a policy network

11

episodic learning

Play short stretches of learning activities.

One episode:

• A game of tic-tac-toe, chess, go

• 3 minutes of similated helicopter flight

• 1 game of breakout until death

Train for one episode, observe reward, learn, repeat
Result is a fixed, non-updating policy for production

12

Even	though	reinforcement	learning	agents	can	
theoretically	learn	in	an	online	mode,	where	they	
continuously	update	their	model	while	they	explore	
the	world,	this	can	be	a	very	dif7icult	setting	to	control,	
and	it	may	lead	to	very	unpredictable	behaviors.	In	
practice	this	is	rarely	how	agents	are	trained.	

A	more	common	setting	is	that	of	episodic	learning.	
We	de7ine	a	particular	activity	that	we’d	like	the	robot	
to	learn,	and	call	that	an	episode.	This	could	be	one	
game	of	chess,	one	helicopter	7light	of	a	7ixed	length,	or	
one	Atari	game	for	as	long	as	the	agent	can	manage	to	
stay	alive.	

We	then	let	the	agent	act	one	episode,	based	on	its	
current	policy.	We	observe	the	total	reward	at	the	end	
of	the	policy,	use	that	to	update	the	parameters	of	the	
policy	(to	learn)	and	then	start	another	episode.		

Often	after	training	like	this	for	a	while,	when	we	are	
convinced	we	have	a	good	policy,	we	keep	it	7ixed	when	
we	roll	it	out	to	production.	That	is,	when	you	buy	a	
robot	vacuum	cleaner,	it	may	contain	a	policy	trained	
by	reinforcement	learning,	but	it	almost	certainly	won’t	
update	its	weights	as	it’s	vacuuming	your	7loors.		

the four problems of RL

Sparse loss

Delayed reward, credit assignment

Non-differentiable loss

Exploration vs. exploitation

13

s s

So	what’s	the	big	problem?	We	know	how	to	7ind	good	
weights	for	a	neural	network	already:	we	use	
minibatch	gradient	descent	and	use	back	propagation	
to	work	out	the	gradient.	

There	are	three	problems	that	make	it	dif7icult	to	apply	
gradient	descent	as	we	know	it.	

If	your	problem	has	any	of	these	properties,	it	can	pay	
to	tackle	it	in	a	reinforcement	learning	setting,	even	if	
the	problem	doesn’t	look	like	a	reinforcement	learning	
task	to	begin	with.	For	instance,	an	autoencoder	
architecture	with	a	non-differentiable	sampling	step	in	
the	middle	could	be	trained	using	reinforcement	
learning	methods,	even	though	the	task	doesn’t	really	

sparse loss

14

m e m e m e m e m

action

state
reward=0 reward=0 reward=0 reward=-1

The	problem	of	sparse	loss	is	the	issue	that	often	very	
few		states	have	a	meaningful	reward.		

In	a	chess	game,	there	are	three	states	with	meaningful	
loss:	lost,	won	or		a	draw.	All	other	states,	while	the	
game	is	still	in	progress,	provide	no	meaningful	
reward.	We	could	of	course	estimate	the	value	of	these	
states	to	help	our	model	learn	(more	about	that	later),	
but	we	might	estimate	these	values	wrong.	If	we	can	
learn	purely	from	the	sparse	reward	signal	(the	
rewards	that		we	know	to	be	correct),	we	can	be	sure	
that	we’re	not	inadvertently	sending	the	model	in	the	
wrong	direction.	

The	problem	of	delayed	reward	refers	to	the	property	

that	a	high	

sparse loss

ad-hoc solutions:

Start with imitation learning:
Supervised learning, copying human action

Reward shaping:
Guessing the reward for intermediate states, or states near
to good states.

Auxiliary goals:
Curiosity, maximum distance traveled

15

Even	the	best	reinforcement	learning	systems	have	
trouble	learning		some	tasks	purely	from	sparse	loss.	
Some	tricks	can	be	employed	to	help	the	model	along.		

Good	explanation	of	reward	shaping:	https://
www.youtube.com/watch?v=xManAGjbx2k	

delayed reward (aka credit assignment)

16

m e m e m e m e m

action

state
reward=0 reward=0 reward=0 reward=-1

The	problem	of	delayed	reward	is	that	we	have	to	
decide	on	our	immediate	action,	but	we	don’t	get	
immediate	feedback.		

In	the	cart	pole	task,	the	pole	falls	over,	it	may	be	
because	we	made	a	mistake	20	timesteps	ago,	but	we	
only	get	the	negative	reward	when	the	pole	7inally	hits	
the	ground.	Once	the	pole	started	tipping	over	to	the	
right,	we	may	have	moved	right	twenty	times:	these	
were	good	actions,	that	should	be	rewarded,	they	were	
just	too	late	to	save	the	situation.	

Another	example	is	crashing	a	car.	If	we’re	learning	to	
drive,	this	is	a	bad	outcome	that	should	carry	a	
negative	reward.	However	most	people	brake	just	
before	they	crash.	These	are	good	actions	that	led	to	a	
bad	outcome.	We	shouldn’t	learn	not	to	brake	before	a	
crash,	we	should	work	backward	to	where	we	went	
wrong	(like	taking	a	turn	at	too	high	a	speed)	and	apply	
the	negative	feedback	to	only	those	actions.	

This	is	also	called	the	credit	assignment	problem,	
and	it’s	what	reinforcement	learning	is	all	about.	

non-differentiable loss

17

m e m e m e m e m

action

state

reward=1 reward=1 reward=1 reward=-1

reward: -1

backpropagation

If	we	draw	a	run	of	our	policy	like	this,	we	are	
essentially	unrolling	the	execution	of	the	network	over	
time,	much	like	we	did	with	the	recurrent	neural	nets.	
If	we	could	apply	backpropagation	through	time,	we	
could	let	the	backpropagation	algorithm	deal	with	
credit	assignment	for	us.	We	take	the	reward	at	each	
point,	and	backpropagate	it	through	the	run	to	
compute	the	gradients	over	the	weights.	

Here	unfortunately,	a	lot	of	parts	of	the	model	aren’t	
differentiable,	chief	among	them	the	environment.	We	
don’t	usually	know	exactly	how	the	environment	
computes	the	next	state:	we	need	to	pay	in	exploration	
to	7ind	out	how	the	environment	works.

exploration vs. exploitation

18

+1

start

+100

The	7inal	problem	in	RL	is	the	exploration	vs.	
exploitation	tradeoff.		

In	this	scenario	drawn	here	the	squares	are	states,	and	
the	agent	moves	from	state	to	state	to	7ind	a	reward.	
Each	time	the	agent	7inds	a	reward	it	is	reset	to	the	
start	state.	This	is	like	the	7loor	cleaning	robot	example.	

An	agent	stumbling	around	randomly	will	most	likely	
7ind	the	reward	top	right	7irst.		After	a	few	resets	it	will	
have	7igured	out	how	to	return	to	the	+1	reward.	If	it	
exploits	only	the	things	it	has	learned	so	far,	it	will	keep	
coming	back	for	the	+1	reward,	never	reaching	the	
+100	reward	at	the	end	of	the	long	tunnel.	An	agent	
that	follows	a	more	random	policy,	that	sometimes	
moves	away	from	known	rewards	will	explore	more	
and	eventually	7ind	the	bigger	treasure.	At	7irst,	
however,	the	exploring	agent	does	markedly	worse	
than	the	exploiting	agent.	

There	is	no	de7inite	answer	to	how	to	optimise	this	
tradeoff,	although	a	few	best	practices	exist.

non-differentiable loss

19

m e m e m e m e m

action

state

reward=1 reward=1 reward=1 reward=-1

reward: -1

backpropagation

Of	course,	if	we	could	solve	the	problem	of	non-
differentiable	loss,	we	could	update	our	weights	in	a	
much	more	directed	fashion.		We	could	follow	the	
gradient	of	the	reward	rather	than	take	random	steps	
in	model	space.	The	two	main	algorithms	to	do	this	are	
policy	gradients	and	Q-learning.	We’ll	look	at	both	in	
the	next	two	videos.

coming up

• Random search

• Policy gradients

• (Deep) Q learning

20

Reinforcement Learning
Part 2: Random search and policy gradients

Machine Learning
mlvu.github.io

Vrije Universiteit Amsterdam

In	this	video,	we’ll	look	at	two	simple	methods	for	
training	a	policy	network:	random	search	and	policy	
gradients.

reinforcement learning

22

learnerpolicyEnvironment

state

reward

action

random search

pick a random point m in the model space

loop:

pick a random point m’ close to m

if loss(m) < loss(m’):

m <- m’

23

Let’s	start	with	a	very	simple	example:	random	search.

random search

24

Here	is	random	search	in	action.	The	transparent	red	
offshoots	are	successors	that	turned	out	to	be	worse	
than	the	current	point.	The	algorithm	starts	on	the	left,	
and	slowly	(with	a	bit	of	a	detour)	stumbles	in	the	
direction	of	the	low	loss	region.	

example: tic-tac-toe

25

Opponent/
Game engine

state of the board
after their move

reward:
 1 if we won
-1 if we lost
 0 otherwise

action: my move

only a
t the e

nd

of the
 game

As	an	example,	let’s	look	at	how	we	might	learn	to	play	
tic-tac-toe	by	framing	it	as	a	reinforcement	learning	
problem	and		

	We’ll	return	to	this	example	for	every	reinforcement	
learning	algorithm	we	introduce.

example: tic-tac-toe

environment: some fixed opponent(s)
Iterate from a random player

episodes: games against opponent
Play by sampling from the output distribution

state: board
action: placing a cross or circle

policy: neural network
outputs probabilities over 9 possible actions

26

0 0 0

0 -1 1

0 0 -1

0.8 0 0

0.1 0 0

0 0.1 0

state:

p(action)

The	7irst	thing	we	need	to	decide	on	is	what	the	
environment	will	be.	To	keep	things	simple,	we’ll	
assume	that	we	have	some	7ixed	opponent	that	we	are	
going	to	try	to	beat.	This	could	be	some	algorithmic	
player	we’ve	built	based	on	simple	rules.	If	we	don’t	
have	any	such	algorithm	available,	we	could	just	start	
with	an	opponent	that	plays	random	moves,	train	a	
policy	network	that	beats	that	player,	and	iterate:	we	
make	our	trained	network	the	new	opponent	and	train	
a	new	network	to	beat	it.		

It’s	often	good	to	maintain	a	pool	of	opponents	and	
sample	one	at	random	for	each	episode,	so	that	the	
network	doesn’t	over7it	to	beating	one	opponent,	but	
maintains	a	good	general	strategy.	

	The	episodes	are	simple	games	against	the	opponent.	
We	play	a	game	by	taking	our	current	policy,	and	
sampling	from	the	output	distribution	over	the	
possible	actions.	

The	state	is	simply	the	game	board	at	any	given	
moment,	and	an	action	is	placing	our	symbol	in	one	of	
the	squares.		

Finally,	we	model	our	policy	by	a	neural	network,	a	
policy	network.	We	represent	the	board	as	a	3x3	
matrix,	containing	0s	for	empty	squares,	-1s	for	
squares	occupied	by	the	opponent,	and	1s	for	squares	
we	occupy.	We	can	7latten	this	matrix	into	a	vector	and	
feed	it	to	a	fully	connected	network,	or	keep	it	a	2	
tensor	and	feed	it	to	a	convolutional	neural	net.	The	

output	layer	of	the	network	also	contains	9	units	that	
represent	the	squares	of	the	board.	We	softmax	the	
output	layer	and	interpret	the	resulting	probabilities	as	
a	probabilitstic	policy:	the	probability	on	the	7irst	
output	node	is	the	probability	that	we’ll	place	a	cross	in	
the	top	left	corner	square.	

We	needn’t	worry	about	forcing	the	neural	network	not	
to	make	illegal	moves,	like	placing	a	cross	where	there	
already	was	a	symbol.	If	we	simply	ensure	that	an	
illegal	move	always	results	in	instant	loss	of	the	game,	
then	it’s	likely	that	the	neural	network	learns	not	to	
place	crosses	in	those	squares.	In	short,	we	don’t	
hardcode	the	rules,	we	let	the	network	learn	the	rules.	

random search

27

current model p
won 8 games out 20

next model p’
won 13 games out 20

p <- p’perturb p

Training	this	model	by	random	search	is	very	simple.	
We	gather	up	all	the	weights	of	the	policy	network	into	
a	vector	p	and	call	that	our	current	model.	We	run	a	
few	episodes,	that	is	games	against	the	opponent,	and	
we	see	how	many	it	wins.	More	precisely,	what	it’s	
average	reward	is	over	all	the	episodes.	We	then	apply	
a	small	perturbation	to	p,	like	some	random	noise,	and	
call	the	resulting	policy	p’.	We	check	the	average	
reward	for	p’,	and	if	it’s	higher	that	that	for	p,	we	call	p’	
the	new	current	model.		

If	it	isn’t	higher,	we	discard	p’	and	keep	p	as	the	current	
model.	

We	iterate	for	as	long	as	we	have	patience	and	see	if	the	

random search (Dec 2017)

28

This	is	an	exceedingly	simple	method,	but	for	some	
games,	like	the	Atari	game	Frostbite,	it	already	works	
very	well.	

Note	that	the	Atari	challenge	is	“from	pixels”.	That	
means	we’re	looking	at	a	convolutional	neural	net	that	
was	trained	not	by	gradient	descent	but	by	random	
search.

non-differentiable loss

29

m e m e m e m e m

action

state

reward=1 reward=1 reward=1 reward=-1

reward: -1

backpropagation

In	the	last	video,	we	noted	two	things:		

1. We	can	unroll	the	computation	of	an	episode	in	our	
learning	process.	

2. We	cannot	backpropagate	through	this	unrolled	
computation	graph,	because	parts	of	it	are	not	
differentiable.	Speci7ically	the	sampling	of	actions	is	
not	differentiable,	and	the	computation	of	the	
environment	is	not	even	accessible	to	us:	it’s	
essentially	secret	that	we	are	meant	to	discover	by	
learning.

policy gradient descent

30

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) = 1

<- good

<- good

<- good

<- good

<- good

<- good

<- good

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) =0

r(s,a) = -1

<- bad
<- bad

<- bad
<- bad

<- bad
<- bad

<- bad

Policy	gradient	descent	is	a	simple	solution.	We	run	an	
episode,	compute	the	total	reward	at	the	end,	and	
apply	that	as	the	feedback	for	all	the	steps	in	our	policy.	
If		we	had	a	high	reward	at	the	end	we	compute	the	
gradient	for	a	high	value	and	follow	that,	and	if	we	had	
a	low	reward	we	compute	the	gradient	for	a	low	value	
and	follow	that.	

This	essentially	completely	ignores	the	problem	of	
credit	assignment.	Many	of	the	actions	that	led	to	a	bad	
outcome	may	in	fact	have	been	good,	and	only	one	of	
the	actions	led	to	disaster.	In	policy	gradient	descent,	
we	don’t	care.	If	the	episode	ended	badly	we	punish	the	
network	blindly	for	all	of	its	actions,	good	or	bad.	

The	idea	is	that	if	some	of	the	actions	we	punish	the	
network	for	are	good,		then	on	average	they	will	occur	
more	often	in	episodes	ending	with	a	positive	reward,	
and	on	average	they	will	be	labeled	bad	more	often	
than	good.	We	let	the	averaging	effect	over	many	
episodes	take	care	of	the		

In	the	case	of	the	car	crash,	we	should	make	sure	the	
agent	investigates	the	sequences	where	it	doesn’t	
brake	before	a	crash	as	well	(preferably	in	a	simulated	
environment).	Averaging	over	all	sequences,	braking	
before	the	crash	results	is	less	damage	than	not	
braking	so	the	agent	will	eventually	learn	that	braking	
is	a	good	idea.	Of	course,	we	also	have	to	make	sure	the	
reward	is	scaled	according	to	the	severity	of	the	crash.

31

state state

action

state

action

state

action

rew
ard=1

rew
ard=0

rew
ard=0

rew: 1

Here’s	what	that	looks	like	for	an	episode	with	a	policy	
network.	We	compute	the	actions	from	the	states,	
sample	an	action,	and	observe	a	reward	and	a	new	
state.	We	keep	going	until	the	episode	ends	and	then	
we	look	at	the	total	reward.		

Now,	the	question	is	how	exactly	do	we	apply	the	
reward	to	each	network?	Once	we	have	a	loss	for	each	
instance	of	the	network	we	can	backpropagate	based	
on	the	values	form	the	forward	pass.	But	is	is	best	to	
just	backpropapagate	the	reward?	Should	we	scale	it	
somehow?	How	should	it	ineract	with	the	different	
probabilities	that	the	network	produced	for	the	
actions?	If	we	sampled	a	low	probability	action,	should	
we	apply	less	of	the	reward.	Do	we	backpropagate	only	
from	the	node	corresponding	to	the	action	we	chose,	or	
from	all	output	nodes?	

All	of	these	approaches	may	or	may	not	work.	As	we’ve	
seen	in	the	past,	it	can	help	to	derive	an	intuitive	
approach	more	formally,	to	help	us	make	some	of	these	
decisions.	Luckily,	such	a	formal	derivation	exists	from	
policy	gradients,	and	it’s	relatively	simple.	

policy gradients: the math

32

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a)
<latexit sha1_base64="NilzGXAaMr2q4WPQA0ew7AzSfnA=">AAAIunicjVVdb9s2FJXbrfO8dWu2x70IM1akgxFIzpqkwAJ0TbIW29pkQewUiIyAoq9twZREkJRjmeBP2w/Z8163/zDqy9HXhurFF/ecc8l7eE26lHhcWNafnQcPP/r40SfdT3ufff74iy+f7Hw15mHEMIxwSEL23kUciBfASHiCwHvKAPkugWt3eZLg1ytg3AuDKxFTmPhoHngzDyOhU7c7nbETIJcg0zm7dRiWSJlsNwuemU+PzQLlkV/gdIvfMx2np8kVWq78QPY9zZkxhGVdreR9+MGV8r2ToHUXT01nuV1Ik3Y3z8zjfHlbyc22hY0qlmnxqHWRXu/2Sd/as9LPbAZ2HvSN/Lu43Xn0qzMNceRDIDBBnN/YFhUTiZjwMAHVcyIOFOElmsNNJGZHE+kFNBIQYGV+p7FZREwRmskhm1OPARYk1gHCzNMVTLxAujGhR6FXLcUhQD7wwXTlUZ6FfDXPAqF7g4lcp3OmHleUcs4QXXh4XdmaRD73kVg0kjz23WoSIgJs5VeTyTb1JmvMNTDs8cSEC+3MOU1ml1+FFzm+iOkCAq5kxIgqCzUAjMFMC9OQg4ioTLvRf5glPxYsgkESprnjU8SWlzAd6DqVRHU7MxIiUU25ug3tTgB3OPR9FEylQ5V0BKyFdAZ7KvWujF4qKZ3EKNc1LxO4gr4roe+UqoJnJfBMg1V0tEVn5qguHZfAcWPV6xJ6XZe6UQmNGuiqhK4ald27EnzXgNcldN1A4xIaN9BNCd00fUZ6LG6GE5mdRXqo8px4K3jNAAIl+0NV74Xp876xq5JkBmTfVqndU5jp2zYD/DihyzdXb39T8uRo+Nw6UHWGSyIoKNb+wfMTq0GZZ7vJOdbR0fBVgxMyFMy3hU7PDn6ym4VoxCjZkg4P939+0awUAyHh3bbSyavT4X59jhhumJD3avZts2HavI2ed9UqcNsEmVOt/GWT/5qh+D/YYVv1wsBWBW1TFG62KuI2RWFtoag1QZNpTV4dmtzriGSUU9A3PoO3eorP9S2FRMi+16PL5r6n7dO/ziCJ/o+I1gVRR+nzY9cfm2YwHu7Z+3vW7z/0X/6SP0Rd4xvjW2PXsI1D46XxxrgwRgbu/NH5q/N355/uj12363WXGfVBJ9d8bVS+rvgXHpwjAA==</latexit>

<latexit sha1_base64="/0c4y3s25uPqclYD84D0EIEzki4=">AAAI/HicjVVdb+NEFHUDLCGwsIVHXiyiXXVRFOyUbctDpWXbsitgt6Vq2pXqKBpPbhIrY3s0M07jjIbfwQ/gDfHKf+HXwDi2U3+B1i+5uuecO/ce34xdSjwuLOvvndZ773/w4MP2R52PP3n46WePdj+/5mHEMAxxSEL21kUciBfAUHiCwFvKAPkugRt3cZLgN0tg3AuDKxFTGPloFnhTDyOhU+Pdnd+cALkEmc7Z2GFYImWyvTR4aj45NnOUR36O0y1+z3ScjiaXaJnyHdn3NGfKEJZVtZL34TtXynonQWMXT0xnsT1Ik/bWT83j7HhbyfV2hLXKj2nwqPEQB1HKwlV6QF5woVTaqLeVj73GAjrd6Ywfda2+tXnMemBnQdfInovx7oOfnEmIIx8CgQni/Na2qBhJxISHCaiOE3GgCC/QDG4jMT0aSS+gkYAAK/OxxqYRMUVoJmtiTjwGWJBYBwgzT1cw8RzpSYRepk65FIcA+cB7k6VHeRry5SwNhB4ORnK12VT1sKSUM4bo3MOrUmsS+dxHYl5L8th3y0mICLClX04mbeomK8wVMOzxxIQL7cw5TbafX4UXGT6P6RwCrmTEiCoKNQCMwVQLNyEHEVG5mUb/5Rb8WLAIekm4yR2fIra4hElP1yklyu1MSYhEOeXqMbQ7Adzh0PdRMJEOVdIRsBLS6fXVxrsieqmkdBKjXNe8TOAS+qaAvlGqDJ4VwDMNltHhFp2aw6r0ugBe1069KaA3VakbFdCohi4L6LJW2b0rwHc1eFVAVzU0LqBxDV0X0HXdZ6TX4nYwkum72LxUeU68JbxkAIGS3YGqzsL0+761y5JkB2TXVhu7JzDV93UK+HFCl6+uXv+s5MnR4Jl1oKoMl0SQU6z9g2cnVo0yS7vJONbR0eBFjRMyFMy2hU7PDr6364VoxCjZkg4P93/4rl4pBkLCu22lkxeng/3qHjFcMyGb1ezaZs20WRM9m6pR4DYJUqca+Ys6/yVD8X+ww6bquYGNCtqkyN1sVMRNitzaXFEZgibbmnxWaHKvI5JSTkHf+Axe6y0+17cUEiH7Wq8um/metk//Or0k+j8iWuVEHW0+P3b1Y1MPrgd9+6Bv/fJt9/mP2YeobXxpfGXsGbZxaDw3XhkXxtDAO/+0Hrf6rW/av7Z/b//R/jOltnYyzRdG6Wn/9S87lDsn</latexit>

rEar(a) = r
X

a

p(a)r(a)

=
X

a

rp(a)r(a)

=
X

a

p(a)
rp(a)

p(a)
r(a)

=
X

a

p(a)r lnp(a)r(a) r ln(z) =
1

z
rz

= Ear(a)r lnp(a) ⇡ 1

k

X

i

r(ai)r lnp(ai)

backprop

We’ll	look	at	a	single	action	a	that	was	taken	at	some	
point	during	the	trajectory.	

We	call	r	the	7inal	reward	at	the	end	of	the	episode.	Our	
network	produces	probabilities	from	which	we	sample,	
so	the	7inal	reward	is	a	probabilistic	value.	Two	
episodes	with	the	same	initial	state	may	lead	to	
different	total	rewards	due	to	different	actions	
sampled.	The	expectation	of	that	reward	is	what	we’re	
really	interested	in	maximizing.	

We	start	by	writing	out	the	reward.	Here	p(a)	is	the	
probability	that	our	neural	network	gives	to	action	a.	
The	expectation	is	a	sum	over	all	actions,	and	we	can	
freely	move	the	gradient	inside	the	sum.		

Multiplying	by	p(a)/p(a)	gives	us	a	factor	in	the	middle	
which	we	can	recognize	as	the	derivative	of	the	natural	
logarithm.	Filling	this	in,	and	rewriting,	we	see	that	the	
derivative	of	the	expected	reward	after	taking	action	a	
is	equal	to	the	expectation	of	the	reward	after	taking	a	
times	the	derivative	of	the	log-probability	of	a.	

And	this	expectation	we	can	approximate	by	sampling	
k	actions	from	the	output	distribution	of	our	network,	
and	averaging	this	quantity.	The	derivative	of	ln	p(ai)	is	
simply	the	derivative	of	the	logarithm	of	one	of	the	
outputs	of	the	neural	net	with	respect	to	the	weights.	
This	we	know	how	to	work	out	by	backpropagation

k=1

state state state

action

state

action

rew
ard=1

rew
ard=0

rew
ard=0

rew: 1

L S R

S

w

<latexit sha1_base64="9wc4ajOotBcGUMxbLd1PjlJJYyQ=">AAAHo3icfVXRbts2FFXbre68dU3Xx70INQp0hRFIzpqkDwXSJmmLdW2yIE4KREZA0dcyYUoiSMq2SvB3+jV77YD9zShLDiRTK198dc8517yHF2TIKBHS8/69dfvOd9/f7dz7ofvjT/d/frD18JcLkWYcwxCnNOWfQiSAkgSGkkgKnxgHFIcULsPZYYFfzoELkibnMmcwilGUkAnBSJrU9dZBEGLlazeQJAYRTDjCKpgxN6CJy54G3HxJWEolJEckmkqtf9MlIcVqoV19vdXztr3Vcu3Ar4KeU63T64d33wfjFGcxJBJTJMSV7zE5UohLginobpAJYAjPUARXmZzsjxRJWCYhwdp9YrBJRl2ZukU37phwwJLmJkCYE1PBxVNkmpCm526zlIAEmR774zlhogzFPCoDiYxhI7VcGarvN5Qq4ohNCV42tqZQLGIkp1ZS5HHYTEJGgc/jZrLYptnkBnMJHBNRmHBqnDlhxSGJ8/S0wqc5m0IitMo41XWhAYBzmBjhKhQgM6ZW3ZjJmImXkmfQL8JV7uUR4rMzGPdNnUaiuZ0JTZFspkLThnEngQVO4xglYxUwXc1I0N/WK+/q6JlWKiiMCkP3rIAb6Mca+lHrJnhcA48N2ESHN+jEHW5KL2rghfWvlzX0clMaZjU0s9B5DZ1blcNFDV5Y8LKGLi00r6G5hX6uoZ9tn5EZi6vBSJVnsTpUdULJHN5ygESr3kBv9sLNeV/5TUkxA6rn65XdY5iYa6UE4rygq3fnH/7U6nB/8Nzb1ZuMkGawpng7u88PPYsSlbupON7+/uC1xUk5SqKbQkfHu698uxDLOKM3pL29nTcv7Eo5UJoubiodvj4a7GzOEceWCVWvbs93LdOiNnrVVasgbBOUTrXyZzb/LUf5/7DTtuprA1sVrE2xdrNVkbcp1tauFRtNsGJaZ+b1YMW9jmhJOQJz43P4YKb4xNxSSKb8mRldHsXE2Gd+g34RfYuIlmuiibpd8/z4m4+NHVwMtv3dbe+v33sHf1QP0T3nV+ex89TxnT3nwHnnnDpDBztfnL+dr84/nSed952zznlJvX2r0jxyGqsz+g8fwMZa</latexit>

1⇥ @ lnp(straight)
@w

To	simplify	things,	let’s	approximate	the	expectation	
with	a	single	sample:	k=	1	and	look	only	at	the	gradient	
for	the	7irst	instance	of	the	policy	network.	

Imagine	that	our	network	outputs	three	actions:	left,	
straight	and	right.	And	we	sample	the	action	straight.	
We	complete	the	episode,	and	observe	a	total	reward	of	
1.		

	If	we	look	at	the	derivative	for	a	single	weight	w	in	the	
neural	net,	we	see	that	its	gradient	is	one	times	a	
derivative	that	we	can	work	out	by	backpropagation.	

example: tic-tac-toe

environment: some fixed opponent(s)
Iterate from a random player

episodes: games against opponent
Play by sampling from the output distribution

state: board
action: placing a cross or circle

policy: neural network
outputs probabilities over 9 possible actions

34

0 0 0

0 -1 1

0 0 -1

0.8 0 0

0.1 0 0

0 0.1 0

state:

p(action)

To	7inish	up,	let’s	see	what	this	looks	like	in	our	our	tic-
tac-toe	example.	

35

0 0 -1

0 1 0

0 0 0

0 0 0

0.1 0.1 0

0.7 0.1 0

0 0 0

0 0 0

0 0 0

0.2 0.2 0

0.1 0.2 0.1

0 0.1 0

0 0 -1

0 1 -1

1 0 0

0.1 0.1 0

0.1 0 0

0 0.1 0.6

sample action sample sample

env

reward=0

env

reward=0

env

reward=-1

<latexit sha1_base64="gMHO2D8LASEnm51LrIYuBOTcUjk=">AAAHl3icfVXbbtNAEDXXlHAr8IR4sYiQAIXKTqEtDxXQC1TcWqqmRaqjar2ZJFbW9mp3ncRd7Y/wNbzCH/A3rOOksrMGv2Q055zJzNnRrk9JwIXj/Ll0+crVa9drSzfqN2/dvnN3+d79Yx4nDEMbxyRm333EgQQRtEUgCHynDFDoEzjxh9sZfjICxoM4OhIphU6I+lHQCzASOnW2/NLzsXxhu8r2RBAC93oMYekNqe2RyKZPPYYlUs9UnoqxHCtbnS03nBVn+tlm4M6ChjX7Ds7uXf/kdWOchBAJTBDnp65DRUciJgJMQNW9hANFeIj6cJqI3kZHBhFNBERY2U801kuILWI7m8DuBgywIKkOEGaBrmDjAdJtCz1nvVyKQ4T0VM3uKKA8D/monwcCaZM6cjI1Ud0uKWWfIToI8KTUmkQhD5EYGEmehn45CQkBNgrLyaxN3eQCcwIMBzwz4UA7s0+zg+FH8cEMH6R0ABFXMmFEFYUaAMagp4XTkINIqJxOo7dhyDcFS6CZhdPc5g5iw0PoNnWdUqLcTo/ESJRTvh5DuxPBGMdhiKKu9KheCAETIb3mipp6V0QPlZReZpTv24cZXEK/FtCvSpXB3QK4q8Ey2r5Ae3Z7UXpcAI+Nfz0poCeLUj8poImBjgroyKjsjwvw2IAnBXRioGkBTQ30vICemz4jvRanrY7Mz2J6qHKfBCP4wAAiJRsttTgL0+d96pYl2Q7Ihqumdnehp6+SHAjTjC73jr58VnJ7o/XKWVOLDJ8kMKc4q2uvth2D0s+7mXGcjY3WlsGJGYr6F4V2dtfeuWYhmjBKLkjr66vvX5uVUiAkHl9U2t7aaa0u7hHDhgmzWe2Gaxum9avos6kqBX6VIHeqkj80+R8YSv/Bjquqzw2sVNAqxdzNSkVapZhbO1csDEGzbR3q14Nm9zoiOWUH9I3P4Ive4n19SyERs+d6dVk/DLR9+tdrZtH/iGgyJ+qoXtfPj7v42JjBcWvFXVtxvr1svP04e4iWrEfWY+up5Vrr1ltrzzqw2ha2flg/rV/W79rD2pva+9peTr18aaZ5YJW+2re/RLzAEQ==</latexit>

-1⇥ @ lnp(a)

@w

<latexit sha1_base64="gMHO2D8LASEnm51LrIYuBOTcUjk=">AAAHl3icfVXbbtNAEDXXlHAr8IR4sYiQAIXKTqEtDxXQC1TcWqqmRaqjar2ZJFbW9mp3ncRd7Y/wNbzCH/A3rOOksrMGv2Q055zJzNnRrk9JwIXj/Ll0+crVa9drSzfqN2/dvnN3+d79Yx4nDEMbxyRm333EgQQRtEUgCHynDFDoEzjxh9sZfjICxoM4OhIphU6I+lHQCzASOnW2/NLzsXxhu8r2RBAC93oMYekNqe2RyKZPPYYlUs9UnoqxHCtbnS03nBVn+tlm4M6ChjX7Ds7uXf/kdWOchBAJTBDnp65DRUciJgJMQNW9hANFeIj6cJqI3kZHBhFNBERY2U801kuILWI7m8DuBgywIKkOEGaBrmDjAdJtCz1nvVyKQ4T0VM3uKKA8D/monwcCaZM6cjI1Ud0uKWWfIToI8KTUmkQhD5EYGEmehn45CQkBNgrLyaxN3eQCcwIMBzwz4UA7s0+zg+FH8cEMH6R0ABFXMmFEFYUaAMagp4XTkINIqJxOo7dhyDcFS6CZhdPc5g5iw0PoNnWdUqLcTo/ESJRTvh5DuxPBGMdhiKKu9KheCAETIb3mipp6V0QPlZReZpTv24cZXEK/FtCvSpXB3QK4q8Ey2r5Ae3Z7UXpcAI+Nfz0poCeLUj8poImBjgroyKjsjwvw2IAnBXRioGkBTQ30vICemz4jvRanrY7Mz2J6qHKfBCP4wAAiJRsttTgL0+d96pYl2Q7Ihqumdnehp6+SHAjTjC73jr58VnJ7o/XKWVOLDJ8kMKc4q2uvth2D0s+7mXGcjY3WlsGJGYr6F4V2dtfeuWYhmjBKLkjr66vvX5uVUiAkHl9U2t7aaa0u7hHDhgmzWe2Gaxum9avos6kqBX6VIHeqkj80+R8YSv/Bjquqzw2sVNAqxdzNSkVapZhbO1csDEGzbR3q14Nm9zoiOWUH9I3P4Ive4n19SyERs+d6dVk/DLR9+tdrZtH/iGgyJ+qoXtfPj7v42JjBcWvFXVtxvr1svP04e4iWrEfWY+up5Vrr1ltrzzqw2ha2flg/rV/W79rD2pva+9peTr18aaZ5YJW+2re/RLzAEQ==</latexit>

-1⇥ @ lnp(a)

@w

<latexit sha1_base64="gMHO2D8LASEnm51LrIYuBOTcUjk=">AAAHl3icfVXbbtNAEDXXlHAr8IR4sYiQAIXKTqEtDxXQC1TcWqqmRaqjar2ZJFbW9mp3ncRd7Y/wNbzCH/A3rOOksrMGv2Q055zJzNnRrk9JwIXj/Ll0+crVa9drSzfqN2/dvnN3+d79Yx4nDEMbxyRm333EgQQRtEUgCHynDFDoEzjxh9sZfjICxoM4OhIphU6I+lHQCzASOnW2/NLzsXxhu8r2RBAC93oMYekNqe2RyKZPPYYlUs9UnoqxHCtbnS03nBVn+tlm4M6ChjX7Ds7uXf/kdWOchBAJTBDnp65DRUciJgJMQNW9hANFeIj6cJqI3kZHBhFNBERY2U801kuILWI7m8DuBgywIKkOEGaBrmDjAdJtCz1nvVyKQ4T0VM3uKKA8D/monwcCaZM6cjI1Ud0uKWWfIToI8KTUmkQhD5EYGEmehn45CQkBNgrLyaxN3eQCcwIMBzwz4UA7s0+zg+FH8cEMH6R0ABFXMmFEFYUaAMagp4XTkINIqJxOo7dhyDcFS6CZhdPc5g5iw0PoNnWdUqLcTo/ESJRTvh5DuxPBGMdhiKKu9KheCAETIb3mipp6V0QPlZReZpTv24cZXEK/FtCvSpXB3QK4q8Ey2r5Ae3Z7UXpcAI+Nfz0poCeLUj8poImBjgroyKjsjwvw2IAnBXRioGkBTQ30vICemz4jvRanrY7Mz2J6qHKfBCP4wAAiJRsttTgL0+d96pYl2Q7Ihqumdnehp6+SHAjTjC73jr58VnJ7o/XKWVOLDJ8kMKc4q2uvth2D0s+7mXGcjY3WlsGJGYr6F4V2dtfeuWYhmjBKLkjr66vvX5uVUiAkHl9U2t7aaa0u7hHDhgmzWe2Gaxum9avos6kqBX6VIHeqkj80+R8YSv/Bjquqzw2sVNAqxdzNSkVapZhbO1csDEGzbR3q14Nm9zoiOWUH9I3P4Ive4n19SyERs+d6dVk/DLR9+tdrZtH/iGgyJ+qoXtfPj7v42JjBcWvFXVtxvr1svP04e4iWrEfWY+up5Vrr1ltrzzqw2ha2flg/rV/W79rD2pva+9peTr18aaZ5YJW+2re/RLzAEQ==</latexit>

-1⇥ @ lnp(a)

@w

policy gradients

Train an episode, save all instances of policy network.

Observe total reward.

Distribute the total reward back to all instances in the
episode.

Backpropagate down the network.

36

policy gradients: final notes

Gradient estimates are unbiased, but high variance

Many variance reduction methods exist
Control variates, actor-critic

37

the four problems of RL

Sparse loss

Delayed reward, credit assignment

Non-differentiable loss

Exploration vs. exploitation

38

s s

✓

✓

✗

✓

So,	which	parts	of	our	problem	do	random	search	and	
policy	gradients	solve?	We	have	a	solution	to	some	
extent	for	the	sparse	loss,	credit	assignment	and	non-
differentiable,	since	the	we	only	focus	on	the	total	loss	
over	an	episode.	We	may	need	many	episodes	for	the	
effects	to	average	out	properly,	but	in	principle,	this	is	
the	start	of	a	solution.	

It’s	important	to	note,	however,	that	we	haven’t	solved	
the	exploration	vs.	exploitation	problem.	If	we	always	
follow	our	currently	best	policy,	we	are	still	very	likely	
to	be	seduced	by	early	successes		and	end	up	just	
repeated	a	known	formula	for	a	quick	and	low	reward,	
rather	than	7inding	a	more	complex	path	towards	a	
higher	reward.	Put	simply,	we	quickly	get	stuck	in	local	

minima.	

The	optimal	tradeoff	between	exploration	and	
exploration	is	not	easy	to	de7ine,	and	in	some	sense,	it’s	
a	subjective	choice:	how	much	immediate	gain	are	we	
willing	to	trade	off	against	long-term	gain.	
Nevertheless,	there	are	simple	ways	to	at	least	give	
yourself	control	over	the	behavior	of	your	learner.

Boltzmann exploration

39

high temperature (100)

medium temperature (1)

low temperature (0.01)

<latexit sha1_base64="XPHa0J5gfWLAmN/3LUM6/G7MQNA=">AAAHyXicfZXfbts2FMbVdqs7b13T7nI3wowB3WAEkrMm2UWArknWYl2bLIiTApFhUPSRrZmSOJJypBC82uvtBfYau90uRv2xIZnadOOD8/vOMfnxgPQpCblwnD/v3X/w0ccPe48+6X/62ePPn+w8fXbFk5RhGOOEJOyDjziQMIaxCAWBD5QBinwC1/7yuODXK2A8TOJLkVOYRGgeh0GIkdCp6U7gCciE5EkgIpSp59k0HNpegqVQ39hHthcwhKUHGa0ijZWssNIBT6Opt8TyV2UXGnstqnIbpa2mOwNn1yk/2wzcOhhY9Xc+ffrwrTdLcBpBLDBBnN+4DhUTiZgIMQHV91IOFOElmsNNKoLDiQxjmgqIsbK/1ixIiS0Su9izPQsZYEFyHSDMQt3Bxguklyq0M/12Kw4xioAPZ6uQ8irkq3kVCKRtncistF09blXKOUN0EeKstTSJIh4hsTCSPI/8dhJSAmwVtZPFMvUit5QZMBzywoRz7cwZLY6SXybnNV/kdAExVzJlRDULNQDGINCFZchBpFSWu9Hzs+RHgqUwLMIyd3SC2PICZkPdp5VoLycgCRLtlK+3od2J4RYnUYTimfSonoZy1Lzhriq9a9ILJaVXGOX79kWBW/R9g75Xqg1PG/BUwzYdb2hgj7dLrxrwyvjX6wa93i710wZNDbpq0JXR2b9t4FsDZw2aGTRv0Nygdw16Z/qM9FjcjCayOovyUOUZCVfwmgHESg5GansvTJ/3jdsuKWZADlxV2j2DQF8+FYjyQi7fXL77Wcnjw9ELZ19tK3ySwlri7O2/OHYMybxaTa1xDg9HrwxNwlA83zQ6Od3/wTUb0ZRRshEdHOz9+L3ZKQdCkttNp+NXJ6O97Tli2DCh3qs9cG3DtHmXvN5VZ4HfVVA51alfmvrXDOX/oU66uq8N7KygXRVrNzsr8q6KtbXriq1N0GJa9Vvh0eJeR6SSnIC+8Rm801N8pm8pJBL2rR5dNo9CbZ/+9YZF9H9C/ZTVQh31+/r5cbcfGzO4Gu26+7vOL98NXv5UP0SPrC+tr6znlmsdWC+tN9a5Nbaw9Yf1l/W39U/vbe+3Xta7q6T379U1X1itr/f7v/fF18g=</latexit>

softmax(xi, t) =
exp xi

tP
j exp

xj

t

One	trick	is	Boltzmann	exploration.	Instead	of	
sampling	from	the	normal	Softmax	output,	we	
introduce	a	new	softmax	with	a	temperature	
parameter.	The	temperature	is	divided	by	the	elements	
before	they	are	exponentiated	and	normalized.	

epsilon-greedy sampling

with probability ε:

pick an action at random, uniformly

otherwise:

pick the action with the highest probability

40

The	simplest	algorithm	to	balance	exploration	and	
exploitation	i	

Reinforcement Learning
Part 3: Deep Q-Learning

Machine Learning
mlvu.github.io

Vrije Universiteit Amsterdam

notation

reward function:
 r(s, a) = 0.01 (the higher the better)

state transitions
 d(s, a) = s’

policy
 π(s) = a or p(a|s) = 0.2

42

th
e

en
vi

ro
nm

en
t

ou
r m

od
el

a

s’

r(s’, a)

π(s) = ad(s, a) = s’

Here	is	some	basic	notation	for	the	elements	of	
Reinforcement	learning.	In	most	cases,	the	agent	will	
not	have	access	to	the	reward	function,	or	the	
transition	function	and	it	will	have	to	learn	them.	
Sometimes	the	agent	will	learn	a	deterministic	policy,	
where	every	state	is	always	followed	by	the	same	
action.	In	other	cases	it’s	better	to	learn	a	
probabilistic	policy	where	all	actions	are	possible,	but	
certain	ones	have	a	higher	probability.

Q-Learning

43

A B

While	policy	gradient	descent	is	a	nice	trick,	it	doesn’t	
really	get	to	the	heart	of	reinforcement	learning.	To	
understand	the	problem	better	let’s	look	at	Q-learning,	
which	is	what	was	used	in	the	Atari	challenge.	

The	example	we’ll	use	is	the	robotic	hoover,	also	used	
in	the	7irst	lecture.	We	will	make	the	problem	so	simple	
that	we	can	write	out	the	policy	explicitly:	The	room	
will	have	two	states,	the	hoover	can	move	left	or	right,	
and	one	of	the	states	has	dust	in	it.	Once	the	hoover	
7inds	the	dust,	we	reset.	(The	robot	is	reset	to	state	A,	
and	the	dust	is	replaced,	but	the	robot	keeps	its	
learned	experience).

what do we want to optimize?

discounted reward:
 r(s0, a0) + γ r(s1, a1) + γ2 r(s2, a2) + γ3 r(s3, a3) + …

with γ = 0.99
or something similarly close to 1

44

If	we	7ix	our	policy,	then	we	know	for	a	given	policy	
what	all	the	future	states	are	going	to	be,	and	what	
rewards	we	are	going	to	get.	The	discounted	reward	is	
the	value	we	will	try	to	optimise	for:	we	want	to	7ind	
the	policy	that	gives	us	the	greatest	discounted	reward	
for	all	states.	Note	that	this	can	be	an	in7inite	sum.	

Note	also	that	we	are	limiting	ourselves	here	to	
deterministic	policies:	for	a	7ixed	policy	we	always	do	
the	same	thing	in	the	same	state.	

If	our	problem	is	7inished	after	a	certain	state	is	
reached	(like	a	game	of	chess)	the	discounted	reward	
has	a	7inite	number	of	terms.	If	the	problem	can	
(potentially)	go	on	forever	(like	the	cart	pole)		the	sum	
has	an	in7inite	number	of	terms.	In	that	case	the	
discounting	ensures	that	the	sum	still	converges	to	a	
7inite	value.

definitions

policy: π(s)

value function:
Vπ(s0) = r(s0, a0) + γ r(s1, a1) + γ2 r(s2, a2) + …

Vπ(s0) = r(s0, a0) + γ Vπ(s1)

45

optimal policy:
π* : the π such that for all states s, π* = argmax Vπ(s)

optimal value function:
V*(s) = Vπ*(s)

π

The	discounted	reward	we	get	from	state	s	for	a	given	
policy	π	is	called	Vπ(s0),	the	value	function.	This	
represents	the	value	of	state	s:	how	much	we	like	to	be	
in	state	s,	given	that	we	stick	to	policy	π.	

Using	the	value	function,	we	can	de7ine	our	optimal	
policy,	π*.	This	the	policy	that	gives	us	the	highest	
value	function	for	all	states.	Note	that	this	is	always	
possible	if	policy	A	gives	us	the	maximal	value	in	state	s	
but	not	in	state	q,	and	policy	B	gives	us	the	maximal	
value	in	state	q	but	not	in	state	s,	we	can	de7ine	a	new	
policy	that	follows	A	in	state	s	and	B	in	state	q.	

We	can	then	de7ine	V*(s),	which	is	just	the	value	
function	for	the	optimal	policy.

definitions

π*(s) = argmax [“discounted reward of V*”]

π*(s) = argmax [r(s, a) + γ V*(d(s, a))]

46

Q*(s, a) = r(s, a) + γ V*(d(s, a))

π*(s) = argmax Q*(s, a)
a

V*(s) = max Q*(s, a)a

a

a

Using	V*	we	can	rewrite	π*	as	a	recursive	de7inition.	
The	optimal	policy	is	the	one	that	chooses	the	action	
which	maximises	the	future,	assuming	that	we	follow	
the	optimal	policy.	We	7ill	in	the	optimal	value	function	
to	get	rid	of	the	in7inite	sum.	We’ve	now	de7ined	the	
optimal	policy	in	a	way	that	depends	on	what	the	
optimal	policy	is.	While	this	doesn’t	allow	us	to	
compute	π*,	it	does	de:ine	it.	If	someone	gives	us	a	
policy,	we	can	recognise	it	by	checking	if	this	equality	
holds.	

To	make	this	easier,	we	take	the	part	inside	the	argmax	
and	call	it	Q(s,	a).	We	then	rewrite	the	de7initions	of	the	
optimal	policy	and	the	optimal	value	function	in	terms	
of	Q(s,a).	

How	has	this	helped	us?	Q(s,a)	is	a	function	from	state-
action	pairs	to	a	number	expressing	how	good	that	
particular	pair	is.	If	we	were	given	Q,	we	could	
automatically	compute	the	optimal	policy,	and	the	
optimal	value	function.	And	it	turns	out,	that	in	many	
problems	it’s	much	easier	to	learn	the	Q-function,	than	
it	is	to	learn	the	policy	directly.

making the definition of Q* recursive

Q*(s, a) = r(s, a) + γ V*(d(s, a))

Q*(s, a) = r(s, a) + γ max Q*(d(s, a), a’)

47

a’

In	order	to	see	how	the	Q	function	can	be	learned	we	
rewrite	it.	Earlier,	we	rewrote	the	V	functions	in	terms	
of	the	Q	function,	now	we	plug	that	de7inition	back	into	
the	Q	function.	We	now	get	a	recursive	de7inition	of	Q.		

Again,	this	may	be	a	little	dif7icult	to	wrap	your	head	
around.	If	so	think	of	it	this	way:	If	we	were	given	a	
random	Q-function,	how	could	we	tell	whether	it	was	
optimal?	We	don’t	know	π*	or	V*	so	we	can’t	use	the	
original	de7initions.	But	this	equality	must	hold	true!	If	
we	loop	over	all	possible	states	and	actions,	and	plug	
them	into	this	equality,	we	must	get	the	same	number	
on	both	sides.	Let’s	try	it	for	a	simple	example.	

Is my Q-function optimal?

48

s a r(s,a) Q(s,a)

A L 0 1

A R 1 2

B L 0 1

B R 0 -1

A B

Q(s, a) = r(s, a) + γ max Q(d(s, a), a’)a’

r(A, R) = 1, all others 0

?

This	is	the	two-state	hoover	problem	again.	We	have	
states	A	and	B,	and	actions	left	and	right.	The	agent	
only	gets	a	reward	when	moving	from	A	to	B.	On	the	
bottom	left	we	see	some	random	policy,	generated	by	
assigning	random	numbers	to	each	state	action	pair.	
Did	we	get	lucky	and	stumble	on	the	optimal	policy?	
Try	it	for	yourself	and	see.	(take	γ	=	0.9)	

	

solving recurrent equations by iteration

49

x = x2 - 2

x= 0 :

0 ! 02 - 2 = -2

x= -2 :

-2 ! -22 - 2 = 2

x= 2 :

2 ! 22 - 2 = 2
<latexit sha1_base64="qcB5mvPQdH1a6aSKB9hmNmFivQ4=">AAAIEHicfVVdb9s2FJW7rm69dk3Xx70QNVYUgxNIypqkAwy0cbIW29pkQZwUiLyAoq9lwdQHSMqWSuhP7H/sfW/DXvcP9m9GWbKhr40vur7nnGvewwvSDqnLha7/07nz2d3P73XvP+h98fDRl493nnx1xYOIERiTgAbso405UNeHsXAFhY8hA+zZFK7txSjDr5fAuBv4lyIJYeJhx3dnLsFCpW53fo/R8yGKfzXRLjKRZfWsBZFxip5n3yHSv0+zpK5+M9eZC8xYsEJ6QR+i3RbNrpmLFFZR7ZpbWYuqENU0NcntTl/f09cLNQOjCPpasc5vn9z7yZoGJPLAF4Rizm8MPRQTiZlwCYW0Z0UcQkwW2IGbSMyOJtL1w0iAT1L0jcJmEUUiQJl1aOoyIIImKsCEuaoCInPMMBHK4F61FAcfe8AH06Ub8jzkSycPBFanM5Hx+vTSRxWldBgO5y6JK1uT2OMeFvNGkieeXU1CRIEtvWoy26baZI0ZAyMuz0w4V86chdlE8MvgvMDnSTgHn6cyYjQtCxUAjMFMCdchBxGFct2NGsMFHwoWwSAL17nhCWaLC5gOVJ1KorqdGQ2wqKZs1YZyx4cVCTwP+1Npham0BMRCWoO9dO1dGb1IpbQyo2wbXWRwBf1QQj+kaRU8LYGnCqyi4y06Q+O69KoEXjX+9bqEXteldlRCowa6LKHLRmV7VYJXDTguoXEDTUpo0kA/ldBPTZ+xGosbcyLzs1gfqjyj7hLeMgA/lX0zrffC1HnfGFVJNgOyb6Rru6cwU3dYDnhJRpfvLt//nMrRkflSP0jrDJtGsKHo+wcvR3qD4uS7KTj60ZF53OAEDPvOttDJ6cEbo1kojFhIt6TDw/0fXjUrJUBpsNpWGh2fmPv1OWKkYULRK+obqGGa00YvumoV2G2C3KlW/qLJf8tw8h/soK36xsBWRdim2LjZqkjaFBtrN4paE2E2reoVscLsXsc0p5yAuvEZvFdTfKZuKSwC9q0aXeZ4rrJPfa1BFv0fEccboop62fNj1B+bZnBl7hn7e/ov3/Vf/1g8RPe1r7Vn2gvN0A6119o77Vwba6TztPOqc9wZdX/r/tH9s/tXTr3TKTRPtcrq/v0vwADeiQ==</latexit>

x = x2 - 2

x= 0 :

0 ! 02 - 2 = -2

x= -2 :

-2 ! -22 - 2 = 2

x= 2 :

2 ! 22 - 2 = 2
<latexit sha1_base64="qcB5mvPQdH1a6aSKB9hmNmFivQ4=">AAAIEHicfVVdb9s2FJW7rm69dk3Xx70QNVYUgxNIypqkAwy0cbIW29pkQZwUiLyAoq9lwdQHSMqWSuhP7H/sfW/DXvcP9m9GWbKhr40vur7nnGvewwvSDqnLha7/07nz2d3P73XvP+h98fDRl493nnx1xYOIERiTgAbso405UNeHsXAFhY8hA+zZFK7txSjDr5fAuBv4lyIJYeJhx3dnLsFCpW53fo/R8yGKfzXRLjKRZfWsBZFxip5n3yHSv0+zpK5+M9eZC8xYsEJ6QR+i3RbNrpmLFFZR7ZpbWYuqENU0NcntTl/f09cLNQOjCPpasc5vn9z7yZoGJPLAF4Rizm8MPRQTiZlwCYW0Z0UcQkwW2IGbSMyOJtL1w0iAT1L0jcJmEUUiQJl1aOoyIIImKsCEuaoCInPMMBHK4F61FAcfe8AH06Ub8jzkSycPBFanM5Hx+vTSRxWldBgO5y6JK1uT2OMeFvNGkieeXU1CRIEtvWoy26baZI0ZAyMuz0w4V86chdlE8MvgvMDnSTgHn6cyYjQtCxUAjMFMCdchBxGFct2NGsMFHwoWwSAL17nhCWaLC5gOVJ1KorqdGQ2wqKZs1YZyx4cVCTwP+1Npham0BMRCWoO9dO1dGb1IpbQyo2wbXWRwBf1QQj+kaRU8LYGnCqyi4y06Q+O69KoEXjX+9bqEXteldlRCowa6LKHLRmV7VYJXDTguoXEDTUpo0kA/ldBPTZ+xGosbcyLzs1gfqjyj7hLeMgA/lX0zrffC1HnfGFVJNgOyb6Rru6cwU3dYDnhJRpfvLt//nMrRkflSP0jrDJtGsKHo+wcvR3qD4uS7KTj60ZF53OAEDPvOttDJ6cEbo1kojFhIt6TDw/0fXjUrJUBpsNpWGh2fmPv1OWKkYULRK+obqGGa00YvumoV2G2C3KlW/qLJf8tw8h/soK36xsBWRdim2LjZqkjaFBtrN4paE2E2reoVscLsXsc0p5yAuvEZvFdTfKZuKSwC9q0aXeZ4rrJPfa1BFv0fEccboop62fNj1B+bZnBl7hn7e/ov3/Vf/1g8RPe1r7Vn2gvN0A6119o77Vwba6TztPOqc9wZdX/r/tH9s/tXTr3TKTRPtcrq/v0vwADeiQ==</latexit>

x = x2 - 2

x= 0 :

0 ! 02 - 2 = -2

x= -2 :

-2 ! -22 - 2 = 2

x= 2 :

2 ! 22 - 2 = 2
<latexit sha1_base64="qcB5mvPQdH1a6aSKB9hmNmFivQ4=">AAAIEHicfVVdb9s2FJW7rm69dk3Xx70QNVYUgxNIypqkAwy0cbIW29pkQZwUiLyAoq9lwdQHSMqWSuhP7H/sfW/DXvcP9m9GWbKhr40vur7nnGvewwvSDqnLha7/07nz2d3P73XvP+h98fDRl493nnx1xYOIERiTgAbso405UNeHsXAFhY8hA+zZFK7txSjDr5fAuBv4lyIJYeJhx3dnLsFCpW53fo/R8yGKfzXRLjKRZfWsBZFxip5n3yHSv0+zpK5+M9eZC8xYsEJ6QR+i3RbNrpmLFFZR7ZpbWYuqENU0NcntTl/f09cLNQOjCPpasc5vn9z7yZoGJPLAF4Rizm8MPRQTiZlwCYW0Z0UcQkwW2IGbSMyOJtL1w0iAT1L0jcJmEUUiQJl1aOoyIIImKsCEuaoCInPMMBHK4F61FAcfe8AH06Ub8jzkSycPBFanM5Hx+vTSRxWldBgO5y6JK1uT2OMeFvNGkieeXU1CRIEtvWoy26baZI0ZAyMuz0w4V86chdlE8MvgvMDnSTgHn6cyYjQtCxUAjMFMCdchBxGFct2NGsMFHwoWwSAL17nhCWaLC5gOVJ1KorqdGQ2wqKZs1YZyx4cVCTwP+1Npham0BMRCWoO9dO1dGb1IpbQyo2wbXWRwBf1QQj+kaRU8LYGnCqyi4y06Q+O69KoEXjX+9bqEXteldlRCowa6LKHLRmV7VYJXDTguoXEDTUpo0kA/ldBPTZ+xGosbcyLzs1gfqjyj7hLeMgA/lX0zrffC1HnfGFVJNgOyb6Rru6cwU3dYDnhJRpfvLt//nMrRkflSP0jrDJtGsKHo+wcvR3qD4uS7KTj60ZF53OAEDPvOttDJ6cEbo1kojFhIt6TDw/0fXjUrJUBpsNpWGh2fmPv1OWKkYULRK+obqGGa00YvumoV2G2C3KlW/qLJf8tw8h/soK36xsBWRdim2LjZqkjaFBtrN4paE2E2reoVscLsXsc0p5yAuvEZvFdTfKZuKSwC9q0aXeZ4rrJPfa1BFv0fEccboop62fNj1B+bZnBl7hn7e/ov3/Vf/1g8RPe1r7Vn2gvN0A6119o77Vwba6TztPOqc9wZdX/r/tH9s/tXTr3TKTRPtcrq/v0vwADeiQ==</latexit>

<latexit sha1_base64="juTXhMCZzxG6DTscTFHwkNsWlvM=">AAAIEnicfVVdb9s2FJXbru68dU077KkvRI0V3eAEkrIm2QYDbeOsxbY2WRAnBSIvoOhrWTD1AZKypRL6F/sfe9/bsNf9gf2bUZZs6Gvji67vOeea9/CCtEPqcqHr/3Ru3b7z0d3uvY97n3x6/7MHOw8fXfIgYgTGJKABe29jDtT1YSxcQeF9yAB7NoUre3Gc4VdLYNwN/AuRhDDxsOO7M5dgoVI3O7/H6OkQxb+aaBeZyLJ61oLIOEVPs+8Q6d+lWVJXv5nrzAVmLFghvaAP0W6LZtfMRQqrqJ7tml9thS26QlZTmVXJzU5f39PXCzUDowj6WrHObh7e/cmaBiTywBeEYs6vDT0UE4mZcAmFtGdFHEJMFtiB60jMjibS9cNIgE9S9KXCZhFFIkCZeWjqMiCCJirAhLmqAiJzzDARyuJetRQHH3vAB9OlG/I85EsnDwRW5zOR8fr80vsVpXQYDucuiStbk9jjHhbzRpInnl1NQkSBLb1qMtum2mSNGQMjLs9MOFPOnIbZTPCL4KzA50k4B5+nMmI0LQsVAIzBTAnXIQcRhXLdjRrEBR8KFsEgC9e54QizxTlMB6pOJVHdzowGWFRTtmpDuePDigSeh/2ptMJUWgJiIa3BXrr2royep1JamVG2jc4zuIK+K6Hv0rQKnpTAEwVW0fEWnaFxXXpZAi8b/3pVQq/qUjsqoVEDXZbQZaOyvSrBqwYcl9C4gSYlNGmgH0roh6bPWI3FtTmR+VmsD1WeUncJrxmAn8q+mdZ7Yeq8r42qJJsB2TfStd1TmKlbLAe8JKPLNxdvf07l8ZH5XD9I6wybRrCh6PsHz4/1BsXJd1Nw9KMj81WDEzDsO9tCo5ODl0azUBixkG5Jh4f7P3zbrJQApcFqW+n41cjcr88RIw0Til5R30AN05w2etFVq8BuE+ROtfIXTf5rhpP/YAdt1TcGtirCNsXGzVZF0qbYWLtR1JoIs2lVr4gVZvc6pjllBOrGZ/BWTfGpuqWwCNjXanSZ47nKPvW1Bln0f0Qcb4gq6mXPj1F/bJrBpblnHOzpv3zTf/Fj8RDd0x5rT7RnmqEdai+0N9qZNtZI54vO951R56T7W/eP7p/dv3LqrU6h+VyrrO7f/wKicd7x</latexit>

x = x2 - 2

x= 0 :

0 ! 02 - 2 = -2

x= -2 :

-2 ! (-2)2 - 2 = 2

x= 2 :

2 ! 22 - 2 = 2

Of	course,	random	sampling	of	policy	functions	is	not	
an	ef7icient	search	method.	How	do	we	get	from	a	
recursive	de7inition	to	the	value	that	satis7ies	that	
de7inition?	Here	is	a	simple	example	from	a	single	
number:	de7ine	x	as	the	value	for	which	x	=	x2	-	2	holds.	
This	is	analogous	to	the	de7inition	above:	we	have	one	
x	on	the	left	and	a	function	of	x	on	the	right.	

	Of	course,	we	all	learned	in	high	school	how	to	solve	
this	by	rewriting,	but	we	can	also	solve	it	by	iteration.	
We	replace	the	equals	sign	by	an	arrow	and	write:	x	<-	
x2	-	2.	We	start	with	some	randomly	chosen	value	of	x,	
compute	x2	-	2,	and	replace	x	by	the	new	value.	We	
iterate	this	and	we	end	up	with	a	functions	for	which	
the	de7inition	holds.	Try	it	for	yourself	(start	with	x	=	
0)	

Note	that	in	this	example	in7inity	also	counts	as	a	
solution,	so	if	you	pick	the	wrong	starting	state	you	
may	end	up	with	larger	and	larger	numbers.	For	other	
functions,	there	may	be	stable	states	that	jump	back	
from	one	point	to	another,	or	even	chaotic	states	(see	
https://en.wikipedia.org/wiki/Logistic_map	for	
more	information	if	you’re	interested,	but	this	is	not	
exam	material).		

This	is	known	as	the	iteration	method	for	solving	
recurrences	(recursive	de7initions).	And	it	works	for	
function	de7initions	too.

Q-Learning

init Q(s, a) = 0 for all s and a

loop:
• in state s, take action a

• arrive in s’
• receive immediate reward r

• update Q(s, a) <- r + γ max Q(s’, a’)

50

a’

This	gives	us	the	Q-learning	algorithm	shown	here.	

Note	that	the	algorithm	does	not	tell	you	how	to	choose	
the	action.	It	may	be	tempting	to	use	your	current	
policy	to	choose	the	action,	but	that	may	lead	you	
repeat	early	successes	with	out	learning	much	about	
the	world.	

NB:While	we	are	learning	a	deterministic	policy	here	
(the	Q	function),	the	function	that	decides	which	
actions	to	take	can	be	anything,	and	should	contain	
some	randomness.	

51

A

B C

D F

E

s a Q(s,a)
A U 0
A R 0
B U 0
B R 0
C U 0
C R 0
D U 0
D R 0
E U 0

Q(s,a)
0
0
0
0
0
0
0
0
0

U

Q(s,a)
0
0
0
0
0
0
0
0
0

R R

Q(s,a)
0
0
0
0
0
1
0
0
0

Q(s, a) <- r + γ max Q(s’, a’)

Q(s,a)
0
0
0
0
0
1
0
0
0

U R R

reset
Q(s,a)

0
0
0
0

0.9
1
0
0
0

Q(s,a)
0
0
0
0

0.9
1
0
0
0

a’

A B C E A B C E

To	see	how	Q	learning	operates,	imagine	setting	a	robot	
in	the	bottom-left	square	(A)	in	the	7igure	shown	and	
letting	it	explore.	The	robot	chooses	the	actions	up,	
right,	right	and	when	it	reaches	the	goal	state	(E)	it	
gets	reset	to	the	start	state.	It	gets	+1	immediate	
reward	for	entering	the	goal	state	and	0	reward	for	any	
other	action.	

What	we	see	is	that	the	Q	function	stays	0	for	all	values	
until	the	robot	enters	the	goal	state.	At	that	point	Q(C,	
R)	west	updated	to	value	one.	In	the	next	run,	Q(B,	R)	
gets	updated	to	0.9.	In	the	next	run	after,	Q(A,	U)	is	
updated	to	0.9	*	0.9.	This	is	how	Q-learning	updates.	In	
every	run	of	the	algorithm	the	immediate	rewards	
from	the	previous	runs	are	propagated	to	neighbouring	
states.	

Q-Learning

Which actions should we take?

epsilon-greedy: follow current policy, except with
probability epsilon, take a random action
Decay epsilon as learning progresses

52

In	contrast	to	policy	gradients,	where	the	standard	
approach	is	to	follow	your	current	policy,	Q-learning	
completely	separate	exploration	used	to	learn	the	q	
function	and	exploitation	of	the	q	function	once	it’s	
been	learned.	Any	policy	that	has	a	suf7icient	
randomness	will	converge	to	us	learning	the	same	q	
function,	and	once	we’ve	learned	it,	we	can	use	it	to	
explore.

53

γ = 1actionaction actionenv env env

Q(s, a) =
 -1

Q(s, a) =
 -1Q(s, a) =

 -1

tabular Q-learning

Explicitly stores Q for all state-action pairs

• Only feasible for very small state spaces

• No generalization between states

54

deep Q-learning

update Q(s, a) <- r + γ max Q(s’, a’)

55

a’

s

a

The	main	idea	behind	deep	q	learning	is	that	we	can	
take	the	policy	network,	and	instead	of		softmaxing	the	
outputs	and	interpreting	them	as	a	distribution	on	the	
actions,	we	can	use	a	linear	activation,	and	interpret	it	
as	a	prediction	of	the	Q	value.	For	a	given	input	s,	we	
take	the	output	for	action	a	to	be	an	estimate	of	the	
value	Q(a,	s).	

The	update	rule	from	Q	learning	is	still	the	same,	su		

56

0 0 -1

0 1 0

0 0 0

0 0 0

0.2 0.2 0

0.7 -1 0

0 0 0

0 0 0

0 0 0

0.1 1 0

0.1 0.2 0.1

0 0.1 0

0 0 -1

0 1 -1

1 0 0

0.1 0.1 0

0.2 0 0

0 0.1 0.3

epsilon greedy

env

reward=0

env

reward=0

env

reward=-1

target: r + γ max Q(s’, a’)a’
Here	how	that	might	look	in	the	tic-tac-toe	example.	

We	play	a	game,	usually	by	an	epsilon	greedy	following	
of	our	current	policy.	After	each	move	we	make,	we	
observe	a	reward,	and	we	compute	a	target	value	for	
our	network.	This	consists	of	the	observed	reward	r,	
and	the	discounted	future	reward	in	the	new	state	s’.	
We	add	these	together	and	this	becomes	a	target	value	
for	the	output	node	corresponding	to	a,	the	action	we	
took.	We	compute	the	difference	between	this	output	
and	the	output	we	observed	(by	some	loss	function)	
and	we	can	backpropagate.	

Note	the	difference	with	policy	gradients:	there	we	had	
to	keep	our	intermediate	values	in	memory	until	we’d	
observed	the	total	reward	for	the	episode.	Here,	we	can	
immediately	do	an	update	after	we’ve	made	our	move.

more information

DLVU: dlvu.github.io Lectures 9 and 11

OpenAI spinning up:
https://spinningup.openai.com/en/latest/

OpenAI Gym:
https://gym.openai.com/

57

These	slides	hopefully	give	you	an	overview	of	the	
basic	mechanisms	of	deep	reinforcement	learning.	
However,	if	you	want	to	use	these	algorithms	to	do	
more	than	learn	to	play	tic-tac-toe,	You’ll	need	to	know	
a	lot	more	tricks	of	the	trade.	RL	is	one	of	those	
methods	that	requires	a	lot	of	experience	to	make	it	
work	well.		

Our	lectures	in	the	master	course	deep	learning	
provide	more	details	on	the	extra	methods	you	need	to	
use	in	addition	to	the	base	gradient	estimators	like	
policy	gradients	and	Q-learning.	

OpenAI	spinning	up	is	a	good	website,	that	goes	
through	all	of	this	information	step	by	step	and	tells	
you	what	you	need	to	know	to	write	implementations	
yourself.	

And	7inally,	OpenAI	gym	is	a	nice	resource	that	saves	
you	the	considerable	effort	of	writing	an	environment	
yourself.	You	can	just	download	many	different	
environments	and	focus	on	writing	a	policy	networks	
together	with	a	training	method.

break

58source: https://warandpeas.com/2016/10/09/robot/

Reinforcement Learning
Part 4: AlphaGo

Machine Learning
mlvu.github.io

Vrije Universiteit Amsterdam

In	2016	AlphaGo,	a	Go	playing	computer	developed	by	
the	company	DeepMind	beat	the	world	champion	Lee	
Sedol.	Many	AI	researchers	were	convinced	that	this	AI	
breakthrough	was	at	least	decades	away.	

image	source:	http://gadgets.ndtv.com/science/
news/lee-sedol-scores-surprise-victory-over-
googles-alphago-in-game-4-813248

The game of Go

61

First,	some	intuition	about	how	Go	works.	The	rules	
are	very	simple:	players	(black	and	white)	move,	one	
after	the	other,	placing	stones	on	a	19	by	19	grid.	The	
aim	of	the	game	is	to	have	as	many	stones	on	the	board,	
when	no	more	stones	can	be	placed.	The	only	way	to	
remove	stones	is	to	encircle	your	opponent.	Why	is	Go	
so	dif7icult	and	what	has	AlphaGo	done	to	7inally	solve	
these	issues?

claims from the media

AlphaGo is an important move towards general purpose
AI.

AlphaGo thinks and learns in a human way.

AlphaGo mimics the human brain.

Go has more possible positions than there are atoms in the
universe. That’s why it’s difficult.

What makes Go difficult is the high branching factor.

62

When	the	win	against	Lee	Sedol	was	publicised,	many	
claims	were	made	in	the	media,	some	by	DeepMind	
themselves.	Here	are	some	of	them.	All	of	these	are	
dubious	for	various	reasons	

From	top	to	bottom:	

• AlphaGO	is	very	much	purpose-built	for	Go.	It’s	not	
an	architecture	that	can	be	translated	1-on-1	to	any	
other	games,	and	Go	has	some	features	that	are	
exploited	in	a	very	speci7ic	way.	However,	DeepMind	
hasher	projects	that	are	impressive	milestones	
toward	general	purpose	AI.	It’s	also	true	that	
projects	like	Deep	Blue	(the	chess	computer	that	
beat	Kasparov)	were	7illed	with	hand-coded	chess	
knowledge,	written	with	the	help	of	experts.	This	is	
not	true	for	AlphaGo:	the	rules	of	Go	were	hardcoded	
into	it,	and	it	learned	everything	else	by	simply	
observing	existing	matches,	and	playing	against	itself	

• AlphaGo	learns.	It’s	thinking	is	probably	more	
human	than	Deep	Blue’s,	but	we	don’t	understand	
human	thinking	well	enough	to	make	this	claim.	

• AlphaGo	uses	convolutional	neural	networks,	which	
very	loosely	inspired	by	brain	architecture.		

• This	is	true,	but	it’s	also	true	of	chess.	In	fact,	if	you	
had	enough	room	to	store	every	possible	chess	
position	in	a	single	atom,	there	would	be	just	about	
enough	atoms	in	the	universe	for	all	possible	Go	
positions.	But	that	doesn’t	actually	mean	very	much.	

There	are	even	more	possible	video	7iles	of	90	
minutes	in	length,	and	yet	we	can	easily	7ind	the	ones	
representing	good	movies	in	that	space.	

• The	branching	factor	is	one	of	the	two	aspects	that	
make	go	so	dif7icult.	the	second	is	that	in	Go	you	have	
to	wait	very	long	to	see	a	payoff.	In	chess,	a	basic	
tactic	will	think	perhaps	5	or	six	moves	ahead.	By	
that	time,	you	will	have	captured	something	and	it	
will	be	clear	that	the	tactic	worked.	In	Go,	if	you’re	
encircling	a	big	group	of	stones,	that	can	takes	tens	
of	moves,	even	if	your	opponent	doesn’t	get	in	your	
way.	That	means	you	need	to	look	very	deep	into	the	
game	tree	to	see	if	your	current	action	is	going	to	have	
a	payoff.	That’s	what	makes	Go	so	dif7icult,	and	it’s	an	
important	factor	in	explaining	why	DeepMind	solved	
it	the	way	they	did.	

minimax

63

The	minimax	algorithm	is	mostly	useless	when	it	
comes	to	Go.	For	each	node	in	the	tree	there	are	up	to	
361	children,	compared	to	about	30	for	chess.	This	
means	almost	17	billion		terminal	nodes	if	we	just	
search	two	turns	deep.	And	as	we	discussed,	you	need	
to	search	very	deep	to	7ind	the	nodes	that	show	clear	
rewards.	

image	source:	By	Nuno	Nogueira	(Nmnogueira)	-	http://
en.wikipedia.org/wiki/Image:Minimax.svg,	created	in	
Inkscape	by	author,	CC	BY-SA	2.5,	https://
commons.wikimedia.org/w/index.php?
curid=2276653

rollouts

64

This	simple	principle	was	an	early	success	in	playing	
Go:	we	simply	choose	random	moves	from	some	fast	
policy,	and	play	a	few	full	games	for	each	immediate	
successor.	We	then	average	the	rewards	we	got	over	
these	as	a	value	for	the	successor	states,	and	choose	
the	action	that	lead	to	the	highest	values.	The	rollout	
policy	should	ideally	give	good	moves	high	probability,	
but	also	be	very	fast	to	compute.	

monte-carlo tree search (MCTS)

65

Monte	Carlo	Tree	Search	(MCTS)	is	a	simple,	but	
effective	algorithm,	combining	rollouts	with	an	
incomplete	tree	search.	We	start	the	search	with	an	
unexpanded	root	node	labeled	0/0	(this	value	
represents	the	probability	of	winning	from	the	given	
state).	We	then	iterate	the	following	algorithm	

• Selection:	select	unexpanded	node.	At	7irst,	this	will	
be	the	root	node.	But	once	the	tree	is	further	
expanded	we	perform	a	random	walk	from	the	root	
down	to	one	of	the	leaves.	

• Expansion:	Once	we	hit	a	leaf	(an	unexpanded	node),	
we	expand	it	and	give	its	children	the	value	0/0.	

• Simulation:	From	each	expanded	child	we	do	a	
rollout.	

• Back	propagation	(nothing	to	do	with	the	
backpropagation	we	know	from	NNs):	If	we	win	the	
rollout	let	v	=	1	otherwise	v	=	0.	For	the	new	child	
and	everyone	of	its	parents	update	the	value.	If	the	
old	value	was	a/b,	the	new	value	is	a+v	/	b+1.	The	
value	is	the	proportion	of	simulated	games	crossing	
that	state	that	we’ve	won.	

The	random	walk		performed	in	the	selection	phase	
should	favour	nodes	with	a	high	value,	but	also	explore	
the	nodes	with	low	values.	This	is	a	classic	exploration/
exploitation	tradeoff.	There	is	no	single	best	way	to	
this,	

Incidentally,	the	phrase	Monte	Carlo	is	used	for	any	
algorithm	which	uses	sampling	as	its	main	mechanism.		

Note	that	if	you	don’t	roll	out	fully,	but	get	a	probability	
p	of	winning	(from	a	heuristic)	you	can	simple	use	v=p.	

image	source:	By	Mciura	-	Own	work,	CC	BY-SA	3.0,	
https://commons.wikimedia.org/w/index.php?
curid=25382061

AlphaGo (2016)

66

the	functions	that	AlphaGo	learns	are	convolutional	
networks.	One	type	is	a	policy	network	(from	states	to	
moves)	and	one	is	a	value	network	(from	states	to	a	
numeric	value).	

Here	are	the	networks	it	learns	

SL:	policy	network:	from	a	database	of	games	(like	
ALVINN,	watching	human	drivers)	

RL:	policy	network,	start	with	SL,	but	re7ine	with	
reinforcement	learning	(policy	gradient	descent)	

	 slow	policy	network	(with	softmax	layer	on	
top)	

	 fast	policy	network	with	(with	linear	

activations)	

V:	value	network	learned	from	observing	older	
versions	of	itself	playing	games.	Once	the	game	is	
7inished	and	the	outcome	of	the	game	(eg.	“black	
wins”)	is	used	as	the	label	for	all	the	states	observed	in	
the	game.	

The	value	network	predicts	the	winner	form	the	
current	board	state.	

	

putting it all together

Start with imitation learning
Learn to copy human players

Train by playing against previous iterations and self
update weights by policy gradients

Boost network performance by MCTS

67

The	networks	are	trained	by	reinforcement	learning	
using	policy	gradient	descent.	

During	actual	play,	AlphaGO	uses	an	MCTS	algorithm.	
The	value	on	each	node	(as	in	basic	MCTS)	represents	
the	probability	that	black	will	win	from	that	state.	

- When	it	comes	to	rollouts,	use	the	slow	policy	
network	to	do	a	rollout	for	T	steps,	then	7inish	with	
the	fast	policy	

- The	value	v	of	the	newly	opened	state	is	the	average	
of	the	value	(computed	with	the	the	value	network)	
after	T	steps,	and	the	win/lose	value	at	the	end	of	the	
rollout.	(image	c)	

- Backup	as	with	standard	MCTS:	each	node’s	value	
becomes	the	probability	of	a	win	from	that	state.	
Precisely	the	value	of	node	n	becomes		the	sum	of	the	
values	of	all	simulations	crossing	node	n,	divided	by	
the	total	number	of	simulations	crossing	node	n.	A	
simulation	is	counted	as	a	full	game	simulated	from	
the	root	node	down	to	a	terminal	(win/loss)	node.	
(image(d))

AlphaGo Zero (2017)

Learns from scratch, no imitation learning, reward shaping
etc.
Also applicable to Chess, Shogi…

Uses three tricks to simplify/improve AlphaGo

1. Combine policy and value nets

2. View MCTS as a policy improvement operator

3. Add residual connections, batch normalization

68

AlphaGo Zero (2017)

trick 1: combine policy and value nets.

69

AlphaGo Zero (2017)

trick 2: view MCTS as a policy improvement operator.

70

image	source:	Mastering	the	game	of	Go	without	human	
knowledge,	David	Silver,	Julian	Schrittwieser,	Karen	
Simonyan	et	al.	

AlphaGo Zero (2017)

trick 3: residual connections and batch normalisation

71

+

layers
a

…

…

standardisation (Methodology 2)

72

0 1

std. dev.mean

0 1

x x- µ

�
<latexit sha1_base64="8j9BeoJt9JTSHyQ9yl+WPZDB8Bc=">AAAGlXicdZRLb9NAEIBdoKEECi1ckLhYREgIhcgOtIRDUaGhrRBtQtU0leKoWm/GjhW/tLtO4q72r/BruMKdf8M6cSs/wl4ynm9mNK+MGboOZZr2d+3O3XvrlfsbD6oPH20+frK1/fSCBhHB0MOBG5BLE1FwHR96zGEuXIYEkGe60DcnBwnvT4FQJ/DPWRzC0EO271gORkyqrrZaho35XKiGCxZDhAQz1bAIwjzVv1WNQH54kRDcMKVEHdtDQqhXWzWtoS2eWhb0VKgp6eteba8fGqMARx74DLuI0oGuhWzIEWEOdkFUjYhCiPAE2TCImNUacscPIwY+FuoryazIVVmgJlWoI4cAZm4sBYSJIyOoeIxk3kzWWs2HouAjD2h9NHVCuhTp1F4KDMlGDfl80UixmfPkNkHh2MHzXGocedRDbFxS0tgz80qIXCBTL69M0pRJFiznQLBDkyZ0ZWc6YTIceh50Uz6OwzH4VPCIuCLrKAEQApZ0XIgUWBTyRTVyIyZ0j5EI6om40O21EZmcwagu4+QU+XQsN0BMyGb4MMOB5yF/xI1QLgCDOeNGvSEWrcrSM8Hllsi+mKZ6luAcPc3QU1GM3LulltqTNAcvMvCiFLifof2iqxllaFSi0wydliKbswyelfA8Q+clGmdoXKLXGXpdbiWSgx40h3zZ7sWYeMd1pnBEAHzBa01RrIXICQ70vEsyVV7TxaLdI7DkgVgCL07M+fH5yXfBD1rNHW1XFC1MN4IbE+3d7s6BVjKxl9mkNlqr1fxSsgkI8u3bQO2vu591rTh9gkuppxmqNV0tlWqvMk9zWelgrnJY1rfSflK2PyIo/o91sCr6Tdk3HoWKJ2GyABN5TMPk+CF3OaM2yLNI4EQuRkf+lRELyBu5DcT2HFmb/DXqiVSVl1cv3tmy0Gs2Pja0H+9r+9/SE7yhvFBeKq8VXfmg7CvHSlfpKVj5qfxSfit/Ks8rnyrtyuHS9M5a6vNMyb1K5x+RzV2Z</latexit><latexit sha1_base64="8j9BeoJt9JTSHyQ9yl+WPZDB8Bc=">AAAGlXicdZRLb9NAEIBdoKEECi1ckLhYREgIhcgOtIRDUaGhrRBtQtU0leKoWm/GjhW/tLtO4q72r/BruMKdf8M6cSs/wl4ynm9mNK+MGboOZZr2d+3O3XvrlfsbD6oPH20+frK1/fSCBhHB0MOBG5BLE1FwHR96zGEuXIYEkGe60DcnBwnvT4FQJ/DPWRzC0EO271gORkyqrrZaho35XKiGCxZDhAQz1bAIwjzVv1WNQH54kRDcMKVEHdtDQqhXWzWtoS2eWhb0VKgp6eteba8fGqMARx74DLuI0oGuhWzIEWEOdkFUjYhCiPAE2TCImNUacscPIwY+FuoryazIVVmgJlWoI4cAZm4sBYSJIyOoeIxk3kzWWs2HouAjD2h9NHVCuhTp1F4KDMlGDfl80UixmfPkNkHh2MHzXGocedRDbFxS0tgz80qIXCBTL69M0pRJFiznQLBDkyZ0ZWc6YTIceh50Uz6OwzH4VPCIuCLrKAEQApZ0XIgUWBTyRTVyIyZ0j5EI6om40O21EZmcwagu4+QU+XQsN0BMyGb4MMOB5yF/xI1QLgCDOeNGvSEWrcrSM8Hllsi+mKZ6luAcPc3QU1GM3LulltqTNAcvMvCiFLifof2iqxllaFSi0wydliKbswyelfA8Q+clGmdoXKLXGXpdbiWSgx40h3zZ7sWYeMd1pnBEAHzBa01RrIXICQ70vEsyVV7TxaLdI7DkgVgCL07M+fH5yXfBD1rNHW1XFC1MN4IbE+3d7s6BVjKxl9mkNlqr1fxSsgkI8u3bQO2vu591rTh9gkuppxmqNV0tlWqvMk9zWelgrnJY1rfSflK2PyIo/o91sCr6Tdk3HoWKJ2GyABN5TMPk+CF3OaM2yLNI4EQuRkf+lRELyBu5DcT2HFmb/DXqiVSVl1cv3tmy0Gs2Pja0H+9r+9/SE7yhvFBeKq8VXfmg7CvHSlfpKVj5qfxSfit/Ks8rnyrtyuHS9M5a6vNMyb1K5x+RzV2Z</latexit><latexit sha1_base64="8j9BeoJt9JTSHyQ9yl+WPZDB8Bc=">AAAGlXicdZRLb9NAEIBdoKEECi1ckLhYREgIhcgOtIRDUaGhrRBtQtU0leKoWm/GjhW/tLtO4q72r/BruMKdf8M6cSs/wl4ynm9mNK+MGboOZZr2d+3O3XvrlfsbD6oPH20+frK1/fSCBhHB0MOBG5BLE1FwHR96zGEuXIYEkGe60DcnBwnvT4FQJ/DPWRzC0EO271gORkyqrrZaho35XKiGCxZDhAQz1bAIwjzVv1WNQH54kRDcMKVEHdtDQqhXWzWtoS2eWhb0VKgp6eteba8fGqMARx74DLuI0oGuhWzIEWEOdkFUjYhCiPAE2TCImNUacscPIwY+FuoryazIVVmgJlWoI4cAZm4sBYSJIyOoeIxk3kzWWs2HouAjD2h9NHVCuhTp1F4KDMlGDfl80UixmfPkNkHh2MHzXGocedRDbFxS0tgz80qIXCBTL69M0pRJFiznQLBDkyZ0ZWc6YTIceh50Uz6OwzH4VPCIuCLrKAEQApZ0XIgUWBTyRTVyIyZ0j5EI6om40O21EZmcwagu4+QU+XQsN0BMyGb4MMOB5yF/xI1QLgCDOeNGvSEWrcrSM8Hllsi+mKZ6luAcPc3QU1GM3LulltqTNAcvMvCiFLifof2iqxllaFSi0wydliKbswyelfA8Q+clGmdoXKLXGXpdbiWSgx40h3zZ7sWYeMd1pnBEAHzBa01RrIXICQ70vEsyVV7TxaLdI7DkgVgCL07M+fH5yXfBD1rNHW1XFC1MN4IbE+3d7s6BVjKxl9mkNlqr1fxSsgkI8u3bQO2vu591rTh9gkuppxmqNV0tlWqvMk9zWelgrnJY1rfSflK2PyIo/o91sCr6Tdk3HoWKJ2GyABN5TMPk+CF3OaM2yLNI4EQuRkf+lRELyBu5DcT2HFmb/DXqiVSVl1cv3tmy0Gs2Pja0H+9r+9/SE7yhvFBeKq8VXfmg7CvHSlfpKVj5qfxSfit/Ks8rnyrtyuHS9M5a6vNMyb1K5x+RzV2Z</latexit>

Another	option	is	standardization.	We	rescale	the	data	
so	that	the	mean	becomes	zero,	and	the	standard	
deviation	becomes	1.	In	essence,	we	are	transforming	
our	data	so	that	it	looks	like	it	was	sampled	from	a	
standard	normal	distribution	(as	much	as	we	can	with	
a	one	dimensional	linear	transformation).	

We	can	think	of	the	data	as	being	generated	from	a	
standard	normal	distribution,	followed	by	
multiplication	by	sigma,	and	and	adding	mu.	The	result	
is	the	distribution	of	the	data.	If	we	then	compute	the	
mean	and	the	standard	deviation	of	the	data,	the	
formula	in	the	slide	is	essentially	inverting	the	
transformation,	recovering	the	“original”	data	as	
sampled	from	the	normal	distribution.We	will	build	on	

this	perspective	to	explain	whitening.	

batch normalisation

73

+

x

…

Batch Norm

…

y x1, . . . , xm : output of previous layer
y1, . . . , ym : result

�,� : learnable parameters

µ =
1

m

X
xi mean over batch

� =

r
1

m

X
(xi - µ)2 std. dev. over batch

x̂i =
xi - µ

�+ ✏
standardize

yi = �x̂i + �
<latexit sha1_base64="VHKEgWifsQbU5zuX+c/79NOWVGM=">AAAJA3icfVXdbuNEFHazUEJgYctecjMiolrYbGSn9AekSsu2ZVfAbkvVtCvV2WhsnyRWxj/MjNO4o7nkOXgA7hC3PAhvw7GdRHYcsCL5ZL6fOXPmeMaJmS+kaf6z1Xjw3vvbHzQ/bH308cNPPn2089m1iBLuQt+NWMTfOlQA80PoS18yeBtzoIHD4MaZnmT4zQy48KPwSqYxDAI6Dv2R71KJQ8Odrd/t+dDqEJt5kRT4ng8DsvsdsSXMpYoSGSeSRCOCpjM/SgRhNAWuiW237LQiTMtCDiJhsqCNaRBQJDgg6YrAgPKQYpYkppwGIDHHgo6/yFV2kGiye0zsEaeusrQKtC2SIMvPJ7uFRwA0JBGujjhUupNC7qBW+OOAFnLxK5dq3eRJ7vKMLCf66l1PL02F9LrEg1m35jyhsph9mdWai1blyZ8Se4r/IBY+i0KN/mQ5AQ09yj3/HhZlfFd45nVazfK0KBgZPmqbXTN/SD2wFkHbWDwXw53tn2wvcpMAQukyKsStZcZyoCiXvstAt+xEQEzdKR3DbSJHRwPlh7jLELqafInYKGFERiTrFuL5HFzJUgyoy310IO4EN8zN9qtVtRIQ4kaKjjfzY1GEYjYuAplt9UDN84bVDytKNeY0nvjuvJKaooEIqJzUBkUaONVBSBjwWVAdzNLEJNeYc+CuL7IiXGBlzuPsIxBX0cUCn6TxBEKhVcKZLgsRAM5hhMI8FCCTWOWrwS9vKo4lT6CThfnY8Snl00vwOuhTGaimM2IRldUhB5eB1Qnhzo2wHUJP2TE2Vt45dqer89qV0UutsPuwUI5DLjO4gr4poW+0roJnJfAMwSraX6Ej0l+XXpfA69qsNyX0Zl3qJCU0qaGzEjqrOTt3JfiuBs9L6LyGpiU0raH3JfS+XmeKbXHbG6hiL/JNVefMn8FLDhBq1e7p9bVw3O9bqyrJekC1LZ2X24MRHtsFEKQZXb26ev2zVidHvX3zQK8zHJbAkmLuHeyfmDXKuMhmwTGPjnovapyI03C8Mjo9O/jeqhvFCY/ZinR4uPfDt3WnFBiL7lZOJy9Oe3vrfcTdWhEWayVti9SKNt5EX6xqo8DZJCgqtZE/rfNfcpr+Bzva5L4s4EZFvEmxrOZGRbpJsSztUrG2iDjr1uyCibNznbKCcgp44nN4jV18jqcUlRH/GluXjwMfy4dvu5NF/0ek8yURo1YLrx9r/bKpB9e9rrXXNX/5pv38x8VF1DQ+N74wnhiWcWg8N14ZF0bfcBvbjU5jv3HQ/K35R/PP5l8FtbG10Dw2Kk/z738BO5hBmA==</latexit>

74

Alpha Zero (2017)

75

Reinforcement Learning
Part 5: Social Impact 4

Machine Learning
mlvu.github.io

Vrije Universiteit Amsterdam

In	the	previous	videos	on	social	impact,	we’ve	looked	
primarily	at	sensitive	attributes	and	parts	of	the	
population	that	are	particularly	at	risk	of	careless	use	
of	machine	learning.	

In	this	video,	we’ll	zoom	out	a	bit,	and	look	at	the	ways	
society	as	a	whole	may	be	at	risk.

Artificial Intelligence---The Revolution Hasn't Happened Yet Micheal Jordan
 Harvard Data Science Review. https://doi.org/10.1162/99608f92.f06c6e61

intelligent infrastructure

77

Artificial Intelligence Intelligence Augmentation Intelligent Infrastructure

Since	the	1950s,	people	have	been	talking	about	
arti7icial	intelligence:	the	idea	that	we	may	build	
automata	that	have	cognitive	abilities,	rivalling	that	of	
humans.	In	7iction,	examples	of	this	are	often	very	
human	in	appearance:	they	are	embodied	in	human	
bodies	and	they	function	very	much	the	way	humans	
do,	if	with	a	slightly	metallic	voice.	The	more	more	
imaginative	examples	were	AI’s	like	2001’s	HAL,	which	
embodied	a	space	ship	rather	than	a	humanoid	body,	
and	spoke	with	a	natural	voice.	Nevertheless,	it	still	
represented	a	single,	quite	human	intelligence.	And	the	
peril	in	that	movie,	still	came	from	the	intelligence	
behaving	against	the	interests	of	the	humans	in	a	
direct,	adversarial	way.	

As	we	began	to	solve	some	of	the	problems	of	
intelligence,	the	intelligent	software	that	entered	our	
lives	did	not	take	the	form	of	robotic	housemaids,	but	
of	simpler	tool,	far	less	intelligent	tools	that	could	
augment	our	intelligence.	A	search	engine	is	good	
example:	it	has	no	deep	intelligence,	but	it	helps	us	to	
use	our	own	intelligence	more	effectively.	This	is	the	
use	of	intelligent	software	that	has	rapidly	increased	
since	the	1990s.	

A	few	years	ago,	machine	learning	researcher	Michael	
Jordan	coined	the	phrase	Intelligent	Infrastructure	to	
capture	the	era	we	are	entering	now.	An	era	when	
human-level	intelligence	is	still	some	way	off,	but	more	
and	more	components	of	of	our	national	and	
international	infrastructure	are	being	replaced	by	
semi-autonomous,	intelligent	components.	These	
include:	

• Tax	services	automatically	generating	candidates	for	
fraud	investigations.	

• Hospitals	automatically	assigning	risk	pro7iles	to	
patients	to	allocate	doctor’s	time.	

• Recommender	systems	highlighting	relevant	news	
stories	and	analysis	

• Banks	predicting	the	risk	of	loan	defaults	and	setting	
the	interest	rates	accordingly.			

Infrastructure	here	refers	not	just	to	the	7low	of	traf7ic,	
although	that’s	included,	but	also	to	the	7low	of	people	
in	general,	the	7low	of	money	and	most	importantly	the	

7low	of		of	information.	Like	arti7icial	intelligence,	
intelligent	infrastructure	comes	with	risks.	But	here	
the	risk	is	not	so	simple	as	the	AI	not	opening	the	pod	
bay	doors	when	we	tell	it	to.	The	risks	come	primarily	
from	unintended	consequences	that	stay	hidden,	and	
are	dif7icult	to	measure.		

An	intelligent	infrastructure	is	not	a	system	that	is	built	
and	tested	all	at	once.	It’s	something	that	emerges	step	
by	step	as	people	replace	human	decision	making	with	
automated	decision	making.	It’s	not	just	controlled	by	
engineers,	but	also	by	project	managers,	third	parties,	
company	managers.	At	the	largest	level,	the	network	
doesn’t	even	come	under	the	control	of	one	
government.	Even	if	Europe	gets	ahead	of	the	curve,	
large	parts	of	the	infrastructure	we	use	may	be	hosted	
in	the	US,	or	in	China,	where	different	rules	apply	and	
different	levels	of	oversight	are	possible.	

image	source:	photo	by	Ian	Beckley	from	Pexels	

Feedback loops

Blind optimization

Predictions vs. actions

78

These	are	probably	the	three	main	categories	of	issues	
to	be	wary	of		when	you’re	working	on	some	piece	of	
infrastructure	that	will	make	decisions	automatically.	

We’ve	seen	examples	of	each	already,	in	the	lectures	in	
general	and	in	the	previous	social	impact	videos.	We’ll	
look	at	some	new	examples	to	highlight	the	risks	
speci7ically	from	the	perspective	of	intelligent	
infrastructure.

Pittsburgh, 1995

79

if has_asthma(X) then pneumonia_risk(X, low)

predictions vs. actions

We’ll	start	with	a	classic	example.	In	the	early	90s,	
Pittsburgh	Medical	Center	started	a	project	to	
investigate	ways	to	make	their	health	care	more	cost	
effective:	to	achieve	better	results	with	the	same	
resources.	One	thing	they	decided	to	focus	on	was	
community	acquired	pneumonia	(CAP).	A	lung	
infection	acquired	from	other	people	outside	of	the	
hospital.		

Pneumonia	is	sometimes	relatively	benign	and	
sometimes	leads	to	sudden	and	quite	severe	adverse	
reactions,	and	even	death.	The	reasoning	was	that	if	
risk	factors	could	be	identi7ied	that	predicted	such	
highly	adverse	reactions,	patients	could	be	monitored	
in	a	more	effective	way,	and	perhaps	deaths	could	be	

prevented.	

The	researchers	trained	a	rule	based	system:	a	type	of	
machine	learning	that	learns	discrete	if-then	rules	that	
hold	for	a	majority	of	the	data.	Such	systems	are	less	
popular	today,	since	their	performance	tends	to	be	
much	lower	than	that	of	modern	methods,	but	they	do	
have	one	advantage.	If	you	keep	the	number	of	rules	
small,	the	model	becomes	very	easy	to	inspect.	You	can	
see	exactly	what	your	model	has	learned	in	a	very	
interpretable	format.	

One	of	the	rules	the	model	learned	was	this	one:	
patients	with	asthma	had	a	much	lower	risk	of	
developing	strongly	adverse	affects	from	pneumonia.	

This	was	a	counter-intuitive	result.	Asthma	is	a	lung	
condition,	and	any	doctor	will	tell	you	that	catching	
pneumonia	is	much	more	dangerous	for	an	asthmatic	
person	than	for	others.	What	happened	here,	was	that	
doctors	and	asthmatic	patients	were	already	being	
much	more	careful.	Patients	with	asthma	know	that	
they	should	be	more	watchful	for	signs	of	pneumonia,	
and	doctors	know	that	such	patients	require	more	
active	care.	

	Nevertheless,	if	we	had	trusted	the	system	blindly,	or	if	
we	had	used	a	neural	network	which	would	not	have	
allowed	us	to	inspect	it	in	this	way,	we	would	end	up	
lowering	our	vigilance	for	asthmatic	patients	
presenting	with	signs	of	pneumonia.	

This	is	yet	another	example	of	our	data	coming	from	a	
biased	distribution,	like	the	planes	in	world	war	2:	we	
are	not	seeing	what	would	happen	to	asthma	patients	if	
their	were	treated	the	same	as	everybody	else,	so	our	
inference	is	biased.	Here	as	then	our	predictions	are	
entirely	accurate:	we	can	predict	very	well	where	
planes	coming	back	will	be	hit,	and	we	can	predict	very	
accurately	what	will	happen	to	asthmatic	patients	
admitted	to	hospital	with	signs	of	pneumonia.	

What’s	going	wrong	are	the	implied	actions,	we	decide	
to	attach	to	that	prediction.	More	often	than	not,	this	is	
not	a	concious	choice	ans	we	simply	confuse	accurate	
predictions	with	sound	actions.

feedback loop

80

asthma

vigilance

outcome

predicted
outcome

+ +

+

-

-

medical expertise

trust in system

Here’s	a	sketch	of	how	blindly	trusting	this	system,	
introduces	a	feedback	loop.	

Before	we	introduce	our	system,	there	is	positive	
feedback	from	having	Asthma	to	the	hospital	staff	
being	more	vigilant.	This	improves	outcomes.	

When	we	train	our	system	it	pick	up	on	the	resulting	
correlation,	and	having	asthma	leads	to	a	better	
predicted	outcome.	This	is	a	correct	inference.	

However,	if	we	use	that	prediction	to	take	action	
naively,	we	reduce	the	vigilance	of	doctors	towards	
asthma	patients,	worsening	the	outcomes.	

interpretability and domain expertise

81

if has_asthma(X) then pneumonia_risk(X, low)

hundreds of features risk score

Involve stakeholders,

domain exper
ts

In	this	case,	there	are	two	important	factors	stopping	
this	feedback	loop	from	being	put	into	production,	and	
costing	lives.	First	the	fact	that	a	rule	based	system	was	
used.	This	allowed	us	to	inspect	what	the	system	was	
learning	and	to	pick	up	on	the	fact	that	a	counter-
intuitive	rule	was	coming	out.	

Second,	the	fact	that	domain	experts	were	consulted,	in	
this	case,	doctors.	A	doctor	can	look	at	rules	like	these	
and	tell	you	that	they’re	wrong,	which	helps	you	to	see	
that	you’ve	made	a	fundamental	mistake	in	your		
reasoning.	In	this	case	the	people	most	affected	by	the	
system,	asthma	patients,	would	also	have	been	to	tell	
you	this.	We	call	the	people	that	are	affected	by	the	
system	stakeholders,	and	the	people	who	study	the	
domain	of	the	data		domain	experts.	Both	should	be	
consulted	in	the	design	of	a	system.	

Note	that	domain	experts	and	stakeholders	can	only	be	
involved	of	the	system	is	made	interpretable	in	some	
way.	That	doesn’t	mean	your	model	needs	to	consist	of	
discrete	rules,	but	it	does	mean	that	you	somehow	
need	to	make	the	behavior	of	your	system	inspectable	
for	people	that	don’t	have	a	machine	learning	
background.	How	to	do	this,	is	an	active	area	of	
research.

online versus offline learning

82

asthma

vigilance

outcome

predicted
outcome

+ +

+

-

-

medical expertise

trust in system

described by the data

additional actors
after data-gathering

A	key	problem	here	is	that	when	we	are	using	of7line	
learning	to	make	predictions,	we	are	taking	our	data	as	
a	static	snapshot	of	the	world.		

That	snapshot	accurately	describes	the	world,	but	only	
the	world	without	our	system	in	it.	Once	we	take	
actions	based	on	the	predictions,	our	system		becomes	
an	additional	actor	in	the	world,	and	our	data	does	not	
represent	the	world	with	that	actor	in	it.		

In	theory,	we	could	deploy	the	system,	gather	more	
data,	retrain	the	system.	deploy	and	repeat.	If	we’re	
lucky,	the	system	will	eventually	converge	to	a	stable	
state	where	it	has	the	right	idea	about	how	asthma	
in7luences	the	outcome.	But	it	only	learns	this	after	it	
has	reduced	vigilance	for	a	sizeable	number	of	patients,	
likely	costing	lives.

predictive policing

83

police
presence

arrest
rate

+

predicted
arrest rate

+

neighborhood

+

Here	is	another	example,	predictive	policing.	This	is	
strongly	related	to	the	pro7iling	question	we	discussed	
in	the	last	social	impact	video,	but	it	shows	that	we	
have	a	problem	even	if	we	take	race	out	of	the	
equation.		

If	we	increase	the	police	presence	in	a	particular	
neighborhood,	that	will	increase	the	arrest	rate.	
Regardless	of	whether	it’s	a	tranquil	or	crime-ridden	
neighborhood,	the	more	police,	the	more	arrests.	

Imagine	that	we	want	to	train	a	model	to	predict	where	
the	crime	in	a	city	is	most	likely	to	appear.	We	don’t	
know	exactly	where	crime	is	most	likely,	since	many	
crimes	go	undetected.	An	obvious	measure	to	use	
instead	is	the	number	of	arrests	in	a	neighborhood.	
This	is	called	a	proxy	measure:	something	that	doesn’t	
quite	measure	what	you	want	to	measure,	but	is	close	
in	enough,	and	is	easier	to	measure	accurately.	In	this	
case,	it’s	quite	likely	that	people	use	arrest	rate	as	a	
proxy	for	crime	rate	without	realizing	that	they’re	
doing	it.	

Of	course,	you	know	where	this	is	going.	If	we	build	
predictor	that	includes	the	neighborhood	as	a	feature,	
and	predicts	the	arrest	rate,	we	end	up	with	a	system	
that,	accurately,	predicts	high	high	arrest	rates	for	
neighborhoods	with	police	presence.	If	we	then	
interpret	arrest	rate	as	crime	rate	and	increase	police	
presence	in	areas	where	the	predicts	predicts	more	
arrests,	we	just	end	up	increasing	the	disparity	in	
police	presence	between	neighborhoods.	If	there	is	
some	bias	to	start	with	in	neighborhood	police	
presence,	we	end	up	compounding	the	problem.		

Note	that	this	is	a	case	where	gathering	more	data	and	
retraining	will	not	solve	the	problem.	We	only	have	
positive	feedback	loops,	so	if	we	blindly	follow	the	
system,	every	time	we	retrain,	we	end	up	with	more	
concentration	of	the	police	presence,	until	all	the	police	
and	all	the	arrests	are	in	one	neighborhood	in	the	city.	
The	system	will	be	making	perfect	predictions	at	that	
point,	but	it’s	unlikely	to	lead	to	a	safer	city.

is reinforcement learning a solution?

84

learnermodel
(policy)

Environment

state

reward

action

All	this	shows	an	important	difference	between	
reinforcement	learning	and	classical	of7line	learning.	A	
reinforcement	learning	model	has	the	option	to	model	
itself	as	an	agent	in	the	world.	It	learns	to	act	rather	
than	to	predict,	so	in	theory,	it	can	control	the	
consequences	of	its	actions,	even	if	those	actions	
change	the	distribution	of	the	data.

reinforcement learning

Safe exploration

Accurate modeling of the world
Including limited observability

Carefully chosen optimization objectives
Optimizing arrest rates over crime rate

85

Of	course	all	of	this	is	easier	said	than	done.	Just	letting	
a	neural	network	loose	in	the	world	and	letting	it	learn	
by	optimization	is	unlikely	to	make	the	world	a	safer	
place.	

First	of	all,	such	an	algorithm	learns	by	exploration:	it	
needs	to	try	things	and	observe	the	consequences.	
Letting	it	reduce	the	vigilance	on	asthmatic	pneumonia	
patients	may	eventually	lead	to	sounds	actions,	but	if	
we	let	it	do	this	in	the	real	world,	it	will	take	a	long	
time	before	it	7igures	out	things	that	we	already	know.	
Safe	reinforcement	learning	is	an	active	7ield,	but	it’s	in	
its	infancy.	

Another	thing	we	need	to	worry	about,	is	that	the	
model	works	on	an	accurate	model	of	the	world.	We	
may	set	the	objective	that	a	self-driving	car	should	get	
to	its	destination	without	running	red	lights,	but	if	it’s	
red	light	detector	is	a	neural	network,	then	we	need	to	
make	sure	that	it	doesn’t	optimize	its	performance	by	
getting	worse	at	detecting	red	lights.	After	all,	if	it’s	red	
light	detector	doesn’t	7ire,	it’s	free	to	drive	as	fast	as	it	
likes.	

And	7inally,	and	most	importantly,	reinforcement	
learning	still	optimizes	a	single	metric.	If	we	pick	that	
metric	wrongly,	we	can	still	build	a	very	dangerous	
system.	Take	the	predictive	policing	case.	We	could	
build	a	reinforcement	learning	system	to	maximize	the	
arrest	rate,	but	what	we’re	actually	interested	in	
minimizing	the	crime	rate.	These	are	not	the	same	
thing,	and	maximizing	the	arrest	rate	is	much	more	
likely	to	lead	to	police	nuisance	than	to	actual	
reductions	in	crime.

proxy measures

easily measurable

Arrest rate

Student ratings

86

actual interest

Crime rate

Teaching quality

Another	case	is	student	evaluations:	taken	together	
with	other	metrics,	these	can	help	to	paint	a	complete	
picture	of	a	teacher’s	performance.	If,	however,	we	look	
only	at	evaluations,	then	we	are	just	pressuring	
teachers	to	make	students	happy.	For	instance,	setting	
too	easy	an	exam,	to	reduce	the	possibility	of	
complaints.	

Goodhart’s law

Goodhart (1975): “Any observed statistical regularity will
tend to collapse once pressure is placed upon it for control
purposes.”

Strathern (1997): “When a measure becomes a target, it
ceases to be a good measure.”

87

A	relevant	adage	here	is	Goodhart’s	law,	which	was	
restated	in	more	simple	terms	by	Marilyn	Strathern.	
Often	the	proxy	measure	is	often	a	really	good	way	to	
measure	hwat	we’re	interested	in.	So	long	as	the	proxy	
and	the	true	quantitiy	are	correlated	and	we’re	a	bit	
careful,	we	can	get	quite	a	good	idea	of	what’s	going	on	
and	where	the	potential	improvements	are.	The	
problem	happens	when	we	put	pressure	on	people	to	
minimize	or	maximize	the	proxy	measure.	Then	it	
stops	being	a	reliable	indicator	of	what	we’re	actually	
trying	to	measure.	

For	instance,		in	many	cases	the	arrest	rate	in	a	
neighborhood	may	be	a	reasonable	proxy	for	the	crime	
rate.		It’s	not	perfect,	but	it’s	often	close	enough,	
especially	when	we	look	at	different	factors	like	
income,	substance	abuse	and	7inancial	security	as	well.	
However,often	the	police	is	actively	pressured	to	either	
minimize	the	arrest	rate	(to	show	that	crime	has	
reduced),	or	to	maximize	it	(to	show	that	progress	is	
being	made).	In	that	case,	the	crime	rate	stops	being	a	
usefull	proxy,	and	we	need	to	look	to	other	
measurements	to	see	if	the	pressure	is	actually	
working,	or	people	are	just	fudging	the	statistics,	or	
even	worse	arresting	people	that	shouldn’t	be.

88source: https://www.independent.co.uk/voices/chuggers-are-bad-charity-long-run-10509500.html

Here’s	another	example:	“chuggers”	short	for	charity	
muggers	are	the	people	with	clipboards	that	charities	
use	to	get	people	to	donate	in	the	street.	

Before	deciding	to	employ	these	tactics,	the	charity	
likely	kept	an	eye	on	how	many	people	sign	up	to	
donate.	This	is	an	important	measure	for	a	charity:	it’s	
indicate	how	much	income	they	get	how	able	they	are	
to	survive,	to	affect	change	and	also	how	positive	
people	feel	about	them.	

However,	the	implementation	of	a	tactic	like	this	is	
likely	based	on	a	violation	of	Goodhart’s	law.	The	
charity	decides	to	employ	chuggers,	and	sees	an	uptick	
in	registrations	concluding	that	the	method	must	work.	
In	doing	so,	they	forget	that	donations	are	just	a	proy	
measure	for	what	they	actually	care	about.	If	one	in	
twenty	people	sign	up	to	donate,	we’ll	get	an	uptick	in	
donations,	but	what	about	the	nineteen	people	that	
didn’t	sign	up?	If	they	were	annoyed	by	the	chugger,	
their	appreciation	of	the	charity	will	be	diminished.	
They	will	come	away	thinking	less	of	the	charity,	and	
being	less	receptive	to	its	message	in	the	long	run.	

This	illustrates	an	important	effect	behind	many	
instances	of	Goodhart’s	law	being	violated:	we	care	
about	many	different	things	that	are	hard	to	measure,	
so	we	end	up	optimizing	for	a	single	thing	that	is	easy	
to	measure.	

In	many	ways,	people	with	machine	learning	and	
computer	science	backgrounds	are	at	an	extra	risk	of	

this,	since	they	are	so	used	to	optimizing	for	single	
metrics.

McNamara fallacy

89

A	strongly	related	problem	is	the	McNamara	fallacy.	
Robert	McNamara	was	the	US	secretary	of	Defense	for	
most	of	the	sixties	and	oversaw	a	large	part	of	the	
Vietnam	war.	

McNamara	was	an	early	pioneer	of	data	driven	
management,	7irst	as	a	manager	at	Ford,	and	then	in	
the	US	government.	During	the	Vietnam	war,	the	focus	
was	entirely	on	measurable	metrics.	Often	such	
gruesome	ones	as	the	numbers	of	Vietcong	and	US	
soldiers	killed.	All	processes	and	policy	decisions	were	
shaped	around	such	statistics.	This	had	two	
detrimental	effects.	

First,	it	ignored	things	that	were	dif7icult	to	measure,	
such	as	the	Vietnamese	sentiment	towards	the	US,	
which	turned	the	general	population	against	the	US,	
and	towards	the	Vietcong.	

Second,	it	incentivised	the	military	to	present	positive	
numbers.	This	lead	to	generals	putting	arbitrary	caps	
on	what	numbers	of	enemy	troops	could	be	reported,	
and	redrawing	categories	like	the	army	command	
structure	to	make	the	progress	of	the	war	look	better,	
so	that	congress	would	commit	to	more	sending	more	
troops	abroad.	

For	more	than	a	decade,	the	data	suggested	that	the	US	
was	winning	the	war.	And,	then,	in	the	early	70s,	
around	the	time	Goodhart	7irst	formulated	his	
principle,	the	US	withdrew,		

In	short,	since	quantitative	measurement	is	such	a	
powerful	tool,	it	can	become	addictive,	to	the	point	
where	only	easily	measured	quantities	are	used	to	
guide	policies	and	decisions.	

source:	https://www.forbes.com/sites/
jonathansalembaskin/2014/07/25/according-to-
big-data-we-won-the-vietnam-war/?
sh=33dc487f3f21	

90

Here’s	another	example.	Somewhere	in	the	early	
2010s,	executives	at	YouTube	decided	that	they	
shouldn’t	optimize	their	recommendation	algorithm	
for	clicks	on	videos,	they	should	instead	optimize	for	
total	amount	of	time	people	spent	watching	video.		

This	was	in	general	a	good	idea:	it’s	a	better	proxy	
measure.	Optimizing	for	clicks	lead	to	people	using	
clickbaity	titles	and	thumbnails,	with	little	content	
behind	it.	Optimizing	for	viewing	time	requires	authors	
to	put	the	work	into	the	content	of	the	video,	and	to	
keep	users	watching,	if	they	want	to	be	promoted	by	
the	youtube	recommender	system.	But,	it’s	still	a	proxy	
measure.		

What’s	more	youtube	set	an	arbitrary	goal	of	a	billion	
hours	of	video	watched	per	day.	They	didn’t	just	make	
hours	watched	the	objective	for	the	recommendation	
algorithm,	they	made	it	the	objective	for	a	company	as	
a	whole.	

91

Youtube	bossted	its	recommendation	engine	with	deep	
neural	networks	and	reinforcement	learning.	All	with	a	
single	goal:	to	increase	engagement.	

The	precise	effects	are	dif7icult	to	ascertain.	Youtube	is	
not	forthcoming	with	details	about	its	algorithm,	and	
researchers	only	began	to	study	the	system	
quantitatively	from	the	outside	in	around	2019,	by	
which	time	Youtube	seemed	to	have	tempered	its	
hunger	for	engagement.	

Nevertheless,	in	the	years	between	2012	and	2019,	
youtube	faced	an	extreme	amount	of	scrutiny	from	the	
media.	It’s	recommender	system	was	recommending	
unsuitable	content	to	children,	favouring	more	
politically	extreme	content,	and	doing	everything	it	
could	to	keep	people	hooked	on	its	videos.		

sources:	

https://www.bloomberg.com/news/features/
2019-04-02/youtube-executives-ignored-
warnings-letting-toxic-videos-run-rampant	

https://www.nytimes.com/2018/03/10/opinion/
sunday/youtube-politics-radical.html	

meanwhile at netflix

92

By	contrast,	here	is	Neil	Hunt	chief	strategy	of7icer	at	
Net7lix,	in	2014	giving	a	keynote	about	the	content	
strategy	at	Net7lix.		

source:	https://youtu.be/lYcDR8z-rRY?t=4559	

New vs. existing customers

Difficult-to-measure metrics
Word-of-mouth, amount of compelling viewing

Total v.s. median hours viewed

Addictive vs. compelling content.

93

Note	that	he	explictly	talks	about:	

• The	tradeoff	between	optimizing	for	new	customers	
and	keeping	your	existing	customers	happy	

• The	importance	of	non-measurable	metrics	like	
word-of-mouth.	

• That	Net7lix	doesn’t	optimize	for	total	hours	viewed.	
Since	this	is	proportional	to	the	average,	optimizing	
for	it	means	paying	disproportionate	attention	to	
outliers:	the	people	who	are	already	spending	hours	
and	hours	on	your	service.	Optimizing	for	the	mean	
focuses	your	attention	on	those	customers	who	are	
spending	a	moderate	amount.	

• The	fact	that	the	recommender	system	doesn’t	
know	the	difference	between	addictive	and	
compelling	content.	One	hour	of		of	content	may	be	a	
life	changing	experience,	while	six	hours	of	bingeing	
1990s	sit	coms	may	leave	you	feeling	empty	and	
ready	to	cancel	your	subscription	

• Making	your	users	addicted	to	your	product	makes	
them	unhappy	in	the	long	term.	For	a	service	like	
net7lix	that	is	ultimately	counterproductive.	

These	strategies	were	followed	by	Net7lix	and	Youtube	
more	or	less	at	the	same	time.	The	picture	of	Youtube	is	
one	of	a	single-metric	strategy	being	pushed	top-down	
by	management,	and	shaping	the	corporate	culture	as	
well	as	the	algorithms	that	it	produces.	

The	Net7lix	picture	is	one	of		a	management	that	
actively	thinks	about	the	limitations	of	its	algorithms.	
About	the	things	it	cares	about	that	are	dif7icult,	or	
hard	to	measure,	and	even	about	how	its	technology	is	
affecting	the	lives	of	their	customers	beyond	
engagement.	

Of	course,	Net7lix	has	the	luxury	position	that	it’s	not	
driven	by	advertisements,	but	then	the	combination	of	
advertising	and	recommender	systems	may	itself	be	
part	of	the	problem.

Beware of corporate culture
Go fever, groupthink

Don’t optimize for a single metric
Beware of proxy metrics

Goodhart’s law: optimize for one thing, measure another.

Involve stakeholders, domain experts

Keep humans in the loop

Distinguish between actions and predictions

94

intelligent infrastructure Many	of	these	effects	aren’t	new.	In	fact,	Goodhart’s	law	
was	7irst	formulated	in	1975	long	before	automated	
decision	making	became	prevalent.	Most	of	the	biases,	
feedback	loops	and	blind	optimization	approches	
we’ve	discussed	during	these	four	videos	on	social	
impact	predate	computers	and	happen	just	as	often	in	
organizations	made	up	purely	of	human	agents.	

The	dangers	in	intelligent	infrastructure	are	in	the	
compounding	of	all	these	feedback	loops,	the	lack	of	
human	oversight,	the	monoculture	effect	of	such	
software	being	rolled	out	uniformly	across	the	globe,	
and	7inally	the	danger	that	each	institution	optimizes	
its	own	systems	for	local	bene7its	like	revenue,	without	
looking	at	the	global	effects.

mlcourse@peterbloem.nl
96

Many	of	the	examples	in	this	video	were	borrowed	
from	Anna	Koop’s	coursera	course	optimizing	machine	
learning,	which	I	highly	recommend	if	you’re	interested	
in	building	production	machine	learning	systems	
responsibly.

